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Abstract

This paper introduces an extension of the target surveillance
problem in which the surveillance agent is exposed to an ad-
versarial ballistic threat. The problem is formulated as a mixed
observability Markov decision process (MOMDP), which is a
factored variant of the partially observable Markov decision
process, to account for state and dynamic uncertainties. The
control policy resulting from solving the MOMDP aims to
optimize the frequency of target observations and minimize
exposure to the ballistic threat. The adversary’s behavior is
modeled with a level-k policy, which is used to construct the
state transition of the MOMDP. The approach is empirically
evaluated against a MOMDP adversary and against a human
opponent in a target surveillance computer game. The empir-
ical results demonstrate that, on average, level 3 MOMDP
policies outperform lower level reasoning policies as well as
human players.

1 Introduction

Adversarial target surveillance arises in many peacekeeping
operations in which a strategic target must be monitored in
the presence of hostile forces. For example, a voting booth in
a politically unstable region may be a target of adversaries
and require persistent monitoring. Currently, planning for
such missions is done by human experts using a set of guid-
ing principles that balance mission objectives (U.S. Army
2008). However, optimal decision making in hostile envi-
ronments is difficult due to the potential visual constraints
imposed by urban structure and the uncertainty associated
with the behavior of adversaries. In this work, we consider the
problem of target surveillance in the presence of adversarial
ballistic threats. There are two primary challenges associated
with this problem: how to accurately model an intelligent
adversary and how to plan optimally. An intelligent surveil-
lance planner that solves these two challenges can be used
as a high level controller for autonomous systems or as a
decision support tool for aiding peacekeeping forces in the
field.

One way to capture the stochastic nature of target surveil-
lance is to formulate the problem as a Markov decision pro-
cess (MDP), or more generally as a partially observable MDP
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(POMDP) to account for uncertainty in the adversary’s loca-
tion. Problems that include a mixture of fully and partially
observable variables in the system state can be formulated
as mixed observability MDPs (MOMDPs) to reduce compu-
tational complexity (Ong et al. 2009). An example map of
an urban environment with a single agent, target, and bal-
listic threat is shown in Figure 1. The heat map represents
the belief, i.e, a probability distribution over the states of the
threat, as a representation of uncertainty. In this work, the
adversarial surveillance problem was modeled as a MOMDP.
The policy resulting from solving the MOMDP considers the
dynamics of the surveillance agent, its sensing capabilities,
and the behavior model of the threat (the adversary) and opti-
mizes the surveillance strategy based on a predefined reward
function. The reward function considers the competing ob-
jectives of surveillance persistency and risk mitigation. In
this paper, we investigate the feasibility of applying state-of-
the-art MOMDP solution methods to the problem of target
surveillance under ballistic threat.

The problem of optimally placing sensors in static net-
works has been extensively studied (Dhillon and Chakrabarty
2003; Akbarzadeh et al. 2013). Recent work extended the
problem to environments with static ballistic threats (Richie
et al. 2013). These works focus on stationary sensors that do
not require a control policy to operate. In the case of adver-
sarial target surveillance, the surveillance agent is dynamic
and must move in order to be effective. Dynamic surveillance
has also been a topic of previous research. Control policies
have been developed for sensor network coverage with guar-
anteed collision avoidance (Hussein and Stipanovic 2007),
target tracking (Lee et al. 2003), and persistence surveil-
lance (Nigam et al. 2012). These methods develop control
policies from first principles and provide some optimality
guarantees on the solution. However, these approaches do not
consider the uncertainties that arise from operating in urban
environments filled with line-of-sight obstructions. POMDPs
have been applied to problems in which an agent must track
a moving target in an environment with line-of-sight obstruc-
tions (Hsu, Lee, and Rong 2008), and this paper aims to build
on that work.

