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Abstract

In trust systems, unfair rating attacks – where advisors
provide ratings dishonestly – influence the accuracy of
trust evaluation. A secure trust system should function
properly under all possible unfair rating attacks; includ-
ing dynamic attacks. In the literature, camouflage at-
tacks are the most studied dynamic attacks. But an open
question is whether more harmful dynamic attacks ex-
ist. We propose random processes to model and measure
dynamic attacks. The harm of an attack is influenced
by a user’s ability to learn from the past. We consider
three types of users: blind users, aware users, and gen-
eral users. We found for all the three types, camouflage
attacks are far from the most harmful. We identified the
most harmful attacks, under which we found the ratings
may still be useful to users.

Introduction

Trust systems help users select trustworthy partners (tar-
gets), by evaluating trustworthiness based on direct experi-
ences and ratings from other users (advisors). For example,
trust systems are applied in e-marketplaces to select hon-
est sellers (Regan, Poupart, and Cohen 2006; Xiong and
Liu 2004), and in secure routing for wireless sensor net-
works to help select reliable nodes (Shaikh et al. 2009;
Bao et al. 2012). Various attacks have been found in (popu-
lar) trust systems, threatening their security (Kerr and Cohen
2009). A well-known type of attacks are unfair rating at-
tacks, where malicious advisors (attackers) provide dishon-
est ratings (Şensoy et al. 2009). Unfair rating attacks influ-
ence the accuracy of trust evaluation, and accordingly, deci-
sion making of users (Jøsang 2010).

There are various formulations of the unfair rating attacks
in the literature (Sun et al. 2006; Vogiatzis, MacGillivray,
and Chli 2010; Hoffman, Zage, and Nita-Rotaru 2009).
Most commonly unfair rating attacks are defined statically;
meaning attackers’ strategies are independent of history.
For instance, in the ballot-stuffing attacks, attackers are as-
sumed to always report positively (Yu and Singh 2003;
Yu et al. 2012) regarding specific targets, regardless of when
they are asked for the ratings.

A secure trust system must also function properly un-
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der dynamic unfair rating attacks – where attackers’ strate-
gies are influenced by the rating history. The commonly
studied form of dynamic attacks are camouflage attacks
– where attackers pretend to be honest by rating strategi-
cally (Jiang, Zhang, and Ong 2013; Kamvar, Schlosser, and
Garcia-Molina 2003). To only be able to defend against cam-
ouflage attacks cannot guarantee the security of a trust sys-
tem, however. In reality, it is hard to predict what dynamic
attacks would happen to a trust system. Hence, it is impor-
tant to know whether there are more harmful dynamic at-
tacks compared to camouflage attacks.

In this paper, we focus on modelling dynamic attacks and
measuring their harm. We apply the information-theoretic
measurement of harm (information leakage)which we intro-
duced in (Wang et al. 2015a). The harm of an attack depends
on how much information a user can gain about the real ob-
servations of the attacker, which influences the difficulty to
construct an accurate trust opinion. Such a user-based mea-
surement is independent of specific trust systems. As we will
discuss later, only static attacks are considered in (Wang et
al. 2015a), which has fundamentally different assumptions.

For dynamic unfair rating attacks, we introduce a stochas-
tic process-based model. The hindsight of a user about past
ratings influences the information it can gain from a dynamic
attack. Hence, we distinguish three cases: (1) the user can-
not determine whether the attacker reported the truth (blind
users), (2) the user can accurately determine whether the at-
tacker reported the truth (aware users), and (3) the user can
determine whether the attacker reported the truth with lim-
ited accuracy (general users). For each type of users, we de-
rive the harm of dynamic unfair rating attacks, and relate it
to the harm of merely pretending to be honest.

