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Abstract

The application of DCOP models to large problems faces two
main limitations: (i) Modeling limitations, as each agent can
handle only a single variable of the problem; and (ii) Res-
olution limitations, as current approaches do not exploit the
local problem structure within each agent. This paper pro-
poses a novel Multi-Variable Agent (MVA) DCOP decompo-
sition technique, which: (i) Exploits the co-locality of each
agent’s variables, allowing us to adopt efficient centralized
techniques within each agent; (ii) Enables the use of hier-
archical parallel models and proposes the use of GPUs; and
(iii) Reduces the amount of computation and communication
required in several classes of DCOP algorithms.

Introduction

The Distributed Constraint Optimization Problem (DCOP)
model is an elegant formalism to describe cooperative multi-
agent problems and has been applied to solve coordination
and resource allocation problems (Maheswaran et al. 2004;
Léauté and Faltings 2011; Zivan et al. 2015; Miller, Ram-
churn, and Rogers 2012). However, the applicability of
DCOPs to more general classes of problems, where agents
control multiple variables, faces two important challenges:
(i) Modeling limitations, due to the common assumption
that each agent controls only one variable; and (ii) Resolu-
tion limitations, which prevent agents from exploiting local
problem structure. To cope with such restrictions, reformu-
lation techniques are commonly used to transform a gen-
eral DCOP into one where each agent controls exclusively
one variable. There are two commonly used reformulation
techniques (Burke and Brown 2006; Yokoo 2001): (i) Com-
pilation, where each agent creates a new pseudo-variable,
whose domain is the Cartesian product of the domains of
all variables of the agent; and (ii) Decomposition, where
each agent creates a pseudo-agent for each of its variables.
While both techniques are relatively simple, they can be in-
efficient. In compilation, the memory requirement for each
agent grows exponentially with the number of variables that
it controls. In decomposition, the DCOP algorithms will
treat two pseudo-agents as independent entities, resulting in
unnecessary computation and communication costs.
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In this paper, we propose a novel decomposition method,
called Multi-Variable Agent (MVA) DCOP decomposition,
to overcome these limitations; MVA decomposition enables
a separation between the agents’ local subproblems, which
can be solved independently using centralized solvers, and
the DCOP global problem, which requires coordination of
the agents. The decomposition does not lead to any ad-
ditional privacy loss. The MVA framework enables the
use of different centralized and distributed solvers in a hi-
erarchical and parallel way. We explore the use of two
centralized solvers, Depth-First Branch and Bound (DF-
BnB) and Gibbs, to solve the agents’ local subproblems.
For the global coordination, we consider three represen-
tative DCOP algorithms: Asynchronous Forward Bounding
(AFB) (Gershman, Meisels, and Zivan 2009), as an exam-
ple of a search algorithm, Distributed Pseudo-tree Optimiza-
tion Procedure (DPOP) (Petcu and Faltings 2005), as an
example of an inference algorithm, and Distributed Gibbs
(D-Gibbs) (Nguyen, Yeoh, and Lau 2013), as an example
of a sampling algorithm. Our work is motivated by the
increasing interest in modeling complex distributed multi-
agent applications, where each agent needs to solve complex
subproblems (Kim and Lesser 2013; Giuliani et al. 2014;
Amigoni, Castelletti, and Giuliani 2015).

This paper advances the state of the art by: (1) defining
a separation between the distributed DCOP resolution pro-
cess and the centralized agent subproblem resolution pro-
cess, enabling the use of efficient centralized solvers to solve
independent subproblems; (2) enabling the use of hierar-
chical parallel models during DCOP resolution and propos-
ing a general model to exploit Graphics Processing Units
(GPUs) for DCOP resolution; (3) proposing search-based
and sampling-based GPU-accelerated local solvers to speed
up the DCOP resolution process; and (4) providing empiri-
cal evidence of the efficiency in computation and commu-
nication of MVA decomposition with respect to existing
DCOP reformulation techniques.

