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Abstract

Bribery in elections is an important problem in computa-
tional social choice theory. We introduce and study two impor-
tant special cases of the bribery problem, namely, FRUGAL-
BRIBERY and FRUGAL-$BRIBERY where the briber is frugal
in nature. By this, we mean that the briber is only able to
influence voters who benefit from the suggestion of the briber.
More formally, a voter is vulnerable if the outcome of the
election improves according to her own preference when she
accepts the suggestion of the briber. In the FRUGAL-BRIBERY
problem, the goal is to make a certain candidate win the elec-
tion by changing only the vulnerable votes. In the FRUGAL-
$BRIBERY problem, the vulnerable votes have prices and the
goal is to make a certain candidate win the election by chang-
ing only the vulnerable votes, subject to a budget constraint.
We show that both the FRUGAL-BRIBERY and the FRUGAL-
$BRIBERY problems are intractable for many commonly used
voting rules for weighted as well as unweighted elections.
These intractability results demonstrate that bribery is a hard
computational problem, in the sense that several special cases
of this problem continue to be computationally intractable.
This strengthens the view that bribery, although a possible at-
tack on an election in principle, may be infeasible in practice.

Introduction
In a typical voting scenario, we have a set of candidates
and a set of voters reporting their votes which are complete
rankings over the candidates. A voting rule is a procedure
that, given a collection of votes, chooses one candidate as the
winner. A set of votes over a set of candidates along with a
voting rule is called an election.

Activities that try to influence voter opinions, in favor
of specific candidates, are very common during the time
that an election is in progress. For example, in a political
election, candidates often conduct elaborate campaigns to
promote themselves among a general or targeted audience.
An extreme illustration of this phenomenon is bribery —
here, the candidates may create financial incentives to sway
the voters. Of course, the process of influencing voters may
involve costs even without the bribery aspect; for instance, a
typical political campaign entails considerable expenditure.

All situations involving any attempt to influence voters
usually have the following aspects: an external agent, a
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candidate that the agent would like to be the winner, a
budget constraint, a cost model for a change of vote, and
knowledge of the existing election. The formal computa-
tional problem that arises from these inputs is the follow-
ing: is it possible to make a distinguished candidate win
the election in question by incurring a cost that is within
the budget? This question, with origins in (Faliszewski,
Hemaspaandra, and Hemaspaandra 2006; 2009; Faliszewski
et al. 2009), has been subsequently studied intensely in
computational social choice literature (Faliszewski 2008;
Elkind, Faliszewski, and Slinko 2009; Baumeister et al. 2012;
Pini, Rossi, and Venable 2013; Dorn and Krüger 2015;
Mattei et al. 2012; 2013; Binkele-Raible et al. 2014; Erdelyi,
Hemaspaandra, and Hemaspaandra 2014; Faliszewski et al.
2015; Xia 2012; Dorn and Schlotter 2012; Bredereck et al.
2014; Faliszewski, Hemaspaandra, and Hemaspaandra 2011;
Schlotter, Faliszewski, and Elkind 2011).

Motivation

In this work, we propose an effective cost model for the
bribery problem. Even the most general cost models that
have been studied in the literature fix absolute costs per
voter-candidate combination, with no specific consideration
to the voters’ opinions about the current winner and the dis-
tinguished candidate whom the briber wants to be the winner.
In our proposed model, a change of vote is relatively easier to
effect if the change causes an outcome that the voter would
find desirable. Indeed, if the currently winning candidate is,
say, a, and a voter is (truthfully) promised that by changing
her vote from c � d � b � a to d � b � c � a, the winner
of the election would change from a to d, then this is a change
that the voter is likely to be happy to make. While the change
does not make her most favorite candidate win the election,
it does improve the result from her point of view. Thus, given
the circumstances (namely that of her least favorite candidate
winning the election), the altered vote serves the voter better
than the original one.

We believe this perspective of voter influence is an impor-
tant one to study. The cost of a change of vote is dependent
on the nature of the outcome that the change promises — the
cost is low or nil if the change results in a better outcome
with respect to the voter’s original ranking, and high or in-
finity otherwise. A frugal agent only approaches voters of
the former category, thus being able to effectively bribe with
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minimal or no cost. Indeed the behavior of agents in real life
is often frugal. For example, consider campaigners in favor
of a relatively smaller party in a political election. They may
actually target only vulnerable voters due to lack of human
and other resources they have at their disposal.