There are many ways to model the behavior of an adver-
sarial entity in a decision process. One approach is to formu-
late the problem as a Bayesian Stackelberg game (Paruchuri
2008), in which the agent is uncertain about the types of
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Figure 1: A heat map showing the belief over threat location

adversaries it may face. One of the limitations of Stackleberg
games is that they do not provide a structured way of incor-
porating state uncertainty into the solution. To account for
state uncertainty, the problem can be formulated as a multi-
agent POMDP with agents that have competing objectives.
Adversarial behavior can be incorporated into the POMDP
framework using a game-theoretic approach with partially
observable stochastic games (Bernstein et al. 2004), or by
considering a belief over the models of the other agents with
interactive POMDPs (I-POMDPs) (Gmytrasiewicz and Doshi
2005). However, these methods prove intractable for problem
sizes considered in this work. An alternative approach to plan-
ning in environments with self-interested agents using level-k
MDP policies has been shown to improve computational effi-
ciency (Hoang and Low 2013). This approach is based on a
quantal level-k model for strategic reasoning, which has been
shown to predict human behavior better than other behavior
models (Wright and Leyton-Brown 2010). We adopt a sim-
ilar approach to model the behavior of a stochastic, human
adversary.

In this work, we introduce a target surveillance problem
with an adversarial ballistic threat whose actions are both
intelligent and stochastic. We extend the state-of-the-art ap-
proach for solving POMDPs with adversarial agents to a large
scale, real world system. Finally, we evaluate our approach
with simulations against an adversary that follows a POMDP
policy and with a computer game against human players. The
approach is shown to effectively model adversarial behavior
in POMDPs and to outperform human players in computer
game evaluations.

2 Background

This section outlines POMDPs, their solution methods, and
nested policies.

2.1 POMDPs

An MDP is a stochastic process in which an agent chooses
an action according to its current state in order to maximize
the cumulative reward it receives over time. POMDPs are
MDPs in which the state of the system is not known, and

the agent must rely observations to gather information about
the current state of the system. Discrete POMDPs can be
represented as a tuple (S,A,Z, T, R,O), where:
• S is the set of partially observable states s ∈ S;
• A is the set of possible actions a ∈ A;
• Z is the set of observations o ∈ Z;
• T : S ×A× S → [0, 1] is the stochastic transition model;
• R : S ×A → R is the reward model;
• O : S ×A× Z → [0, 1] is the observation model;
At each time step, the agent updates its belief b(s), which
defines the probability of being in state s according to its
history of actions and observations. Systems with discrete
beliefs can be updated exactly using

b′(s′) ∝ O(s′, a, o)
∑

s∈S
T (s, a, s′)b(s). (1)

where b′ is the new belief after taking a and observing o.
The solution to a POMDP is a policy, or a strategy, that

selects actions based on the uncertainty of the underlying
system state as well as the uncertainty of the system dynamics.
The policy can be represented as a collection of alpha-vectors
denoted Γ. Associated with each of the alpha-vectors is one
of the actions. The optimal value function for a POMDP can
be approximated by a piecewise-linear convex function that
takes the form

V (b) = max
α∈Γ

(α · b). (2)

If an action associated with an alpha vector α maximizes the
inner product α · b, then that action is optimal.

2.2 MOMDPs

The POMDP formulation can be extended to problems with
mixed observability by using a factored model to separate
the fully and partially observable components of the agent’s
state. This reformulation is known as a mixed observabil-
ity MDP (MOMDP). It has been shown that, in problems
with mixed observability, MOMDPs can be solved more ef-
ficiently than POMDPs (Ong et al. 2009). In a MOMDP,
the joint state space is factored S = X × Y . The x ∈ X
variable represents the fully observable state components
while the y ∈ Y variable represents the partially observable
ones. The MOMDP model can be described by the tuple
(X ,Y,A,Z, Tx, Ty, R,O), which differs from the POMDP
tuple in its factored representations of the state space and
the transition function. Since the state variable x is fully
observable, a belief only needs to be maintained over the
partially observable variable y. The MOMDP model leads
to improvements in computational complexity due to the
reduced dimensionality of the belief space.