Background

DCOP: A DCOP (Modi et al. 2005; Yeoh and Yokoo
2012) is described by a tuple 〈X ,D,F ,A, α〉, where: X =
{x1, . . . , xn} is a set of variables; D = {D1, . . . , Dn} is a
set of finite domains (i.e., xi ∈Di); F = {f1, . . . , fm} is a
set of cost functions, where fi :

∏
xj∈xi Di → N ∪ {∞}
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Figure 1: Example DCOP.

and xi ⊆ X is the set of the variables relevant to fi; A =
{a1, . . . , ap} is a set of agents; and α : X → A maps each
variable to one agent. Given a DCOP P , GP = (X , EF ) is
the constraint graph1 of P , where {x, y}∈EF iff ∃fi ∈ F
such that {x, y} ⊆ xi. A solution σ is a value assignment
for a set Xσ ⊆ X of variables that is consistent with their
respective domains. The cost F (σ)=

∑
fi∈F,xi⊆Xσ

fi(σ) is
the sum of the costs across all the applicable cost functions
in σ. A solution σ is complete if Xσ=X . The goal is to find
an optimal complete solution x∗=argminx F (x). Fig. 1(a)
shows the constraint graph of a simple DCOP with 2 agents
a0 and a1, where each variable can be assigned the values 0
or 1. Fig. 1(c) shows the cost functions.

In the following algorithms, we assume that each agent
controls exactly one variable, which is the situation after re-
formulating the DCOP via compilation or decomposition.
AFB: Asynchronous Forward Bounding (AFB) (Gershman,
Meisels, and Zivan 2009) is a complete search algorithm,
where each agent maintains a solution (called a CPA) and
its corresponding cost. The agents first order themselves
according to a linear ordering. The head agent assigns a
value to its variable, calculates its (unary) cost functions, and
sends this CPA to its successor agent, using a CPA message.
Each agent also sends its CPA, in a FB CPA message, to
each of its descendants (i.e., all lower priority agents accord-
ing to the linear ordering) to request the recipients to com-
pute a cost estimate for that CPA. The cost estimates are re-
turned in FB ESTIMATE messages, which are used to prune
the search space. This process continues down the linear or-
dering until a tail agent finds a complete solution, which is
sent to all the agents. When the head agent exhausts all its
value assignments, it broadcasts a termination message.

Fig. 2 shows a snippet of the messages sent by the agents
in our example DCOP after a decomposition reformulation,
where agent aji is the pseudo-agent that controls variable xj

of agent ai. We assume that the pseudo-agents are ordered
as in Fig. 1(b). AFB requires 98 messages between pseudo-
agents controlled by different agents (i.e., actual agent-to-
agent messages) and 60 messages between pseudo-agents
controlled by the same agent (i.e., internal agent messages).
DPOP: The Distributed Pseudo-tree Optimization Proce-
dure (DPOP) (Petcu and Faltings 2005) is a complete infer-

1Technically, GP is a hyper-graph; we refer to it as a constraint
graph to simplify the discussion.

Sender Message Type Receiver Message Content
a0
0 [CPA MSG] a1

0 [0 - - - -] (0)
a0
0 [FB CPA] a1

0, a
2
0, a

3
1, a

4
1 [0 - - - -] (0)

a1
0 [FB ESTIMATE] a0

0 (7)
a1
0 [CPA MSG] a2

0 [0 0 - - -] (7)
a0
0 [FB CPA] a2

0, a
3
1, a

4
1 [0 0 - - -] (7)

a2
0 [FB ESTIMATE] a0

0 (9)
a2
0 [FB ESTIMATE] a1

0 (14)
a2
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1 [0 0 0 - -] (21)
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0 [FB CPA] a3

1, a
4
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0, a
1
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2
0 (7)

a3
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1 [0 0 0 0 -] (28)
a3
1 [FB CPA] a4

1 [0 0 0 0 -] (28)
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1
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2
0 (2)

a4
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0, a
1
0, a

2
0, a

3
1 [0 0 0 0 0] (35)

. . . . . . . . .