More formally, let c be the winner of an election and p
(other than c) the candidate whom the briber wishes to make
the winner of the election. Now the voters who prefer c to p
will be reluctant to change their votes, and we call these votes
non-vulnerable with respect to p — we do not allow these
votes to be changed by the briber, which justifies the frugal
nature of the briber. On the other hand, if a voter prefers p to
c, then it maybe very easy to convince her to change her vote
if doing so makes p win the election. We name these votes
vulnerable with respect to p. When p is clear from the context,
we simply call these votes non-vulnerable and vulnerable,
respectively.

The computational problem is to determine whether there
is a way to make the candidate p win the election by changing
only those votes that are vulnerable with respect to p. We
call this problem FRUGAL-BRIBERY. Note that there is no
cost involved in the FRUGAL-BRIBERY problem. We also
extend this basic model to a more general setting where
each vulnerable vote has a certain nonnegative integer price
which may correspond to the effort involved in approaching
these voters and convincing them to change their votes. We
also allow for the specification of a budget constraint, which
can be used to enforce auxiliary constraints. This leads us
to define the FRUGAL-$BRIBERY problem, where we are
required to find vulnerable votes with a total cost that is
within a given budget, such that these votes can be changed in
some way to make p win the election. Note that the FRUGAL-
$BRIBERY problem can be either uniform or nonuniform
depending on whether the prices of the vulnerable votes
are all identical or different. If not mentioned otherwise,
the prices of the vulnerable votes will be assumed to be
nonuniform.

Contributions

Our primary contribution in this paper is to formulate and
study two important and natural models of bribery which
turn out to be special cases of the well studied $BRIBERY
problem in elections. Our results show that both the FRUGAL-
BRIBERY and the FRUGAL-$BRIBERY problems are in-
tractable for many commonly used voting rules for weighted
as well as unweighted elections, barring a few exceptions.
These intractability results can be interpreted as an evidence
that bribery in elections is a hard computational problem in
the sense that even many of its important and natural special
cases continue to be intractable. Thus bribery, although a
possible attack on elections in principle, maybe practically
not viable.

Our Results for Unweighted Elections

– The FRUGAL-BRIBERY problem is in P for the k-approval,
Bucklin, and plurality with runoff voting rules. Also,
the FRUGAL-$BRIBERY problem is in P for the plu-
rality and veto voting rules. In contrast, the FRUGAL-

$BRIBERY problem is NP-complete for the Borda, max-
imin, Copeland, and STV voting rules [Observation 1].

– The FRUGAL-BRIBERY problem is NP-complete for the
Borda voting rule [Theorem 1]. The FRUGAL-$BRIBERY
is NP-complete for the k-approval for any constant k ≥ 5
[Theorem 2], k-veto for any constant k ≥ 3 [Theorem 3],
and a wide class of scoring rules [Theorem 5] even if the
price of every vulnerable vote is either 1 or ∞. Moreover,
the UNIFORM-FRUGAL-$BRIBERY is NP-complete for the
Borda voting rule even if all the vulnerable votes have a
uniform price of 1 and the budget is 2 [Theorem 6].

– The FRUGAL-$BRIBERY problem is in P for the k-
approval, Bucklin, and plurality with runoff voting rules
when the budget is a constant [Theorem 4].

Our Results for Weighted Elections

– The FRUGAL-BRIBERY problem is in P for the maximin
and Copeland voting rules when we have only three candi-
dates [Observation 2], and for the plurality voting rule for
any number of candidates [Theorem 7].

– The FRUGAL-BRIBERY problem is NP-complete for the
STV [Theorem 10], plurality with runoff [Corollary 1],
and every scoring rule except the plurality voting rule [Ob-
servation 2] for three candidates. The FRUGAL-$BRIBERY
problem is NP-complete for the plurality voting rule for
three candidates [Theorem 8].

– When we have only four candidates, the FRUGAL-
BRIBERY problem is NP-complete for the maximin [Theo-
rem 9], Bucklin, and Copeland [Theorem 11] rules.