2.3 POMDP Solution Methods

In general, computing an optimal policy for POMDPs is in-
tractable (Papadimitriou and Tsitsiklis 1987). However, a
number of approximate solution methods exist that can scale
to large problems (Kochenderfer 2015). A simple approxima-
tion method known as QMDP uses the state-action value func-
tion Q(s, a) to approximate the alpha vectors. While QMDP
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performs well in many real-world problems, the method tends
to have difficulty with information gathering actions because
it assumes perfect state observability after performing the
action (Hauskrecht 2000). Point-based methods like Point-
Based Value Iteration (Pineau, Gordon, and Thrun 2003)
and Heuristic Search Value Iteration (Smith and Simmons
2005) have received attention because of their ability to solve
relatively large problems. The Successive Approximation
of the Reachable Space under Optimal Policies (SARSOP)
algorithm (Kurniawati, Hsu, and Lee 2008) is the current
state-of-the-art point-based POMDP solver. The advantages
of SARSOP are as follows: i) it explores only the optimally
reachable part of the belief space to improve computational
efficiency, ii) it provides bounds on the quality of the solu-
tion, and iii) it can handle problems with mixed observability.
QMDP can be used to solve MOMDPs by assuming all the
state variables are partially observable, while SARSOP can
handle the MOMDP factorization directly (Ong et al. 2009).

2.4 Level-k Policies

In competitive games, each player’s decision making strat-
egy is influenced by the actions of other players. One way
to formulate player decision making is though level-k rea-
soning, which is inspired by the cognitive hierarchy model
of games (Camerer, Ho, and Chong 2004). This paper uses
a two-agent framework that involves a recursive reasoning
process with k levels. At level 0, the agent follows a random
policy. At higher levels of reasoning k ≥ 1, the agent picks a
strategy assuming the other agent follows a policy based on
a lower level of reasoning k − 1.

A nested MDP is a multi-agent planning model that con-
siders the intentions of others agents when determining our
agent’s optimal policy (Hoang and Low 2013). For simplic-
ity, we consider a two agent framework. For a given agent
at level k reasoning, a nested MDP assumes that the strategy
of the other agent is based on lower levels 0, 1, ..., k − 1 of
reasoning. The framework requires a decomposition of the
state space to independently describe the dynamics of each
agent, a set of k nested policies for the other agent and reward
models for both agents. By treating the intentions of the other
agent as a stochastic process in which it samples actions from
the set of nested policies {π0, π1, ..., πk−1} with probability
pi we can capture its behavior in the transition model of the
nested MDP. The nested MDP can be solved recursively by
starting at level 0 reasoning and incrementally solving for the
policy of each agent until the desired level of reasoning is
reached. This formulation assumes a fully observable state
space, allowing each nested policy to be efficiently solved
using value iteration (Kochenderfer 2015). In this work, the
adversary was modeled using nested level-k policies.

3 Problem Formulation

This section describes the problem of target surveillance
under ballistic threat. The problem is modeled as a MOMDP
with a level-k nested adversarial policy represented as process
noise in the partially observable variable. Model parameters
are discussed in this section as well as a heuristic policy used
as a baseline in the empirical evaluation.

3.1 Agents and State Spaces

The agents in the model are the Red Team (the ballistic threat)
and the Blue Team (the surveillance resource). The target is
assumed to be stationary and is not considered a part of the
system state. This framework can be extended to a three
agent scenario with a dynamic target, but the approach is not
explored here. The objective of the Blue Team is to moni-
tor the target while avoiding the Red Team. The objective
of the Red Team is to prevent the Blue Team from observ-
ing the target. We define a line-of-sight encounter between
the two teams as a ballistic engagement. During a ballistic
engagement, the Red Team can land a ballistic hit on the
Blue Team according to a probability that follows the bal-
listics model for long range assault weapons (Richie et al.
2013). The ballistic model is a decaying, fifth-order polyno-
mial that depends only on the Euclidean distance between the
two teams. In this work, all simulations terminate if the Red
Team lands a ballistic hit on the Blue Team. In the MOMDP
framework, the position of the Blue Team is represented by
the fully observable variable xblue ∈ Xblue, while the position
of the Red Team is represented by the partially observable
variable xred ∈ Xred. The complete system state is given by
s = (xblue, xred). The state space is four-dimensional (two
dimensions for each position) and is modeled as a grid.