Figure 2: Partial Trace of AFB after Decomposition.

ence algorithm composed of three phases. During Pseudo-
tree Generation, agents coordinate to build a pseudo-
tree (Hamadi, Bessière, and Quinqueton 1998). During
UTIL Propagation, each agent, starting from the pseudo-tree
leafs, computes the optimal sum of costs in its subtree for
each value combination of variables in its separator.2 It does
so by adding the costs of its functions with the variables in its
separator and the costs in the UTIL messages received from
its children, and projecting out its own variables by opti-
mizing over them. During VALUE Propagation, each agent,
starting from the pseudo-tree root, determines the optimal
value for its variables. The root agent does so by choosing
the values of its variables from its UTIL computations.
D-Gibbs: Gibbs (Geman and Geman 1984) is a Markov
chain Monte Carlo algorithm that can be used to approxi-
mate joint probability distributions. It generates a Markov
chain of samples, each of which is correlated with previous
samples. It does so by iteratively sampling one variable from
the conditional probability distribution, assuming that all the
other variables take their previously sampled values. Once
the joint probability distribution is found, one can identify a
complete solution with the maximum likelihood. The Gibbs
sampling algorithm can be used to solve a DCOP by map-
ping the DCOP to a maximum a-posteriori estimation prob-
lem (Nguyen, Yeoh, and Lau 2013). The Distributed Gibbs
(D-Gibbs) algorithm extends Gibbs by tailoring it to solve
DCOPs in a decentralized manner.
GPUs: Graphics Processing Units (GPUs) are multiproces-
sor devices, offering hundreds of computing cores and a rich
memory hierarchy. A parallel computation is described by
a collection of kernels (i.e., procedures) executed by sev-
eral threads. Threads are in turn organized hierarchically
into blocks and grids, and have access to several memory
levels, each with different properties in terms of speed and
capacity. GPUs support Single-Instruction Multiple-Thread
(SIMT) processing. In SIMT, the same instruction is exe-
cuted by different threads, while handling different data.

MVA Decomposition

Definition 1 (Local and Interface Variables) For each
agent ai ∈ A, Li = {xj ∈ X | α(xj) = ai} is the set of
its local variables. Bi = {xj ∈ Li | ∃xk ∈ X ∧ ∃fs ∈ F :

2The separator of xi contains all ancestors of xi in the pseudo-
tree that are connected to xi or one of its descendants.
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Figure 3: MVA Execution Flow Chart.

Sender Message Type Receiver Message Content
a0 [CPA MSG] a1 [0 1 0 - -] (19)
a0 [FB CPA] a1 [0 1 0 - -] (19)
a1 [FB ESTIMATE] a0 (9)
a1 [NEW SOLUTION] a0 [0 1 0 0 0] (33)
a1 [NEW SOLUTION] a0 [0 1 0 1 0] (31)
a1 [CPA MSG] a0 [0 1 0 - -]
a0 [CPA MSG] a1 [1 1 0 - -] (7)
a0 [FB CPA] a1 [1 1 0 - -] (7)
a1 [FB ESTIMATE] a0 (4)
a1 [NEW SOLUTION] a0 [1 1 0 0 0] (16)
a1 [NEW SOLUTION] a0 [1 1 0 1 0] (12)
a1 [CPA MSG] a0 [1 1 0 - -]
a0 [TERMINATE] a1

Figure 4: Complete trace of MVA-AFB.

α(xk) �= ai ∧ {xj , xk} ⊆ xs} is the set of its interface
variables.

Definition 2 (Local Constraint Graph) For each agent
ai ∈ A, its local constraint graph Gi = (Li, EFi

) is a sub-
graph of the constraint graph, where Fi={fj ∈F|xj ⊆Li}.

In Fig. 1(a), L0 = {x0, x1, x2}, L1 = {x3, x4}, B0 = {x0},
B1={x3}. We use σ(xi, k)∈Di to denote the kth value as-
signment to variable xi. Next, we describe how the MVA de-
composition is applied to solve a general DCOP, exploiting
the combination of decentralized DCOP algorithms, off-the-
shelf centralized solvers, and their GPU parallel versions.