We found that initially purely pretending to be honest
is not the most harmful against any types of users. For
blind users who have no hindsight, camouflage attacks are
no more harmful than static attacks. Even for aware users,
who can perceive honest behaviour, it is not the worst to be
cheated by disguised honesty. We found that, for all users,
to cause the maximum harm, attackers must be honest with
smaller probability than to lie, even initially. Furthermore,
we found that a non-blind user can always gain some in-
formation, provided the percentage of attackers is below an
exponentially large threshold. The most harmful dynamic at-
tacks have not been introduced in the literature.
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Background

Unfair rating attacks are commonly studied in trust sys-
tems (Jøsang, Ismail, and Boyd 2007). Three types of un-
fair rating attacks are typically considered in the literature:
ballot-stuffing – for some targets, attackers always provide
positive ratings (e.g., a number of buyers in eBay are bribed
to rate an unreliable seller highly), bad-mouthing – for some
targets, attackers always provide negative ratings – and ly-
ing – for some targets, attackers always report the opposite
of their true observations (Wang et al. 2015b). These attacks
are all static, with attackers’ behaviour depends on the spe-
cific targets and is independent of the rating time.

We refer to unfair rating attacks where time influences
attackers’ behaviour as dynamic. Dynamic attackers’ be-
haviour is closely related to their rating history. Camouflage
attacks, where malicious advisors camouflage themselves as
honest, are popularly studied dynamic attacks1. E.g. in e-
commerce, some raters first provide reliable suggestions re-
garding arbitrary sellers, to gain the trust of a buyer, then
they cheat the buyer by unfairly recommending colluding
sellers. Below, we call an attack with k honest ratings fol-
lowed by lies the k-camouflage attack.

Being able to defend against specific dynamic attacks can
ensure the security of a trust system to some extent. In real-
ity, it is difficult to know accurately what attacks will hap-
pen to the system. Hence, it is worth to study whether more
harmful attacks exist compared with camouflage attacks.

Our methodology extends that of (Wang et al. 2015a),
which is based on information theory:

Definition 1 (Shannon entropy (McEliece 2001)). Let X,Y
be discrete random variables. Let f(z) = z log2(z).
Shannon entropy of X is: H(X) = −∑

xi∈X f(P (xi)).
Conditional entropy of X given Y is:

H(X|Y ) = −∑
yj∈Y P (yj) ·

∑
xi∈Xf(P (xi|yj)).

Information leakage of X given Y is: H(X)−H(X|Y ).

The information leakage measures the amount of infor-
mation (uncertainty) about X provided (reduced) by know-
ing Y , which coincides with mutual information (Cover and
Thomas 1991). Considering a trust system, where an advi-
sor provides ratings about a target to a user, a rating should
serve to provide information about the advisor’s observation
about the target. Measuring the information leakage between
the advisor’s observation and its rating would enable us to
quantify how much information the user can gain.

As a shortcut, for random variable X , we use x for its
outcomes, and p(x) to mean p(X=x). We may write Xi to
mean Xi, . . . , X1, or an empty list, when i = 0.

Modelling Dynamic Attacks

In a trust system, advisors provide (binary) ratings to a user.
The user wants to learn the observations of advisors about a
target. An honest advisor’s ratings coincide with his obser-
vations. For dishonest advisors (attackers), ratings diverge
from their observations. Attackers may apply various rating

1Our usage of the term camouflage attacks refers to advisors.
We do not consider camouflaging targets (e.g. sellers), as in (Oram
2001) or “karma suicide attacks” described in (Glynos et al. 2008).
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Figure 1: Attacker strategies for two ratings.

strategies. In dynamic unfair rating attacks, attackers’ strate-
gies have memory, hence we need states in attack modelling.

The random variables Oi and Ri represent the observa-
tion and rating of an advisor in the ith iteration (or about ith
target). Oi only depends on the target’s integrity, but Ri de-
pends on both the honesty and strategies of the advisor. We
introduce a random variable P to represent honesty of the
advisor. The probability p = p(P=1) represents the proba-
bility that the advisor is honest, and 1 − p = p(P=0) that
he is dishonest. Hence, p(Ri = Oi|P = 1) = 1, for all i.
However, p(Ri = Oi|P = 0) depends on the strategies of
the attacker.

Let Bi be sets of binary strings of length i, B1
i (B0

i ) the
subset of strings ending in 1 (0), and b̂i the string consisting
of i 1’s. We denote concatenation of b and c as bc. Finally,
b(i) refers to the ith bit of b.