3.2 Action and Observation Spaces

The MOMDP actions control the Blue Team, while the dy-
namics of the Red Team are modeled as process noise that
follows the nested MDP policy described in Section 2.4. Each
team can remain stationary, or move to one of the eight neigh-
boring spaces.

The observation space is the union of the Red Team states
and a NULL observation. The observation is NULL when
the two teams do not see each other or it corresponds to the
position of the Red Team when the two teams are within line-
of-sight. The size of the observation space is |Z| = |Xred|+1.

3.3 Reward Model

The reward function formalizes the objectives of the Blue
and Red Teams. The Blue Team is penalized for moving,
rewarded for observing the target, and penalized for being
within line-of-sight of the Red Team. On the other hand, the
Red Team is penalized for moving, penalized when the Blue
Team observes the target, and rewarded for a ballistic en-
gagement with the Blue Team. The reward scalars used in
this work are summarized in Table 1. Observation-dependent
rewards were determined using ray-tracing line-of-sight cal-
culations. The line-of-sight rewards were further weighted
according to the ballistics model developed for long range
assault weapons (Richie et al. 2013).

3.4 Transition and Observation Models

The state of the Blue Team is the fully observable posi-
tion of the surveillance agent and transitions according to
Tblue(xblue, a, x

′
blue) = P (x′

blue | xblue, a). The transition
model for the Red Team, on the other hand, depends on the
level of reasoning being considered. The state of the Red
Team is the partially observable position of the adversary
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Figure 2: An example instance showing evolution of belief over 15 time steps with varying μ

which transitions according to a policy that is either random
(k = 0) or pre-computed (k ≥ 1). The adversary’s transition
model is described in more detail in Section 3.5.

The observation model relies on ray-tracing calculations
to determine if the two teams are within line-of-sight. The
observation is NULL when the two teams are not within
line-of-sight. The model takes the form O(x′

blue, x
′
red, o, a) =

P (o | x′
blue, x

′
red, a).

3.5 Adversary Model and Policy Computation

We extend the formalism of nested policies described in
Section 2.4 to model an intelligent adversary in partially
observable settings. We define the transition model of the
adversary as a set of nested level-(k − 1) policies that were
computed recursively. To simplify the model, we assume that
the adversary follows either the level-(k − 1) policy with
probability μ or the level-0 policy with probability (μ− 1).
Here μ is defined to be the adversarial stochasticity constant.
Specifically, the adversary either follows its πk−1 policy or
moves randomly to a neighboring space. In this work, the
stochasticity constant was chosen to be μ = 0.4, because the
resulting adversarial strategy showed expected behavior of
an enemy in simulation. Ideally, μ would be chosen with the
help of subject matter experts or learned from real adversary
actions in surveillance situations. The levels of the Blue and
Red Teams were chosen to be three and two respectively.
Model parameters for both the adversary and the agent are
given in Table 1.

For a given agent, the problem formulation requires the
transition model of the opponent. This framework allows
us to construct and evaluate both the surveillance and the
threat policies by using nested level-k reasoning to model
the dynamics of the opponent. Once the transition model
of the opponent is constructed, the MOMDP policy can be
computed using either QMDP or SARSOP.

An example of an adversarial model is shown in Figure 2.
The hashed shapes represent occlusions in the environment,
while the dashed lines represent the bins formed by the dis-
cretization of the state space. The figure shows the belief of
the surveillance agent over the position of the threat after
15 time steps. The surveillance agent knows the location of
the threat at t = 0, but does not observe it after. The surveil-
lance agent and the threat are both stationary while the belief
evolves. The figure demonstrates that a large confidence in

Table 1: Model reward scalars and stochasticity constants

Model Moving Observe Ballistic μ k
Target Engagement

Threat −0.01 −0.1 1.0 0.4 2

Agent −0.01 0.1 −1.0 0.4 3

the adversarial model can lead to false assumptions if the
adversary follows a different behavioral model than the one
assumed. However, placing some weight on the value of the
policy, leads to overall better performance. In this example,
the surveillance agent has a high confidence that the threat
has moved down the hallway when μ = 0.7, despite the fact
that the threat stayed stationary.