Description of the MVA Decomposition

In the MVA decomposition, a DCOP problem P is decom-
posed into |A| subproblems Pi = (Li, Bi,Fi), where Pi is
associated to agent ai ∈ A. In addition to the decomposed
problem Pi, each agent receives: (a) the global DCOP al-
gorithm PG, which is common to all agents in the problem
and defines the agent’s coordination protocol and the behav-
ior associated to the receipt of a message, and (b) the local
algorithm PL, which can differ between agents and is used
to solve the agent’s subproblem. Fig. 3 shows a flow chart il-
lustrating the four conceptual phases in the execution of the
MVA framework for each agent ai:
Phase 1—Wait: The agent waits for a message to arrive.
If the received message results in a new value assignment
σ(xr, k) for a interface variable xr of Bi, then the agent
will proceed to Phase 2. If not, it will proceed to Phase 4.
Phase 2—Check: The agent checks if it has performed a
complete new assignment for all its interface variables, in-
dexed with k ∈N, which establishes an enumeration of the
interface variables’ assignments. If it has, then the agent will
proceed to Phase 3, otherwise it will return to Phase 1.
Phase 3—Local Optimization: When a complete assign-
ment is given, the agent passes the control to a local solver,
which solves the following problem:

min
∑

fj∈Fi

fj(x
j) subject to: xr = σ(xr, k) ∀xr ∈ Bi

Solving this problem results in finding the best assignment
for the agent’s local variables given the particular assign-
ment for its interface variables. Notice that the local solver

x0 x3 Costs
0 0 7
0 1 10
1 0 2
1 1 3

(a) Constraint Table
of Interface
Variables

x0 Best Local Solutions Costs
0 [x1 = 1, x2 = 0] 19
1 [x1 = 1, x2 = 1] 7

(b) a0’s MVA TABLE

x3 Best Local Solutions Costs
0 [x4 = 0] 7
1 [x4 = 0] 2

(c) a1’s MVA TABLE

Figure 5: MVA TABLES.

PL is independent from the DCOP structure and it can be
customized based on the agent’s local requirements. For
example, agents can use GPU-optimized solvers, if they
have access to GPUs, or use off-the-shelf CP, MIP, or ASP
solvers. Once the agent solves its subproblem, it proceeds to
Phase 4.
Phase 4—Global Optimization: The agent processes the
new assignment as established by the DCOP algorithm
PG, executes the necessary communications, and returns to
Phase 1. The agents can execute these phases independently
of one another because they exploit the co-locality of their
local variables without any additional privacy loss, which
is a fundamental aspect in DCOPs (Greenstadt, Pearce, and
Tambe 2006).

In addition, the local optimization process can operate on
m ≥ 1 combinations of value assignments of the interface
variables, before passing control to the next phase. This is
the case when the agent explores m different assignments
for its interface variables in Phases 2 and 3. These opera-
tions are performed by storing the best local solution and
their corresponding costs in a cost table of size m, which we
call MVA TABLE, and can be visualized as a cache mem-
ory. The minimum value of m depends on the choice of
the global DCOP algorithm PG. For example, for common
search-based algorithms such as AFB, it is 1, while for com-
mon inference-based algorithms such as DPOP, it is expo-
nential in size of the separator set. Figs. 5(b) and 5(c) show
the MVA TABLES of the two agents in our example DCOP
with m=2. Using the MVA decomposition, each agent com-
putes only the necessary rows of the table on demand. Fig. 4
shows the messages sent by agents in our example DCOP
with the MVA framework. In total, AFB requires only 13
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messages (compared to 98 messages with the decomposi-
tion reformulation) between agents. Additionally, since the
local subproblem of each agent is solved using a local search
engine, the agents do not need to send any internal agent
messages (compared to 60 messages with the decomposition
reformulation).

Hierarchical Parallel Local Optimization

We use DFBnB and Gibbs as representative complete and
incomplete algorithms for the local optimization process
within each agent. DFBnB is correct and complete. Thus,
it does not affect the correctness and completeness of the
global complete DCOP algorithms used (Theorem 1). In ad-
dition, it allows us to exploit the problem structure through
bound propagations. Gibbs provides quality guarantees and
can be used in combination with D-Gibbs to provide good
approximated solutions (Theorem 4).

The use of hierarchical parallel solutions is motivated by
the observation that the search for the best local solution for
each row of the MVA TABLE is independent of the search
for another row and, as such, they can be performed in paral-
lel. This observation finds a natural fit for SIMT processing
and, therefore, in addition to the CPU versions of DFBnB
and Gibbs, we provide their GPU counterparts. The use of
GPUs allows us to speed up the local optimization process
and, consequently, reduces the overall DCOP solving time.