Let S = {sb|b ∈ B} be a set of states. We introduce a
random process {Si : i ∈ n} to model a dynamic attack of
size n. An outcome sb of random variable Si represents the
state of the attacker after the ith rating, which is modelled
as its behaviour history after the rating. Formally, p(Oi =
Ri|Si = sb) = b(i). The transition probability p(Si+1 =
sc|Si = sb) is ab if c=b1, 1−ab if c=b0, and 0 otherwise.
The random process {Si : i ∈ n} is a Markov chain.

As an example, the model of attacks of size 2 is shown in
Figure 1. In the initial state, s, no rating occurred. In the state
s01, for instance, the attacker lied in the first rating and told
the truth in the second rating. The probability of reaching s01
is (1 − a)a0, which we shorthand to α01. Formally, letting
π(x, 1) = x and π(x, 0) = 1 − x, we set αb = π(a, b(1)) ·
π(ab(1), b(2)) · . . . ·π(ab(1)b(2)...b(i−1), b(i)). Simple algebra
shows that p(sb|P=0) = αb.

As we focus on the behaviour of malicious advisors but
not targets, we assume maximum uncertainty (entropy) for
targets’ integrity (or On), meaning Oi are independent, and
p(oi)=1/2, H(Oi)=1 for all i. Under this assumption, tar-
gets’ integrity is invariant and will not influence the com-
putation of information leakage over time. Furthermore,
p(ri)=

∑
oi
p(oi)p(ri|oi)=1/2 for ri∈{0, 1}. As ri and rj

(i �=j) are independent without any observations, p(ri)=1/2i.

Harm of dynamic attacks In (Wang et al. 2015a), we pro-
pose to measure the harm of static unfair rating attacks based
on information theory. Specifically, the harm of attacks de-
pend on the information leakage of advisors’ ratings about
their observations. An attack with more information leak-
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age is less harmful to a user, since it makes it easier to con-
struct accurate trust opinions (more intuitions can be found
in (Wang et al. 2015a)). We apply such a measurement of
harm to dynamic attacks.

Strategies of dynamic attackers are closely related to their
rating history, implying their ratings over time may be cor-
related, which may provide extra information to a user.
Whereas in a static attack, ratings given in different itera-
tions can be treated as independent of each other, for dy-
namic attacks, we must measure information leakage over
the sequence of ratings, to capture this extra information.
We use Ii to represent the information leakage of the rat-
ing in ith iteration. The computation of Ii is influenced by
ratings received in the past (Ri−1) and the user’s hindsight,
as will be presented and explained in the following sections.
The information leakage of an attack of size n is

∑
1�i�n Ii.

Measuring Dynamic Attacks

In this section, we study the harm of dynamic attacks based
on the model, and the measurement introduced in the last
section. Especially, we will figure out whether commonly
studied camouflage attacks are the most harmful, and if not,
what would be the most harmful attacks.

In dynamic attacks, a user’s ability to judge an attack-
ers’ past behaviour influences its perception of the future
behaviour. From an information theoretical perspective, the
information a user can gain from future ratings is influenced
by its ability to judge past ratings. Hence, the harm of an
attack is closely related to the judging ability of the user.

We study three types of users in total: blind users, aware
users, and general users. They differ only in abilities in judg-
ing the truthfulness of past ratings. Blind users are those who
cannot distinguish truth from lies. Aware users are those who
can accurately distinguish truth from lies. General users are
those with limited judging abilities. The first two types are
extreme cases of general users.

We study each type of users in a subsection. In each sub-
section, we start with dynamic attacks of size 2 as a running
example. We present the information leakage for the appro-
priate users. Based on the definition, we then prove what
would be the most harmful attacks of size 2, and some the-
oretical properties. Then, we generalise all those results to
dynamic attacks of arbitrary size.

Attacks against Blind Users

In this section, we study cases where a user is completely
unable to judge whether the attacker has told the truth in the
past. This happens when the user does not or cannot verify
the ratings. We call these users blind users. Below we study
the impact of dynamic attacks on blind users.

