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Abstract

In agent-based simulation, emergent equilibrium describes
the macroscopic steady states of agents’ interactions. While
the state of individual agents might be changing, the collec-
tive behavior pattern remains the same in macroscopic equi-
librium states. Traditionally, these emergent equilibriums are
calculated using Monte Carlo methods. However, these meth-
ods require thousands of repeated simulation runs, which
are extremely time-consuming. In this paper, we propose
a novel three-layer framework to efficiently compute emer-
gent equilibriums. The framework consists of a macro-level
pseudo-arclength equilibrium solver (PAES), a micro-level
simulator (MLS) and a macro-micro bridge (MMB). It can
adaptively explore parameter space and recursively compute
equilibrium states using the predictor-corrector scheme. We
apply the framework to the popular opinion dynamics and
labour market models. The experimental results show that our
framework outperformed Monte Carlo experiments in terms
of computation efficiency while maintaining the accuracy.

Introduction
Agent-based simulation (ABS) has become one of the dom-
inant methods for simulating complex systems with inter-
acting agents (Picault and Mathieu 2011). Emergent ABS
systems are a class of ABS models where the evolution of
their agents leads to a certain macroscopic steady state. This
steady state, termed emergent equilibrium, exists where the
aggregated behaviors are maintained despite time-varying
states of individual agents. The past few decades have seen
the development of many ABS models (Bert et al. 2014;
Teose et al. 2011) and powerful simulation platforms (Al-
lan 2010). However, very limited work has been done in ef-
ficient computing emergent behaviors in complex systems,
including the emergent equilibrium.

To search for the emergent equilibrium of ABS models,
one of the most widely used approaches is to conduct Monte
Carlo experiments. This approach usually consists of four
steps: selecting different parameter values, setting up many
initial conditions for each parameter, creating hundreds of
ensemble realizations for each initial condition, and execut-
ing detailed simulation for each realization long enough to
investigate collective behaviours (Tsoumanis et al. 2010).
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This method is very time-consuming as the simulation of
each realization has to start from the very beginning in ev-
ery iteration. The same problem has also appeared in sim-
ulating dynamic systems based on partial differential equa-
tions, and it has been solved using the numerical continua-
tion (NC) theory (Allgower and Georg 2003). In the NC the-
ory, when a parameter value changes, new steady states are
predicted based on previous ones. Afterwards, the predicted
states are corrected through Newton iterations, which avoids
recomputing the whole simulation from the beginning to
generate the new steady states (Chan and Keller 1982;
Shroff and Keller 1993). In addition, the pseudo-arclength
method of the NC theory can adaptively select a suitable
parameter step size for fast-changing and slow-changing
solutions (Chan and Keller 1982). Nevertheless, it is very
difficult to apply the NC theory to capture the emergent
equilibrium in ABS for two reasons. Firstly, there are no
closed-form equations available in ABS models to depict the
macroscopic emergent dynamics. The refined simulation is
conducted at the micro-level while the numerical computa-
tion is conducted at the macro-level. Secondly, the Newton
iteration used for correcting the prediction in the NC theory
can be of a low efficiency because ABS is highly complex
and stochastic which results in great difficulty to eliminate
the prediction error with numeric iterations.

Thus, in this paper, we propose a novel three-layer frame-
work aiming to achieve efficient computation of emergent
equilibrium in ABS. To our best knowledge, this represents
the first systematic effort to apply NC theory to ABS. The
proposed framework consists of: 1) a macro-level recursive
equilibrium solver with the predictor-corrector scheme to
adaptively explore the system parameter space, 2) a micro-
level simulator to control the execution of ABS, and 3) a
bridge to connect the simulator with the numerical solver
and translate macroscopic evolution dynamics into approxi-
mated short bursts of suitably initialized microscopic simu-
lation. The macro-level recursive equilibrium solver utilizes
the previously obtained equilibrium points to predict the new
equilibrium at first. Then, the corrector controls the micro-
level simulator through the proposed bridge to obtain short
bursts of the microscopic simulation and correct the predic-
tion. As a result, computing the emergent equilibrium from
the beginning in every iteration is avoided and the param-
eter is adaptively adjusted, through which we can signifi-
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cantly enhance the computation efficiency. The framework
has been evaluated by two test beds: opinion dynamics and
labour market models. The experimental results show that
our framework can significantly decrease the computation
time required and meanwhile maintaining the accuracy.

Related Work
Previous research works have been exploring different ways
to improve the computational efficiency of MCE in obtain-
ing equilibrium. One of the most widely employed approach
is to use evolutionary optimization methods to search param-
eter space and consequently improve the computational ef-
ficiency (Stonedahl and Wilensky 2010; Olaru and Purchase
2014). Hence, this approach can enhance the efficiency of
MCE through skipping some unuseful points and targetedly
selecting some parameter values. As an example, genetic al-
gorithms can be used when the maximum deviation in the
neighbourhood is computed for sensitivity analysis. How-
ever, such optimization-based methods require well-defined
objective functions, and massive simulations are still re-
quired to obtain the emergent equilibrium.