We now describe the GPU versions and leave out the sim-
pler CPU versions due to space constraints. Without loss of
generality, in the following description, we assume that all
variables xi ∈ Li have the same domains, denoted to as Di.
Gibbs: At a high level, it performs these parallelizations:
• Due to the stochastic nature of the Gibbs process, a set

of R sampling processes, each with a different seed, can
be carried out in parallel. The best cost and correspond-
ing solution across all runs is thus selected. Each parallel
process is executed by a group of GPU blocks.

• Computing the costs in each row of the MVA TABLE Ui

is independent of the computation of the costs in the other
rows. Thus, we compute the sample costs using (at most)
|Di||Bi| parallel groups of GPU threads, one for each row.

• The computation of the conditional probabilities for each
possible value of the variables involved in the Gibbs pro-
cess is independent of the computation of the probability
for the other values. Thus, we compute the probabilities
using |Di| parallel threads, one for each possible value.

The procedure GPU-GIBBS is the core of the local sam-
pling algorithm and corresponds to one of the R indepen-
dent sampling processes executed in parallel. It executes T
sampling trials for the subset of non-interface local variables
Li \Bi of agent ai. Its pseudocode, executed by each thread
in a group, is shown in lines 1-17. We use the symbols ←
and ⇔k to denote sequential and parallel operations, respec-
tively. The former is performed by a single thread in each
group of threads in a block, and is often associated to assign-
ment operations performed in shared memory—a memory
area shared among all threads in a block—while the latter is
performed in parallel by k threads of the group.

The function first stores the following structures in shared

Procedure GPU-Gibbs(Li, Bi, Di, Gi, T, R)
1 〈Gi, P, Z, sample, sample∗〉 ← ASSIGNSHAREDMEM()
2 rid ← the thread row index of MVA TABLEi

3 did ← the thread value index of Di

4 sample[0. . .|Bi|−1]⇔|Bi| MVA TABLEi[rid][0 . . . |Bi|−1]
5 sample[|Bi| . . . |Li|−1] ⇔|Li|−|Bi| RANDOM(0 . . . |Di|−1)
6 cost ← ∑

fj∈Gi
fj(sample |Sj )

7 〈sample∗, cost∗〉 ← 〈sample, cost〉
8 for t = 1 to T do
9 for k = |Bi| to |Li|−1 do

10 P [did] ⇔|Di| exp
[∑

fj∈Gi

1
fj(did∪sample|Sj

)

]

11 Z ← ∑|Di|−1
j=0 P [j]

12 P [did] ⇔|Dk| P [did] · 1
Z

13 sample[k] ← SAMPLE(P )
14 cost ← ∑

fj∈Fi
fj(sample |Sj )

15 if cost < cost∗ then
16 〈sample∗, cost∗〉 ← 〈sample, cost〉

17 〈V R
i [rid], U

R
i [rid]〉 ← 〈sample∗, cost∗〉

memory: The local constraint graph Gi; the array P , which
is used to store the probabilities for each value of the
non-interface local variables; the normalization constant
Z, which is used to normalize the probabilities; the array
sample, which is used to store the current sample of value
assignments for all local variables; and the array sample∗,
which is the best sample found so far (line 1). The thread
then identifies the row index rid in the MVA TABLEi and
the value did in Di that it is in charge of sampling (lines 2-
3). The function determines its initial sample, where the in-
terface variables receive their respective values from row rid
in MVA TABLEi, while the other variables receive random
values (lines 4-5). Finally, it calculates the cost for that sam-
ple (line 6) and stores the initial sample and cost as the best
sample and cost found so far (line 7).