Two iterations We start with the attacks modelled in the
example from Figure 1. The information leakage of the first
rating R1 with regard to O1 is H(O1)−H(O1|R1). After
receiving R1 but before receiving R2, the user’s uncertainty
about O2 is H(O2|R1). Upon receiving R2, the uncertainty
changes to H(O2|R2, R1). The information leakage of the
second rating is the reduction of the user’s uncertainty about
O2, i.e., H(O2|R1)−H(O2|R2, R1). The total information

leakage is simply the sum of the information leakage of the
different ratings:

H(O1)−H(O1|R1) +H(O2|R1)−H(O2|R1, R2) (1)

As the observations of the attacker only depend on
the integrity of the target (which is assumed of the
maximum uncertainty), O2 is independent of R1, and
H(O2|R1)=H(O2)=1. Similar independency can be
proved between any Oi and Ri−1, (Oi−1, Ri−1), i.e.,
H(Oi|Ri−1)=H(Oi|Oi−1, Ri−1)=H(Oi)=1.
Proposition 1. For dynamic attacks of size 2, the
information leakage is 0 iff p� 1

2 , a= 1−2p
2(1−p) and

(1−2p)a1+a0=1−2p.

Proof. Formula (1) equals 0 iff H(O1)=H(O1|R1) and
H(O2)=H(O1|R1, R2). These happen iff O1 is indepen-
dent of R1, and O2 is independent of (R1, R2), which means
p(o1|r1)=p(o1) and p(o2|r1, r2)=p(o2) must hold for all
o1, o2, r1, r2. The probabilities can be rewritten via a, a0,
a1, p. Basic algebra suffices to prove the proposition.

Proposition 1 gives strategies that induce the most harm-
ful dynamic attacks of size 2. For p=1/2, we get a=a0=0.
This implies when there are equal number of honest advisors
and attackers, the way of absolutely hiding information is to
always lie. Intuitively, this is because a randomly selected
advisor in the system is equally likely to tell the truth and to
lie. For p>1/2, where honest advisors outnumber attackers,
there must be information leakage.

Formula for n iterations We generalize formula (1)
to dynamic attacks of size n. Similar to the example,∑

i H(Oi|Ri−1) = n, which we use to simplify the defi-
nition of information leakage:

n−∑
i H(Oi|Ri) (2)

The conditional entropies can be represented in terms of
p, n and the strategies of the attacker (i.e. the collection a...,
using the shorthand α):
Theorem 1. The information leakage of n iterations is:

n+
∑

1�i�n

(
f((1− p)

∑
b∈B0

i

αb) + f(p+ (1− p)
∑

b∈B1
i

αb)
)

Proof. Unfold the conditional entropy, apply the law of total
probability over the possible states, and substitute the result-
ing terms with α.

Theoretical results for n iterations Blind users cannot
learn an attacker’s honesty from its past ratings. Hence, rat-
ings in different iterations are independent to blind users.
Information gain of a rating is not related to other ratings:
Theorem 2. Blind users will not learn from past ratings:

H(Oi)−H(Oi|Ri) = H(Oi)−H(Oi|Ri)

Proof. The main equation is equivalent to H(Oi|Ri) =

H(Oi|Ri). Considering p(oi|ri)=p(ri|oi), we get p(oi|ri)
= 2 · ∑

oi−1,ri−1
p(oi, ri). At the same time, p(oi|ri)=2i
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·∑
oi−1

p(oi, ri), and
∑

oi−1
p(oi, ri) remains the same for

any value of ri−1, hence we get p(oi|ri)=p(oi|ri) hold for
all oi, ri, ri. Furthermore, p(ri)=2i−1p(ri), thus the equal-
ity between two conditional entropy can be derived.

Theorem 2 implies that for a blind user, rating of a dy-
namic attacker can be treated as independent of the itera-
tion in which it happens. And the total information leakage
is the sum of the information leakage of individual ratings,
i.e.,

∑
0<i�n H(Oi)−H(Oi|Ri). Dynamic attacks on blind

users are equivalent to repeated static attacks. The maximum
harm of static attacks has already been studied in (Wang et
al. 2015a). Applying the results to dynamic attacks:

Corollary 1. Zero information leakage occurs iff 0�p�1/2
and ab = 1−2p

2−2p ; whereas for 1/2� p� 1, information leak-
age is minimised when ab = 0.