Related Work

The pioneering work of (Faliszewski, Hemaspaandra, and
Hemaspaandra 2006) defined and studied the $BRIBERY
problem wherein the input is a set of votes with prices for
each vote and the goal is to make some distinguished candi-
date win the election, subject to a budget constraint of the
briber. The FRUGAL-$BRIBERY problem is the $BRIBERY
problem with the restriction that the price of every non-
vulnerable vote is infinite. Also the FRUGAL-BRIBERY prob-
lem is a special case of the FRUGAL-$BRIBERY problem.
Hence, whenever the $BRIBERY problem is computation-
ally easy in a setting, both the FRUGAL-BRIBERY and the
FRUGAL-$BRIBERY problems are also computationally easy
(see Proposition 1). However, the $BRIBERY problem is
computationally intractable in most of the settings. This
makes the study of important special cases such as FRUGAL-
BRIBERY and FRUGAL-$BRIBERY, interesting. We note that
a notion similar to vulnerable votes has been studied in the
context of dominating manipulation by (Conitzer, Walsh,
and Xia 2011). Hazon et al. (Hazon, Lin, and Kraus 2013)
introduced and studied PERSUASION and k-PERSUASION
problems where an external agent suggests votes to vulner-
able voters which are beneficial for the vulnerable voters
as well as the external agent. It turns out that the PERSUA-
SION and the k-PERSUASION problems Turing reduce to the
FRUGAL-BRIBERY and the FRUGAL-$BRIBERY problems
respectively (see Proposition 3). Therefore, the polynomial
time algorithms we propose in this work imply polynomial
time algorithms for the persuasion analog. On the other hand,
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since the reduction in Proposition 3 from PERSUASION to
FRUGAL-BRIBERY is a Turing reduction, the existing NP-
completeness results for the persuasion problems do not im-
ply NP-completeness results for the corresponding frugal
bribery variants. We refer to (Rogers and Rogers 1967) for
Turing reductions. Also, (Zuckerman et al. 2011) provided a
game theoretic view on coalition formation in the context of
manipulation.

Preliminaries

Let V = {v1, . . . , vn} be the set of all voters and C =
{c1, . . . , cm} the set of all candidates. Each voter vi’s vote
is a preference �i over the candidates which is a linear or-
der over C. In the paper, whenever we do not specify the
order among a set of candidates while describing a vote,
the statement/proof is correct in whichever way we fix the
order among them. We denote the set {0, 1, 2, . . .} by N,
N \ {0} by N

+, and {1, . . . , k} by [k], for any positive inte-
ger k. We denote the set of all linear orders over C by L(C).
Hence, L(C)n denote the set of all n-voters’ preference pro-
files �[n]= (�1, . . . ,�n). Let � denote the disjoint union of
sets. A map rc : �n,|C|∈N+L(C)n −→ 2C \ {∅} is called a
voting correspondence. A map t : 2C \ {∅} −→ C is called a
tie breaking rule. A commonly used tie breaking rule is the
lexicographic tie breaking rule where ties are broken accord-
ing to a predetermined preference �t∈ L(C). A voting rule
is r = t ◦ rc, where ◦ denote the composition of maps.

Remark. We note that works in the literature often do not
include a tie breaking rule in the definition of voting rules and
study unique and co-winner versions of the same problem.
However, our definition of vulnerable votes needs elections
to have a unique winner. For this reason, we include a tie
breaking rule as part of the definition of voting rules and
mention a tie breaking rule in all the proofs.

In many settings, the voters may have positive integer
weights. Such an election is called a weighted election. The
winner of a weighted election is defined to be the winner
of the unweighted election where each vote is replaced by
as many copies of the vote as its weight. We assume the
elections to be unweighted, if not stated otherwise. Given
an election E, we can construct a directed weighted graph
GE , called the weighted majority graph, from E. The set
of vertices in GE is the set of candidates in E. For any
two candidates x and y, the weight of the edge (x, y) is
DE(x, y) = NE(x, y) − NE(y, x), where NE(a, b) is the
number of voters who prefer candidate a to b. Some exam-
ples of common voting correspondences are as follows.

Positional scoring rules: A collection of m-dimensional
vectors −→sm = (α1, α2, . . . , αm) ∈ R

m with α1 ≥ α2 ≥
· · · ≥ αm and α1 > αm for every m ∈ N naturally defines
a voting rule — a candidate gets score αi from a vote if it is
placed at the ith position, and the score of a candidate is the
sum of the scores it receives from all the votes. The winners
are the candidates with maximum score. Scoring rules remain
unchanged if we multiply every αi by any constant λ > 0
and/or add any constant μ. Hence, we assume without loss of
generality that for any score vector −→sm, there exists a j such
that αj − αj+1 = 1 and αk = 0 for all k > j. We call such

an −→sm a normalized score vector. If αi is 1 for i ∈ [k] and 0
otherwise, then, we get the k-approval voting rule. For the
k-veto voting rule, αi is 0 for i ∈ [m− k] and −1 otherwise.
1-approval is called the plurality voting rule and 1-veto is
called the veto voting rule.