The procedure performs T sampling trials, iterating
through all the non-interface local variables (lines 8-16).
For each variable, it (i) computes in parallel the probabil-
ity P [did] of each value did for the variable xk according to
the equation:

P [did] = P (xk = did | xl ∈ Li \ {xk})
=

1

Z
exp

∑

fj∈Fi

1

fj(sample |Sj )

where sample |Sj
is the set of value assignments for the vari-

ables in the scope Sj of function fj and Z is the normaliza-
tion constant (lines 10-12); (ii) samples the value for that
variable according to the probabilities (line 13); (iii) com-
putes the cost of the updated sample (line 14); and (iv) up-
dates the best sample and cost if necessary (lines 15-16). Af-
ter all its sampling trials, it stores the best sample and cost
in the rid-th row in V R

i and UR
i , respectively (line 17).

DFBnB: The GPU version of DFBnB operates by perform-
ing a complete DFBnB search on the local non-interface
variables xi∈Li\Bi. Unlike Gibbs, the sequential nature of
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the DFBnB operations makes such process less amenable to
multi-thread parallelism within each GPU block. However,
we can exploit the multitude of GPU threads to perform a
parallel exploration of the space of value assignments to the
interface variables. Thus, we delegate each row of the MVA-
table to a thread, which executes a complete search through
the solution space of the non-local interface variables, re-
porting the best solution with its associated cost.

Theoretical Results

Theorem 1 The MVA framework with PG and PL is correct
and complete iff PG and PL are both correct and complete.

Proof Sketch: Let us prove the forward direction for sound-
ness. Assume that the combination PG and PL with the
MVA framework is correct and that it finds an optimal com-
plete solution V∗. Now assume that PG is not correct. Then,
an agent ai might not explore the combination of values
〈vi1, . . . , vibi〉 ∈ V∗ for its interface variables xi

j ∈ Bi (j =
1, . . . , bi), which contradicts the assumption that the MVA
framework finds the optimal complete solution V∗. There-
fore, PG is correct. The argument for PL is similar to that of
PG. Assume that PL is not correct. Thus, an agent ai might
not explore the combination of values 〈vibi+1, . . . , vili〉 for its
non-interface local variables xi

j ∈Li\Bi, (j=bi+1, . . . , li),
which contradicts the assumption that the MVA framework
finds the optimal complete solution V∗. Thus, PL is correct.
The reverse direction and completeness’ proof are similar. �
Theorem 2 The additional space requirement for the MVA
framework (compared to resolution of the decomposed prob-
lem using PG) is O(M ·l), where M is the maximum number
of rows of MVA TABLE needed on demand by each agent
ai and l = maxi∈{j | aj∈A} |Li|.
Theorem 3 The message requirements of MVA framework
have the same order-complexity as the PG procedure.

The above refers to the worst case message complexity,
where all local variables are interface variables. In problems
with non-interface local variables and non-empty subprob-
lems, the message requirements of search algorithms are of-
ten significantly smaller in the MVA framework (O(d|A|))
than with the decomposition technique (O(d|X |)). This is
shown in our example in Figs. 2 and 4.

Theorem 4 The sampling processes of both MVA-DG (i.e.,
the MVA framework with D-Gibbs as PG and Gibbs as PL)
and D-Gibbs converge to the same solution.

Related Work

The concept of solving localized constrained subproblems
within a distributed framework has been previously ex-
plored in (Distributed) CSPs (Armstrong and Durfee 1997;
Yokoo and Hirayama 1998). The main differences are that
existing work has focused on the development of specific
algorithms rather than a general framework and they have
not been generalized to DCOPs. To the best of our knowl-
edge, the only algorithm able to deal with agent subprob-
lems without the use of decomposition techniques is Adopt-
MVA (Davin and Modi 2006), an extension of Adopt (Modi

et al. 2005). The MVA decomposition presented here al-
lows the integration of any global DCOP coordination al-
gorithm and any local optimization procedure. As such, it
subsumes AdoptMVA. Another line of work that solves sub-
problems in a centralized manner can be found in the work
on partially-centralized DCOP algorithms (Petcu, Faltings,
and Mailler 2007; Vinyals et al. 2010). The main difference
with our approach is that the subproblems defined by the
MVA decomposition are confined within the agents local
variables, and therefore are privacy-preserving. In contrast,
subproblems solved by the partially-centralized algorithms
are defined over variables that can be owned by different
agents, which is undesirable in several application domains.