Proof. Combining Theorem 2 with Theorems 3 and 4
in (Wang et al. 2015a) suffices to prove the corollary.

Camouflage attacks Corollary 1 implies the most harmful
attacks are not camouflage attacks, since ab ≤ 1/2 – attack-
ers lie more often than tell the truth, even initially – in fact,
there is no relationship between order and probability of ly-
ing. Intuitively, accumulating trustworthiness is meaningless
against blind users, that cannot distinguish truth from lies.
Furthermore, Theorem 2 implies that camouflage attacks are
no more harmful than the repeated strongest static attacks.

Quantitatively, the information leakage of a k-camouflage
attack is n+(n−k) · f((1− p)). It is minimized when k=0,
i.e. always lie. This means the strategy to minimise informa-
tion is not to do camouflage.

What if users are not blind, but smarter? Perhaps the cam-
ouflage attacks are more harmful to smarter users, which
may recognise honest behaviour, allowing attackers to ac-
cumulate trust. Next, we study users who can accurately tell
whether advisors told the truth or not (i.e., aware users).

Attacks against Aware Users

Aware users can tell with perfect accuracy whether a pre-
vious rating was honest. For now, we ignore the issue of
subjectivity. Aware users are polar opposite of blind users.
In this section, we study what would be the most harmful
dynamic attacks for aware users.

Two iterations Again, we start with the example in Fig-
ure 1. The information leakage of the first rating remains
H(O1)−H(O1|R1). Aware users know whether R1 coin-
cides with O1, therefore before the second rating, the uncer-
tainty about O2 is H(O2|O1, R1). Upon receiving R2, the
uncertainty becomes H(O2|O1, R1, R2). Hence, the infor-
mation leakage for two ratings is:

H(O1)−H(O1|R1)+H(O2|R1, O1)−H(O2|O1, R1, R2) (3)

Proposition 2. For dynamic attacks of size 2, the informa-
tion leakage is 0 iff p� 1

4 , a= 1−2p
2(1−p) , a1=

1−4p
2(1−2p) , a0=

1
2 .

Proof. Formula (3) equals 0 iff H(O1)=H(O1|R1) and
H(O2)=H(O2|O1, R1, R2). The condition for the first
equality is already proved in Proposition 1. The second
equality holds iff O2 is independent of (O1, R1, R2), which
means p(o2)=p(o2|o1, r1, r2). Rewrite the equation using
a..., p, we can derive their values.

Proposition 2 presents the strongest attacks that can
achieve 0 information leakage for aware users. Note that
a1<a< 1

2 , which implies the attacker has higher chance to
lie than to tell the truth in the first rating, and the chance of
lying increases if the attacker just told the truth. To get more
general results, we extend the attack size from 2 to n (n�2).

Formula for n iterations The information leakage for n
iterations is

n− ∑
1�i�n

H(Oi|Ri, Oi−1) (4)

Based on the chain rule of conditional entropy, and the
conditional independency between Oi and Rj , (j > i) given
Oi−1, Ri, we can prove the information leakage formula
above is equal to

H(On)−H(On|Rn) (5)

As before, the conditional entropy can be represented in
terms of p, n and the strategy parameters a...:

Theorem 3. The information leakage of n iterations is:

n+ f(p+ (1− p)αb̂n
) +

∑
b∈Bn,b �=b̂n

f((1− p)αb)

Proof. Modify the proof of Theorem 1 by adding a case dis-
tinction for the left-most branch.

Theoretical results for n iterations The attacker can ren-
der ratings useless, only if p � 1/2n.

Theorem 4. For aware users and dynamic attacks of size n,
attacks with 0 information leakage occur when 0�p�1/2n,
ab̂i =

1
2 − p

2(1−p)
∏j=i−1

j=0 ab̂i

, and ab = 1/2 for b �= b̂i.