Maximin: The maximin score of a candidate x is
miny �=x DE(x, y). The winners are the candidates with max-
imum maximin score.

Copelandα: Given α ∈ [0, 1], the Copelandα score of
a candidate x is |{y 
= x : DE(x, y) > 0}| + α|{y 
=
x : DE(x, y) = 0}|. The winners are the candidates with
maximum Copelandα score. If not mentioned otherwise, we
will assume α to be zero.

Bucklin: A candidate x’s Bucklin score is the minimum
number � such that more than half of the voters rank x in their
top � positions. The winners are the candidates with lowest
Bucklin score. Note that, the above voting rule is also called
simplified Bucklin. However, for simplicity, we use the term
Bucklin only in this draft.

Plurality with runoff: The top two candidates according
to the plurality scores are selected first. The pairwise winner
of these two candidates is selected as the winner.

Single Transferable Vote: In Single Transferable Vote
(STV), a candidate with the least plurality score is dropped
from the election and its votes are transferred to the next
preferred candidate. If two or more candidates receive the
least plurality score, then a tie breaking rule is used. The
candidate that remains till the last round is the winner.

We use the notation A ≤P B to denote that the problem A
polynomial time many-to-one reduces to the problem B.

Problem Definition

In all the definitions below, r is a fixed voting rule. We define
the notion of vulnerable votes as follows.
Definition 1 (Vulnerable votes)
Given a voting rule r, a set of candidates C, a profile of votes
�= (�1, . . . ,�n), and a distinguished candidate p, we say
a vote �i is p-vulnerable if p �i r(�).

With the above definition of vulnerable votes, we formally
define the FRUGAL-BRIBERY problem as follows.
Definition 2 (r-FRUGAL-BRIBERY)
Given a preference profile � over a candidate set C, and a
candidate p, determine if there is a way to make p win the
election by changing only the vulnerable votes.

Next we generalize the FRUGAL-BRIBERY problem to the
FRUGAL-$BRIBERY problem which involves prices for the
vulnerable votes and a budget for the briber.
Definition 3 (r-FRUGAL-$BRIBERY)
Given a preference profile �= (�1, . . . ,�n) over a candi-
date set C, a candidate p, a finite budget b, and a price
function c : [n] −→ N such that c(i) = ∞ if �i

is not a p-vulnerable vote, determine if there exist votes
�i1 , . . . ,�i�∈� and votes �′

i1
, . . . ,�′

i�
∈ L(C) such that

∑�
j=1 c(ij) ≤ b and r(�[n]\{i1,...,i�},�′

i1
, . . . ,�′

i�
) = p. If

the prices of all the vulnerable votes are the same, then we
call the problem UNIFORM-FRUGAL-$BRIBERY. Otherwise,
we call it NONUNIFORM-FRUGAL-$BRIBERY.
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The above problems are important special cases of the
well studied $BRIBERY problem. Also, the COALITIONAL-
MANIPULATION problem (Bartholdi, Tovey, and Trick 1989;
Conitzer, Sandholm, and Lang 2007), one of the classic prob-
lems in computational social choice theory, turns out to be
a special case of the FRUGAL-$BRIBERY problem. Due to
space constraints, proofs of some results (marked with a (�))
are omitted.

Proposition 1 to 3 below hold for both weighted and un-
weighted elections.
Proposition 1 (�) For every voting rule, FRUGAL-BRIBERY
≤P UNIFORM-FRUGAL-$BRIBERY ≤P NONUNIFORM-
FRUGAL-$BRIBERY ≤P $BRIBERY. Also, COALITIONAL-
MANIPULATION ≤P NONUNIFORM-FRUGAL-$BRIBERY.
Also, the FRUGAL-BRIBERY problem reduces to the
COALITIONAL-MANIPULATION problem by simply making
all vulnerable votes to be manipulators.
Proposition 2 For every voting rule, FRUGAL-BRIBERY ≤P

COALITIONAL-MANIPULATION.
We can also establish the following relationship between the
PERSUASION (respectively k-PERSUASION) problem and
the FRUGAL-BRIBERY (respectively FRUGAL-$BRIBERY)
problem. The persuasions differ from the corresponding fru-
gal bribery variants in that the briber has her own preference
order, and desires to improve the outcome of the election with
respect to her preference order. The following proposition is
immediate from the definitions of the problems.
Proposition 3 (�) For every voting rule, there is a Turing
reduction from PERSUASION (respectively k-PERSUASION)
to FRUGAL-BRIBERY (respectively FRUGAL-$BRIBERY).