Experimental Results

We evaluate our MVA decomposition with three global
DCOP algorithms (AFB, DPOP, and D-Gibbs) and two lo-
cal centralized solvers (DFBnB and Gibbs) implemented on
CPUs and GPUs. In addition to the lazy version (MVA-lazy)
described in this paper, where agents solve their local sub-
problems on demand during the resolution process, we also
implemented an eager version (MVA-eager), where agents
populate their complete MVA table in a pre-processing step.
We compare them against the Compilation and Decom-
position pre-processing techniques on random graph and
radar coordination instances. In our version of Compilation,
agents retain exclusively the solutions of the local problem,
whose search space is explored via DFBnB. All experiments
are performed on an Intel i7 Quadcore 3.4GHz machine with
16GB of RAM. The GPU solvers are run on an GeForce
GTX TITAN with 14 multiprocessors, 2688 cores, and a
clock rate of 837MHz. We report runtime measured using
the simulated time (Sultanik, Modi, and Regli 2007) metric
as well as the number of external agent-to-agent messages
and internal agent messages. We impose a timeout (t.o.) of
600sec of simulated time and a memory limit of 2GB. Re-
sults report the average over 50 runs, and are statistically
significant with p-values < 0.001.3

Random Graph Instances: We create an n-node net-
work, whose local constraint graphs density pl1 produces
�|Li|(|Li| − 1)pl1� edges among the local variables of each
agent ai, and whose (global) density pg1 produces �b(b −
1)pg1� edges among interface non-local variables, where b is
the total number of interface variables of the problem. Fig. 6
shows the results, where AFB and DPOP use DFBnB as lo-
cal solver, while D-Gibbs uses Gibbs. We conducted two
experiments, where we set |Di|= 4, pl1 = 0.6, and the con-
straint tightness p2 = 0.4. For the first experiment, we set
pg1 = 0.4 and vary the number of agents |A| (Fig. 6(top)).
For the second experiment, we set |A|= 4 and vary the ra-
tio |Bi|/|Li| (Fig. 6(bottom)). In this experiment, we build
a subgraph for each agent with pl1=0.6 and create as many
inter-agent constraints as necessary to reach the desired ra-
tio. In both experiments, starting from the highest function
arity, we transform each clique involving k variables to a
k-ary function with costs randomly chosen from [1, 1000].

3t-test performed with null hypothesis: MVA-lazy-decomposed
algorithms are faster than non-MVA-decomposed ones.
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Figure 6: Random Graph Instances with CPUs: AFB-DFBnB (left), DPOP-DFBnB (middle), and D-Gibbs-Gibbs (right). Dark
(light) bars indicate the number of external (internal) messages, and lines indicate runtime, all in logarithmic scale.

• Unlike Decomposition, MVA and Compilation do not
need internal agent communication since agent subprob-
lems are solved locally within each agent.

• The number of external messages required by each frame-
work is similar for DPOP and D-Gibbs because they are
linear in the number of agents, and in the number of sam-
ples as well for D-Gibbs. Both of these factors are inde-
pendent of the number of local variables.

• AFB on MVA requires up to one order of magnitude fewer
external messages compared to Compilation, and several
orders of magnitude fewer compared to Decomposition.
The reason is that AFB agents broadcast messages to re-
quest for cost estimates and announce complete solutions.
These broadcasts occur more regularly with Decomposi-
tion and Compilation than with the MVA decomposition.

• The number of messages and runtimes of both MVA ver-
sions are similar to each other, indicating that agents in
both versions ultimately construct the entire MVA table.

• The additional space requirement for AFB and D-Gibbs
on MVA is negligible. In both algorithms, the agents re-
quire a single row for the MVA TABLE (i.e., M = 1 in
Theorem 2). In contrast, MVA-decomposed DPOP agents
have to cache a number of the MVA TABLE’s rows that is
exponential in the size of their interface variables.

• The runtimes of the algorithms on MVA tend to their run-
times with Decomposition as the ratio of interface vari-
ables increases. When all variables are interface variables
(|Bi|/|Li|=1), AFB and D-Gibbs are faster on MVA than
with Decomposition, as the agents can solve their local
subproblems quicker with centralized algorithms; DPOP
is slower on MVA due to overhead.