Proof. Considering H(On)=n, to minimise for-
mula (5) we only need to maximise the subtractor.
H(On|Rn)=

∑
rn

p(rn) · H(On|rn), and p(rn) constantly
equal to 1

2n . Based on the Jensen’s inequality (Jensen 1906),
the maximum of the conditional entropy happens when
p(On|rn) are equal for any value of On and rn, and the
maximum value is n. The probabilities can be rewritten
using all transition probabilities, and basic algebra suffices
to prove the theorem.

When p > 1/2n, the strategy that causes the most harm is
independent of p:

Theorem 5. For aware users, the most harmful attack of
size n, given p > 1/2n, occurs when ab̂i = 2n−i−1−1

2n−i−1 and
ab = 1/2 for b�=b̂i.

2554



Proof. Take the formula from Theorem 3. Since p>1/2n, the
minimum has αb̂n

= 0. Using Jensen’s inequality, it suffices
to set the remaining αbn equal. Then, αbn must equal 1

2n−1 ,
which happens when all ab are set as in the theorem.

Note that for blind users, 0 information leakage can be
achieved for any p� 1

2 . But for aware users, the required
value ranges of p are much smaller and get narrower as rat-
ing iterations increase (p�1/2n for n interations). This is in
line with our intuition, that when users get smarter, it should
be more difficult for attackers to hide information.

Camouflage attacks Theorem 4 presents the most harm-
ful attacks for aware users. Note that ab̂i�ab̂j for i<j, mean-
ing the probability of continuing to tell the truth is non-
increasing over time. This is also the case in camouflage
attacks. However, all ab̂i , i = 0, . . . , (n−1) are below 1/2,
meaning lying is always more probable. Hence, although
camouflage attacks are not the most harmful attacks for
aware users, but pretending to be honest with some decreas-
ing probability is more harmful than a fixed probability.

Quantitatively, information leakage for k-camouflage is
n + f(1 − p) + f(p), for k �= n, and n, for k = n. Com-
paring to the blind users, camouflage attacks are less harm-
ful. Moreover, provided the attacker lies at some point, it
does not matter when he switches. Therefore, always lying
is equally harmful as camouflage attacks.

Attacks against General Users

Blind users and aware users are two extreme examples of
users. In this section, we study the impact of dynamic at-
tacks on users in between of the extremes. We introduce
random variables Qi to represent a user’s hindsight percep-
tion of attackers’ honesty, with Qi=1 (Qi=0) denoting the
attacker probably told the truth (lied) in the ith rating. The
accuracy of the user’s hindsight depends on how much he
can learn from his own interactions with the target, or from
other sources in the system. Subjective ratings are an exam-
ple with low accuracy, since even when the user forms an
opinion different of the rating, it remains probable that the
advisor was not lying.

We use q, (0�q�1) to describe the accuracy of the
user’s hindsight. With probability q, the user’s perception
is correct: p(Qi=1|Oi=Ri) = p(Qi=0|Oi �=Ri) = q,
and incorrect with probability 1 − q: p(Qi=0|Oi=Ri) =
p(Qi=1|Oi �=Ri) = (1− q). For high degree of subjectivity,
we expect q to be close to 1/2.

Two iterations Qi expresses the new knowledge of the
user about the attacker after the ith rating, the amount of
which is decided by q. To show how this influences the def-
inition of information leakage, consider again the example
in Figure 1. The information leakage of the first iteration re-
mains unchanged. After the first iteration, the user knows
R1 and Q1, and the uncertainty about O2 is H(O2|R1, Q1).
Upon receiving R2, the uncertainty about O2 changes to
H(O2|Q1, R1, R2). Hence, the information leakage of the
second iteration is H(O2|R1, Q1)−H(O2|Q1, R1, R2). The
total information leakage of the attack is the sum of the first

and the second iterations:

H(O1)−H(O1|R1)+H(O2|R1, Q1)−H(O2|Q1, R1, R2) (6)

Recall that O2 only depends on the target,
H(O2|R1, Q1)=H(O2)=1. We first study the maximum
impact of attacks of size 2:
Proposition 3. For dynamic attacks of size 2, the informa-
tion leakage is 0 for general users iff: (1) for q �= 1

2 , p� 1
4 ,

a= 1−2p
2(1−p) , a1= 1−4p

2(1−2p) , a0= 1
2 . (2) for q= 1

2 , refer to strate-
gies in Proposition 1.