Results for Unweighted Elections
Now we present the results for unweighted elections. The
following result follows immediately from the literature
on the COALITIONAL-MANIPULATION (Xia et al. 2009),
the $BRIBERY problems (Faliszewski, Hemaspaandra, and
Hemaspaandra 2006; Faliszewski 2008) and Proposition 1
and 2.
Observation 1 (�) – The FRUGAL-BRIBERY problem is in

P for the k-approval for any k, Bucklin, and plurality with
runoff voting rules.

– The FRUGAL-$BRIBERY problem is in P for the plurality
and veto voting rules.

– The FRUGAL-$BRIBERY problem is NP-complete for the
Borda, maximin, Copeland, and STV voting rules.
We now present our main results. We begin with showing

that the FRUGAL-BRIBERY problem for the Borda voting
rule and the FRUGAL-$BRIBERY problem for various scor-
ing rules are NP-complete. To this end, we reduce from the
EXACT-COVER-BY-3-SETS (X3C) problem, which is known
to be NP-complete (Garey and Johnson 1979). The X3C
problem is defined as follows.
Definition 4 (The X3C Problem)
Given a universe U and t subsets S1, . . . , St ⊂ U with |Si| =
3, ∀i ∈ [t], does there exist an index set I ⊆ [t] with |I| =
|U |/3 such that �i∈ISi = U? We denote an arbitrary instance
of X3C by (U, {S1, . . . , St}).

We now prove that the FRUGAL-BRIBERY problem is NP-
complete for the Borda rule, by a reduction from X3C.
Theorem 1 The FRUGAL-BRIBERY problem is NP-
complete for the Borda voting rule.

Proof: The problem is clearly in NP. To show NP-hardness,
we reduce an arbitrary instance of X3C to FRUGAL-BRIBERY.
Let (U, {S1, . . . , St}) be an instance of X3C.

We define a FRUGAL-BRIBERY instance as follows. Let m
be the universe size |U |. The candidate set is C = U �D �
{p, c, z}, where |D| = 5m. Let us fix any arbitrary order �f

among the candidates in U �D. For any subset A ⊂ U �D,
let

−→
A be the ordering among the candidates in A as defined

in �f and
←−
A the reverse order of

−→
A . For each Si, 1 ≤ i ≤ t,

we add two votes v1i and v2i as follows.

v1i : p � −→
D � −−−−→

U \ Si � c � z � −→
Si

v2i :
←−
Si � z � c � ←−−−−

U \ Si � ←−
D � p

Let D4m/3−2, Dm−1, Dm−2, D5m/3−1 ⊂ D be any arbitrary
pairwise disjoint subsets of D with |D4m/3−2| = 4m/3 −
2, |Dm−1| = m−1, |Dm−2| = m−2, |D5m/3−1| = 5m/3−1.
We now add the following two votes μ1 and μ2.

μ1 : z � c � D4m/3−2 � p � Dm−1 � −→
U � others

μ2 :
←−
U � Dm−2 � c � p � D5m/3−1 � z � others

The distinguished candidate is p. The tie-breaking rule is
“p � others”. The winner is c and thus the votes in {v1i : 1 ≤
i ≤ t} are the only vulnerable votes. We claim that the two
instances are equivalent. Suppose there exists an index set
I ⊆ [t] with |I| = |U |/3 such that �i∈ISi = U . We replace
the votes v1i with ν1i , i ∈ I, which is defined as follows.

ν1i : p � −→
D � −−−−→

U \ Si � z � −→
Si � c

The final score of p is the same as the final scores of c, z,
and every candidate in U and more than the score of every
candidate in D. This makes p win the election.