3.6 Heuristic Policy

A heuristic surveillance policy was developed to serve as a
baseline to the POMDP solutions. When the system state is
known, the heuristic policy moves the Blue Team towards
the position with the largest immediate reward, and assumes
that the Red Team is stationary. In case of ties, the closest
position is chosen. The position with the largest reward is
determined using local search. In the case of partial observ-
ability, the location of the Red Team is determined by taking
the maximum over the belief vector. The shortcomings of the
heuristic is that it follows a greedy policy that does not take
into account future state information. It also relies on a naive
approach to choosing the approximate system state.

4 Results

This section provides empirical evaluations of the SARSOP
and QMDP surveillance policies and compares them against
a random policy, the heuristic policy, and the fully observ-
able policy. The random policy uniformly samples allowable
actions, while the fully observable policy assumes perfect
knowledge in the position of the other team and was obtained
using value iteration (Kochenderfer 2015). The evaluation
was performed on three different urban environments dis-
cretized on 20× 20 grids: Map A, Map B and Map C shown
in Figure 3. The primary goals of the empirical analysis are:
i) to evaluate the performance of each policy, ii) to analyze
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the level-k model of the ballistic threat, and iii) to evaluate
the performance of the policies against a human.

The initial conditions for each simulation were set using
rejection sampling. The state space was sampled uniformly,
and states were rejected if the Blue and Red Teams were
within line-of-sight or if the Blue Team was within line-of-
sight of the target. Rejection sampling ensured a realistic
starting scenario for the simulations. Initial beliefs were set
to be uniform for policies with partial observability. Each
simulation ran for 100 time-steps or until the Red Team
landed a ballistic hit on the Blue Team.

4.1 Solution Comparison

Table 3 shows the average rewards for five surveillance poli-
cies on Map B over 500 simulations. The policies are com-
pared against an adversary that follows a level 2 SARSOP
policy, a heuristic policy, and a random policy. The results
show that the SARSOP surveillance policy outperforms all
other policies in a partially observable environment. The
QMDP policy suffers from inability to perform information
gathering actions, and at times leads to a stationary agent
that fails to evade the threat and to observe the target. The
heuristic policy assumes the system state to be the one with
highest belief probability, and often follows a policy based
on the incorrect position of the adversary, leading to poor
performance. The nested MDP approach has the best perfor-
mance, but makes the unrealistic assumption that the position
of the adversary is fully observable at all times. The results
from the random and the nested MDP policies set a baseline
and an upper bound, respectively, on the performance of the
surveillance agent. All surveillance policies perform signif-
icantly worse against the SARSOP adversary than against
either the heuristic or the random one. The compute times
for each policy are shown in Table 2.

Figure 3 shows heat maps of the surveillance agent’s lo-
cation after a ballistic hit by the threat for the SARSOP and
the heuristic surveillance policies. One difference between
the two policies is that ballistic engagements for SARSOP
primarily occur in a few locations on the grid, while the en-
gagements for the heuristic are more uniformly spread out
throughout the map. This qualitative difference is indicative
of the overall performance of each policy, as an intelligent
agent is more likely to stay in one location from which a
large portion of the map can be seen while still observing the
target. On Map A, for example, the two locations with the
largest number of ballistic engagements have line-of-sight
coverage of large portions of the map (including the target),
and allow for a quick escape from the threat if it appears from
either side of the covered portion of the map.

Average survival probabilities are shown in Figure 4. The
survival probability indicates the probability of the surveil-
lance agent avoiding a ballistic hit throughout the 100 time-
step simulation. The survival probabilities against a random
adversary are significantly higher than those against an in-
telligent adversary that follows a SARSOP policy. Survival
probabilities on maps A and C are lower against an intelligent
adversary because of the open structure of those maps.