Proof. Formula (6) is 0 iff H(O1)=H(O1|R1) and H(O2)
=H(O2|Q1, R1, R2). We have proved in Proposition 1 that
to get the first equality, a= 1−2p

2(1−p) . The second equality
holds iff O2 is independent of (Q1, R1, R2), which means
p(o2|Q1, r1, r2)=p(o2)=1/2. Rewrite the probabilities using
transition probabilities, to obtain a0, a1.

Note that for any q �= 1
2 – i.e., a user has at least some accu-

racy in hindsight – the strategy to completely hide informa-
tion remains the same. Thus, as long as a user is not blind,
a single strategy suffices to completely hide information, re-
gardless of the user’s accuracy.

Formula for n iterations Generalising the attack to size
n, the information leakage of an entire attack is:

n−∑
i H(Oi|Ri, Qi−1) (7)

Rewrite in terms of p, q, n and a...:
Theorem 6. Let βb,c =

∏
1�j<i π(1−q, b(j) ⊕ c(j)). For

x ∈ {0, 1}, let γx
c = (1−p)

∑
b∈Bx

i
αbβb,c. Let δc,i = γ0

c +

γ1
c + pβb̂i,c

. The information leakage is:

n+
∑

1�i�n

∑
c∈Bi

δc,i ·
[
f(

γ1
c+pβb̂i,c

δc,i
) + f(

γ0
c

δc,i
)

]

Proof. In addition to the technique used in Theorem 1, apply
the law of total probability over all Qi.

Theoretical results for n iterations The blind and aware
users are special cases of the general users:
Theorem 7. Dynamic attacks on blind users (aware users)
are a special case of attacks on general users, where q =
1/2 (q = 1). Specifically:

H(Oi|Ri) = H(Oi|Ri, Qi−1), q=1/2 (8)

H(Oi|Ri, Oi−1) = H(Oi|Ri, Qi−1), q=1 (9)

Proof. When q = 1/2, π(1 − q, c(j) ⊕ b(j)) is a constant 1
2

for all j, making βb,c is a constant, and simplifying γ to fit
Theorem 1. When q = 1, βb,c contains a 0-factor, whenever
b �= c, meaning βb,c = 1 iff b = c. This implies γx

c =

αc, and the term pβb̂i,c
equals p iff c = b̂i. Some formula

manipulation shows it fits Theorem 3.

Theorem 8. For dynamic attacks of size n on general users,
0 information leakage can be achieved when for all 1 � i �
n, c ∈ Bi: γ1

c + pβb̂i,c
= γ0

c .
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(a) (b)

Figure 2: The information leakage in the most harmful
strategies for two (a) or five (b) iterations.

Proof. To get information leakage be 0, refer to for-
mula (7), H(Oi) = H(Oi|Ri, Qi−1) must hold for all
i. The equalities are achieved iff Oi is independent of
Ri, Qi−1, which means p(oi|ri, qi−1)=p(oi)=1/2. This im-
plies p(oi=ri, ri, qi−1)=p(oi �=ri, ri, qi−1), which instanti-
ate γ1

c + pβb̂i,c
and γ0

c .

Numerical results for n iterations Using numerical ap-
proximation, we found strategies that cause close to maxi-
mal harm, given specific p, q and n. Figure 2 plots the infor-
mation leakage w.r.t. p and q, for n=2 in Figure 2a, and n=5
in Figure 2b. Similarly, Figure 3 plots the initial probability
of telling the truth (a) w.r.t. p and q, for n=2 and n=5.

Observe that the graphs are symmetrical over q = 1/2,
since when q < 1/2 we can simply swap the meaning of
Q = 0 and Q = 1. Moreover, note that a is bound by 1/2
and information leakage by n.

In Figure 2, note that if p = 1, all information is leaked
– since all advisors are honest. Secondly, for two iterations,
the information leakage is 0 when 0� p� 1/4, and for five,
when 0�p�1/32. This pattern holds for all q, except q=1/2,
in which case information leakage is 0 when 0�p�1/2. We
find that (barring q=1/2) obtaining 0 information leakage re-
quires exponentially more attackers relative to honest users,
as the number of iterations increases. This extends the theo-
retical result in Theorem 4, where we prove this pattern for
aware users (q = 1).