• In general, all the algorithms are faster on MVA than De-
composition and Compilation.

Table 1 illustrates the runtimes obtained by parallelizing

Di and Li size: 6 12 18 24 30

D
PO

P-
G

ib
bs

CPU 45 211 447 1271 2275
|Li|GPU 3 4 6 17 36

speedup 15 52.7 74.5 74.8 63.2
CPU 44 315 836 1946 5853

|Di|GPU 8 22 80 204 432
speedup 5.5 14.3 10.45 9.5 13.6

D
PO

P-
D

FB
nB

CPU 17000 t.o. t.o. t.o. t.o.
|Li|GPU 2000 2.28·107 t.o. t.o. t.o.

speedup 8.5 N/A – – –
CPU 3400 61000 129000 437000 988000

|Di|GPU 450 5000 11200 39300 94100
speedup 7.5 12.2 11.5 11.2 10.5

simulated time (ms) and CPU vs. GPU speedup

Table 1: Random Graph Instances with CPUs and GPUs.

DFBnB and Gibbs on GPUs, using DPOP as the global al-
gorithm. We fix |A|=4 and vary |Li| and |Di|. The speedup
is at least one order of magnitude in most configurations.
Radar Coordination Instances: This problem models a set
of radars, which collect real-time data on the location and
importance of atmospheric phenomena, and a set of con-
trollers, which can operate on a subset of the radars (Kim
and Lesser 2013). Each phenomenon is characterized by size
and weight (i.e., importance). Radars have limited sensing
ranges, which determine their scanning regions. The goal is
to find a radar configuration that maximizes the utility as-
sociated with the scanned phenomena. Controllers are mod-
eled as agents whose variables they control are radars. The
domain of each variable represents the scanning regions of a
radar. The utilities (which, in our case, are modeled as costs
by taking their negative values) are functions involving all
radars that may detect a given phenomenon.

In our experiments, radars are equally spaced onto a grid,
and each controller coordinates 16 radars (arranged in a 4×4
grid). Radars have four possible scanning directions, and
phenomena are randomly generated across the grid until the
underling constraint graph results connected. Table 2 tabu-
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configuration 8x4 8x8 12x8 16x8 20x8
# agents 2 4 6 8 10

MVA-lazy 11 213 3186 33212 42090
MVA-eager 732 10391 27549 77489 82637

Decomposition 213 108818 178431 t.o. t.o.
AFB-DFBnB simulated time (ms)

MVA-lazy 844 30312 225761 478955 t.o.
MVA-eager 823 30396 225538 477697 t.o.

Decomposition 61978 t.o. t.o. t.o. t.o.
DPOP-DFBnB simulated time (ms)

Table 2: Radar Coordination Instances.

lates the results. The first two rows report the grid configura-
tions and the number of agents. We omit the results for Com-
pilation because it failed to solve any of the instances. We
also omit results for D-Gibbs as it cannot handle hard con-
straints. Similar to random graph instances, the MVA-based
algorithms are faster than Decomposition-based algorithms.
Unlike random graph instances, AFB with MVA-lazy is up
to one order of magnitude faster than MVA-eager. AFB can
successfully prune portions of the search space using the
hard constraints. As a result, AFB agents with MVA-lazy,
in contrast to MVA-eager, do not need to construct the en-
tire MVA table. DPOP with both MVA-lazy and MVA-eager
have similar runtimes, as DPOP does not perform any prun-
ing being based on dynamic programming.

Conclusions

In this paper, we proposed the MVA decomposition for
DCOPs with multi-variable agents. This decomposition pro-
vides a hierarchical parallel model that defines a clear sep-
aration between the distributed agent coordination and the
centralized agent subproblem resolution, while preserving
agent privacy. This separation allows the use of efficient cen-
tralized solvers to solve agent subproblems as well as the use
of potentially different solvers for different agents, each de-
signed to exploit domain-specific properties. Experimental
results show that the use of MVA speeds up several DCOP
algorithms by up to several orders of magnitude and reduces
their communication requirements with respect to existing
techniques. In the future, we plan to investigate the appli-
cation of propagation schemes (e.g., as in (Fioretto et al.
2014)) to further reduce agent-to-agent communication.
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