Figure 5 shows the performance of level-k surveillance
policies evaluated against level-k policies of the threat. The

Table 2: Policy compute times

Heuristic QMDP SARSOP

Compute Time 0.1 sec 60 sec 15 min

Table 3: Average rewards for five level 3 surveillance policies

Threat Policy

SARSOP Heuristic Random

Random −0.69± 0.2 −0.38± 0.2 −0.06± 0.1
Heuristic −0.21± 0.1 0.55± 0.2 0.86± 0.4

QMDP 0.32± 0.4 1.08± 0.5 1.52± 0.2
SARSOP 0.96± 0.4 2.88± 0.5 4.23± 0.4

Nested MDP 2.30± 0.4 3.65± 0.2 5.01± 0.2
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Figure 3: Heat maps showing the last location of the surveil-
lance agent after a ballistic hit over 500 simulations for the
level 3 SARSOP policy (top) and the heuristic policy (bot-
tom) against a level 2 SARSOP adversary on Map A (left),
Map B (middle), and Map C (right). The star indicates the
location of the target.

curves track the average reward for a given reasoning level of
a threat. The performance of the agent against a threat follow-
ing a random (level 0) policy stays constant across different
levels of reasoning. However, there are subtle improvements
in performance of level-k agents against level-(k − 1) adver-
saries. On average, level 3 surveillance policies outperform
all other levels of reasoning when the level of the adversary
may be unknown.

4.2 Games Against Humans

A video game was developed for the purpose of evaluating
the surveillance policies against a human opponent. A screen
shot of the game is shown in Figure 6. Nearest neighbor inter-
polation was used to select discrete actions in the continuous
video game domain. The human player controlled the surveil-
lance agent against an adversary following a level 2 SARSOP
policy. The players were given the objectives of the game as
well as an unlimited number of trial runs. After the players
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Figure 4: Survival probabilities for a surveillance agent fol-
lowing level 3 SARSOP and heuristic policies against a ran-
dom and a level 2 SARSOP threat. Each curve was generated
using 500 simulations.
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Figure 5: Average rewards for level-k SARSOP surveillance
policies against level-k SARSOP threat policies

felt comfortable with the game controls, the results of their
first ten play outs were recorded. Figure 7 shows a perfor-
mance curve for level 3 and level 1 SARSOP policies against
a level 2 SARSOP adversary generated by varying the reward
of observing the target from zero to one while keeping other
reward parameters fixed. The average results for human play-
ers over the ten play outs are shown in the figure as well. The
performance curves show that human players have a difficult
time exceeding or meeting the level of survivability achieved
by the SARSOP surveillance policies while observing the
target at similar rates. The level 3 SARSOP performance
curve dominates the level 1 curve. The curves demonstrate
that the level-k policies lead to improved performance over
naive policies that assume a randomly moving adversary.

5 Conclusion

Despite the advances in optimal control and automated plan-
ning over the recent years, the design of a robust target surveil-
lance system that accounts for ballistic adversaries remains
a challenge. The difficulties lie in accounting for an unpre-
dictable adversary and the line-of-sight occlusion that lead to
partial observability of the system state. We modeled adver-
sarial target surveillance as a MOMDP, where the adversary’s

Figure 6: A screen shot of the video game used to evaluate
target surveillance policies
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Figure 7: Performance curves for the target surveillance sys-
tem following SARSOP level 3 and level 0 policies against
a level 2 SARSOP adversary. Average performance of eight
human players over ten games are plotted as well.

actions followed a level-k decision-making policy, and solved
the problem using QMDP and SARSOP. We showed this ap-
proach to work well in simulation and to outperform a human
player in a video game.

There are several areas for future work. Extending POMDP
based surveillance planners to real world applications re-
quires dealing with continuous domains. One approach is to
use Monte Carlo Value Iteration (MCVI) (Bai et al. 2010)
to solve continuous state POMDPs. MCVI has been suc-
cessfully applied to complex problems such as unmanned
aircraft collision avoidance (Bai et al. 2011), and may be
applied to the continuous state target surveillance framework
as well. Another area of future work involves generalizing
surveillance plans to new environments. One way to approach
this problem is through deep reinforcement learning (DRL),
where a neural network serves as a value function approxima-
tor and Q-learning is used to train the network. Recently, DRL
has been successfully applied to playing Atari games (Mnih
et al. 2015). A similar approach can be taken in the surveil-
lance problem, where in addition to the state, reward and
action information, the input to the neural network consists
of the structure of the surveillance environment.

The source code for this work can be found at
https://github.com/sisl/TargetSurveillance.
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