Regarding Figure 3, first observe that there appears to be
a phase transition at p = 1/2 and p = 1/32, in Figures 3a and
Figures 3b, respectively. The choice of optimal a is indepen-
dent of q, for smaller p. Since the same strategy is optimal
for blind users and aware users, when there are many attack-
ers, and there is no point pretending to be honest to blind
users, there is no point pretending to be honest to any users
(for small p).

Second, observe that for larger p and q close to 1/2, a = 0.
Thus, the attacker initially always lies (Corollary 1 proves
this for q = 1/2). As n increases, the area where the attacker
always lies appears to shrink. The strategy of always lying
is less often the most harmful, when the number of ratings
increases.

Finally, for larger p and q closer to 1 (or 0), a > 0. Thus,
the attacker sometimes tells the truth, despite the fact that

(a) (b)

Figure 3: The a value in the most harmful strategies for two
(a) or five (b) iterations.

for static scenarios it should always lie. This indicates that
pretending to be honest initially (like probabilistic camou-
flaging) is (the most) harmful. The probability of telling the
truth initially should, however, not be too high – it appears
to be bounded by 1/2.

Camouflage attacks Generally, the analysis of camou-
flage attacks is the same as for aware users, with the major
exception of an area around q = 1/2. The area in the graphs
in Figure 3 where a = 0 denotes combinations of p, q and n
where pretending to be honest definitely causes no harm. We
see that the area increases in size as p grows, but decreases
in size as n grows. Furthermore, as n and p grow, the cut-
off (between the cases where pretending to be honest causes
harm and cases where it does not) becomes sharper.

Quantitatively, letting ḃi be k 1’s followed by i−k
0’s, the information leakage of k-camouflage is n+

∑
k<i≤n∑

c∈Bi

(
f(pβb̂i,c

)+f((1−p)βḃi,c
)−f(pβb̂i,c

+(1−p)βḃi,c
)
)
.

Again, this is minimised when k = 0, meaning that even
always lying is worse than camouflage.

Conclusion

In the camouflage attack, users initially pretend to be honest,
to increase the impact of later dishonest ratings. The moti-
vating question for this paper, is whether such behaviour is
harmful. It turns out that the answer to that question depends
on the hindsight of the users. If users have no hindsight
(blind users), then attackers pretending to be honest can only
be beneficial to them. If users have perfect or limited hind-
sight (aware/general users), then it may cause harm when
attackers initially pretend to be honest with a (small) proba-
bility. It never causes harm to (initially) pretend to be honest
with probability over 1/2, let alone probability 1. Therefore,
the camouflage attack, where attackers are always honest un-
til a certain point, is not very harmful.

The results are obtained by using a method to measure
the strength of unfair rating attacks applied in the litera-
ture (Wang et al. 2015a; 2015b). The method is not suitable
for multiple ratings, so we had to generalise the methodol-
ogy. Moreover, we needed to construct a formal model of all
dynamic rating behaviour. We let the advisor be a stochastic
process that generates the ratings according to some strat-
egy. We are able to derive explicit formulas expressing the
harm of any dynamic attack against any of the three users.
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The theory not only allowed us to answer the main ques-
tion, but also to prove interesting properties about the harm
of dynamic attacks. For example, attackers can render rat-
ings completely useless to blind users, whenever they are
in the majority. But for all other users the attackers need to
greatly outnumber the honest users (exponential in the num-
ber of ratings) to render ratings useless. Another interesting
result is that against aware users, the most harmful attacks
do not depend on how many attackers there are (unless they
greatly outnumber the honest users).

Now we know that it is typically not very harmful if users
merely pretend to be honest. An interesting future direction
would be to exploit the information present in ratings made
by those pretending to be honest. Moreover, we have char-
acterised different kinds of attacks and computed the most
harmful ones. Therefore, it may be possible to strengthen a
trust system specifically against the most harmful dynamic
attacks.
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