To prove the other direction, suppose the FRUGAL-
BRIBERY instance is a YES instance. Notice that the only
vulnerable votes are v1i for every i ∈ [t]. We assume without
loss of generality, that candidate p is placed at the first po-
sition in all the changed votes. The votes μ1 and μ2 ensure
that the score of c must decrease by 4m/3 for p to win. Hence,
there must be at least m/3 votes that are changed since each
vote change can reduce the score of c by at most 4. Also,
in each vote v1i where the position of c has been changed,
the score of z from that vote must increase, since otherwise,
there will be at least one candidate x ∈ Si whose score must
increase by at least two contradicting the fact that p wins the
election. However, the score of z can increase by at most
m/3. Hence, there will be exactly m/3 votes where c’s score
decreases and thus in all those votes, c must come at the last
position. We claim that the Si’s corresponding to the changed
votes must form an exact set cover. Indeed, otherwise, there
will be a candidate in U whose score does not increase and
thus there will be some other candidate in U whose score
increases by at least two contradicting the fact that p wins the
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election. �
We will use Lemma 1 in subsequent proofs which has

been used before (Baumeister, Roos, and Rothe 2011;
Dey, Misra, and Narahari 2015).

Lemma 1 (�) Let C = {c1, . . . , cm} � D, (|D| > 0) be a
set of candidates and −→α a normalized score vector of length
|C|. Then, for any given X = (X1, . . . , Xm) ∈ Z

m, there
exists λ ∈ R and a voting profile such that the −→α -score of
ci is λ+Xi for all 1 ≤ i ≤ m, and the score of candidates
d ∈ D is less than λ. Moreover, the number of votes is
O(poly(|C| ·∑m

i=1 |Xi|)), where |Xi| is the absolute value
of Xi.

Note that the number of votes used in Lemma 1 is poly-
nomial in m if |D| and |Xi| are polynomials in m for every
i ∈ [m], which indeed is the case for all our proofs that
use Lemma 1. Hence, the reductions in the proofs that use
Lemma 1 run in polynomial amount of time. We now show
the results for various classes of scoring rules.

Theorem 2 The FRUGAL-$BRIBERY problem is NP-
complete for the k-approval voting rule for any constant
k ≥ 5, even if the price of every vulnerable vote is either 1
or ∞.

Proof: The problem is clearly in NP. To show NP-hardness,
we reduce an arbitrary instance of X3C to FRUGAL-
$BRIBERY. Let (U, {S1, . . . , St}) be an instance of X3C.
We define a FRUGAL-$BRIBERY instance as follows. The
candidate set is C = U �D�{p, q}, where |D| = k− 1. For
each Si, 1 ≤ i ≤ t, we add a vote vi as follows.

vi : p � q � Si︸ ︷︷ ︸
5 candidates

� D � others

By Lemma 1, we can add poly(|U |) many additional votes
to ensure the following scores (denoted by s(·)).

s(q) = s(p) + |U |/3, s(x) = s(p) + 1, ∀x ∈ U,

s(d) < s(p)− |U |/3, ∀d ∈ D

The tie-breaking rule is “p � others”. The winner is q. The
distinguished candidate is p and thus all the votes in {vi :
1 ≤ i ≤ t} are vulnerable. The price of every vi is 1 and
the price of every other vulnerable vote is ∞. The budget is
|U |/3. We claim that the two instances are equivalent. Suppose
there exists an index set I ⊆ [t] with |I| = |U |/3 such that
�i∈ISi = U . We replace the votes vi with v′i, i ∈ I, which
are defined as follows.

v′i : p � D︸ ︷︷ ︸
k candidates

� others

This makes the score of p not less than the score of any other
candidate and thus p wins.

For the other direction, suppose the FRUGAL-$BRIBERY
instance is a YES instance. Then notice that there will be |U |/3
votes in {vi : 1 ≤ i ≤ t} where the candidate q should not be
placed within the top k positions since s(p) = s(q) − |U |/3
and the budget is |U |/3. We claim that the Si’s corresponding
to the vi’s that have been changed must form an exact set
cover. Indeed, otherwise, there will be a candidate x ∈ U ,

whose score never decreases which contradicts the fact that p
wins the election since s(p) = s(x)− 1. �

We next present a similar result for the k-veto voting rule
which can be proved by a reduction from the X3C problem.
Theorem 3 (�) The FRUGAL-$BRIBERY problem is NP-
complete for the k-veto voting rule for any constant k ≥ 3,
even if the price of every vulnerable vote is either 1 or ∞.

However, the existence of a polynomial time algorithm for
the FRUGAL-$BRIBERY problem for the k-approval, Bucklin,
and plurality with runoff voting rules, when the budget is a
constant follows from the existence of a polynomial time al-
gorithm for the COALITIONAL-MANIPULATION problem for
these voting rules for a constant number of manipulators (Xia
et al. 2009).
Theorem 4 (�) The FRUGAL-$BRIBERY problem is in P for
the k-approval, Bucklin, and plurality with runoff voting
rules, if the budget is a constant.

Our next result shows that, the FRUGAL-$BRIBERY prob-
lem is NP-complete for a wide class of scoring rules. Theo-
rem 5 can be proved by a reduction from the X3C problem.
Theorem 5 (�) For any positional scoring rule r with score
vectors {−→si : i ∈ N}, if there exists a polynomial function
f : N −→ N such that, for every m ∈ N, f(m) ≥ 2m and
in the score vector (α1, . . . , αf(m)), there exists a 1 ≤ � ≤
f(m)− 5 satisfying the following condition:

αi − αi+1 = αi+1 − αi+2 > 0, ∀� ≤ i ≤ �+ 3

then the FRUGAL-$BRIBERY problem is NP-complete for r
even if the price of every vulnerable vote is either 1 or ∞.

For the sake of concreteness, an example of a func-
tion f , stated in Theorem 5, that works for the Borda vot-
ing rule is f(m) = 2m. Theorem 6 below shows the
intractability of the UNIFORM-FRUGAL-$BRIBERY prob-
lem for the Borda voting rule, even in a very restricted
setting. Theorem 6 can be proved by a reduction from
the COALITION MANIPULATION problem for the Borda
voting rule for two manipulators which is known to be
NP-complete (Betzler, Niedermeier, and Woeginger 2011;
Davies et al. 2011).
Theorem 6 (�) The UNIFORM-FRUGAL-$BRIBERY prob-
lem is NP-complete for the Borda voting rule, even when
every vulnerable vote has a price of 1 and the budget is 2.

Results for Weighted Elections

Now we turn our attention to weighted elections. The first
part of Observation 2 follows from the literature on the
COALITIONAL-MANIPULATION problem and Proposition 2
whereas the second part of Observation 2 follows from the
proof of Theorem 6 in (Conitzer, Sandholm, and Lang 2007).
Observation 2 (�) – The FRUGAL-BRIBERY problem is in

P for the maximin and Copeland voting rules for three
candidates.

– The FRUGAL-BRIBERY problem is NP-complete for any
scoring rule except plurality for three candidates.

Theorem 7 (�) The FRUGAL-BRIBERY problem is in P for
the plurality voting rule.
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The PARTITION problem, which is known to be NP-
complete (Garey and Johnson 1979), is defined as follows.
Definition 5 (PARTITION Problem)
Given a finite multi-set W of positive integers with∑

w∈W w = 2K, does there exist a subset W ′ ⊂ W such
that

∑
w∈W ′ w = K? An arbitrary instance of PARTITION

is denoted by (W, 2K).
We define another problem which we call 1/4-PARTITION

as below. The 1/4-PARTITION problem can be proved to be
NP-complete by reducing from the PARTITION problem. We
will use this fact in the proof of Theorem 10.
Definition 6 (The 1/4-PARTITION Problem)
Given a finite multi-set W of positive integers with∑

w∈W w = 4K, does there exist a subset W ′ ⊂ W
such that

∑
w∈W ′ w = K? An arbitrary instance of 1/4-

PARTITION is denoted by (W, 4K).
The following result can be proved by exhibiting a reduc-

tion from the PARTITION problem.
Theorem 8 (�) The FRUGAL-$BRIBERY problem is NP-
complete for the plurality voting rule for three candidates.

Next we show the hardness result for the maximin rule.
Theorem 9 The FRUGAL-BRIBERY problem is NP-
complete for the maximin voting rule for four candidates.
Proof: The problem is clearly in NP. We reduce an arbi-
trary instance of PARTITION to an instance of FRUGAL-
BRIBERY for the maximin voting rule. Let (W, 2K), with
W = {w1, . . . , wn} and

∑n
i=1 wi = 2K, be an arbitrary in-

stance of the PARTITION problem. The candidates are p, a, b,
and c. For every i ∈ [n], there is a vote p � a � b � c
of weight wi. There is one vote c � a � b � p, one
b � c � a � p, and one a � c � b � p each of weight K.
The tie-breaking rule is “p � a � b � c”. The distinguished
candidate is p. Let T denote the set of votes corresponding
to the weights in W and the rest of the votes S. Notice that
only the votes in T are vulnerable. We claim that the two
instances are equivalent.

Suppose there exists a subset W ′ ⊂ W such that∑
w∈W ′ w = K. We change the votes corresponding to the

weights in W ′ to p � a � b � c and the rest of the votes in
T to p � b � c � a. The maximin score of every candidate
is −K and thus due to the tie-breaking rule, p wins.

On the other hand, suppose there is a way to change the
vulnerable votes, that is the votes in T , that makes p win the
election. Without loss of generality, we can assume that all
the votes in T place p at top position. First notice that the
only way p could win is that the vertices a, b, and c must
form a cycle in the weighted majority graph. Otherwise, one
of a, b, and c will be the winner of the election. Now we show
that the candidate b must defeat the candidate c. If not, then
c must defeat b by a margin of K since the maximin score
of p is fixed at −K. Also, a must defeat c by a margin of K,
otherwise the maximin score of c will be more than −K. This
implies that all the votes in T must be p � a � c � b which
makes a defeat b. This is a contradiction since the vertices
a, b, and c must form a cycle in the weighted majority graph.
Hence b must defeat c by a margin of K. This forces every

vote in T to prefer b to c. Hence, without loss of generality,
we assume that all the votes in T are either p � a � b � c
or p � b � c � a, since whenever c is right after a, we
can swap a and c and this will only reduce the score of a
without affecting the score of any other candidates. If the
total weight of the votes p � a � b � c in T is more
than K, then DE(c, a) < K, thereby making the maximin
score of a more than the maximin score of p. If the total
weight of the votes p � a � b � c in T is less than K,
then DE(a, b) < K, thereby making the maximin score of
b more than the maximin score of p. Thus the total weight
of the votes p � a � b � c in T should be exactly K which
corresponds to a partition of W . �

We now prove the hardness result for the STV voting rule.
Theorem 10 The FRUGAL-BRIBERY problem is NP-
complete for the STV voting rule for three candidates.
Proof: The problem is clearly in NP. We reduce an arbi-
trary instance of 1/4-PARTITION to an instance of FRUGAL-
BRIBERY for the STV voting rule. Let (W, 4K), with W =
{w1, . . . , wn} and

∑n
i=1 wi = 4K, be an arbitrary instance

of the 1/4-PARTITION problem. The candidates are p, a, and
b. For every i ∈ [n], there is a vote p � a � b of weight
wi. There is a vote a � p � b of weight 3K − 1 and a
vote b � a � p of weight 2K. The tie-breaking rule is
“a � b � p”. The distinguished candidate is p. Let T denote
the set of votes corresponding to the weights in W and the
rest of the votes be S. Notice that only the votes in T are
vulnerable. We claim that the two instances are equivalent.

Suppose there exists a subset W ′ ⊂ W such that∑
w∈W ′ w = K. We change the votes corresponding to the

weights in W ′ to b � p � a. We do not change the rest of
the votes in T . This makes p win the election.

For the other direction, suppose there is a way to change
the votes in T that makes p win the election. First Notice that
p can win only if b qualifies for the second round. Hence, the
total weight of the votes in T that put b at the first position
must be at least K. On the other hand, if the total weight of
the votes in T that put b at the first position is strictly more
than K, then p does not qualify for the second round and thus
cannot win the election. Hence the total weight of the votes
in T that put b at the first position must be exactly equal to
K which constitutes a 1/4-partition of W . �

For three candidates, the STV voting rule is the same as
the plurality with runoff voting rule. Hence, we have the
following corollary.
Corollary 1 The FRUGAL-BRIBERY problem is NP-
complete for the plurality with runoff voting rule for three
candidates.

We also have the following results for the Copelandα and
Bucklin voting rules by reducing from PARTITION.
Theorem 11 (�) The FRUGAL-BRIBERY problem is NP-
complete for the Copelandα and Bucklin voting rules for
four candidates, whenever α ∈ [0, 1).

From Proposition 1, Observation 2, Theorem 8 to 11, and
Corollary 1, we get the following corollary.
Corollary 2 The UNIFORM-FRUGAL-$BRIBERY and the
NONUNIFORM-FRUGAL-$BRIBERY problems are NP-
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complete for the scoring rules except plurality, STV, and
the plurality with runoff voting rules for three candidates and
for the maximin, Copeland, and Bucklin voting rules for four
candidates.
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