Closely related to our work is the equation-free frame-
work originally developed for physicochemistry simulation.
It approximates macroscopic evolution dynamics through
using short bursts of microscopic simulation (Kevrekidis
and Samaey 2009). In physicochemistry applications, the
micro-scale simulation usually involves an ensemble of
thousands of particles. Transforming from the micro-level
to the macro-level (TI2A) typically computes the first few
moments of the particles’ distribution (e.g. density, momen-
tum, and energy). Transforming from the macro-level to the
micro-level (TA2I) uses theoretical distributions to generate
particles’ states. Compared with the physicochemistry sim-
ulation, ABS is more complex and usually needs to handle
various dynamics of social, economical or biological sys-
tems. The macroscopic distributions of agents’ states can be
very difficult to be mathematically depicted. Thus, the trans-
formation between micro- and macro-levels for ABS should
not be limited to the moments of distributions.

Recently, the equation-free framework has been imple-
mented to analyze collective behaviors in ABS, including
information propagation (Tsoumanis et al. 2010), financial
market (Liu 2013) and Escherichia coli locomotion (Siet-
tos 2014). An agent in these models is represented by only
one state variable denoted by a real number. For example,
in (Liu 2013), each participant (agent) of a financial mar-
ket only has a preference attribute which is a number be-
tween -1 and 1. Thus, for these one-dimensional homoge-
neous models, the macroscopic distribution was approxi-
mated by a piece-wise linear polynomial or a set of orthog-
onal polynomials. TI2A was achieved through counting the
histogram and TA2I was conducted using the inverse cumu-
lative distribution function. However, these methods are not
applicable for multi-dimensional ABS systems with hetero-
geneous agents. Therefore, a new framework that addresses
the limitations of existing methods is proposed in this paper.
The contributions of this work include: 1) providing a solu-
tion to perform TI2A and TA2I for non-standard and multi-
dimensional macroscopic distributions, 2) providing a gen-

eral framework that can be utilized for both homogeneous
and heterogeneous complex ABSs, and 3) combine Heun’s
method with Newton-GMRES solver to resolve the compu-
tation difficulty caused by the stochastic essence of ABS.

Formalization of ABS
North and Macal (2007) argued that agents’ attributes should
capture both static and dynamic parts. Thus, in this paper,
we use 〈att, s〉 to represent the states of an agent, where att
stands for agent’s static attributes, s denotes the dynamic
states. Furthermore, there are usually several types of agents
in ABS. Agents that belong to the same type share the same
structure. Hence, given agents’ types Γ = {1, 2, . . . ,M}
and a set of agents for the ith type Σi = {1, 2, . . . , ni}, the
state of an ABS system can be denoted by the vector

x =
[
(attij , s

i
j)

i∈Γ
j∈Σi

, sEnv

]
(1)

where attij and sij stand for the static attributes and dynamic
states of the jth agent in the ith type, respectively. sEnv rep-
resents the environment states. Then, the microscopic evolu-
tion of ABS can be represented by x(t+ dt) = σ (x(t), λ),
where dt is the time step of the micro-scale simulation and
λ denotes system parameters.

For the macroscopic variables of ABS, we can denote
them by X . When conducting microscopic simulation, we
can observe a macro-level evolution for X as

X(t+ δt) = S (X(t), δt, λ) (2)

where δt denotes the time step of the macro-scale evolu-
tion. After a long-time simulation, ABS may reach a cer-
tain macroscopic steady state where X does not change any
more while x keeps changing. This kind of macroscopic
steady state is called emergent equilibrium in this paper.
Thus, an ideal emergent equilibrium XE should fulfill the
following equation:

XE = S
(
XE , δt, λ

)
(3)

For different ABS models, the macroscopic variables X
used to represent the emergent equilibrium may be differ-
ent. In this paper, we only focus on a commonly used form,
namely, the probability distributions of agents’ attributes and
states. For simplicity, we assume that all agents that belong
to a specific type follow one joint distribution. In some cases,
it may not be necessary to consider all microscopic states
when calculating the macroscopic evolution. The reason is
that some of the states may change very fast compared with
the overall system evolution; and hence they can be ignored
for the long-term macroscopic computation (Kevrekidis and
Samaey 2009). Furthermore, some static attributes do not
have high impact on the macroscopic collective behavior
and can also be ignored. Properly choosing the states and
attributes can lower the dimension of macroscopic variables
and thus significantly reduce the computational difficulty.
Nevertheless, the simplification of macroscopic variables
may lead to the error in equilibrium states, which should be
considered for further analysis. Therefore, the macroscopic
variable can be written as

X =
[
P 1(Att1, S1), . . . , PM (AttM , SM ), SEnv

]
(4)
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Figure 1: Design of the Framework

where Atti ⊆ atti and Si ⊆ si (i = 1, . . . ,M ) stand for the
selected static attributes and dynamic states. P i(Atti, Si)
denotes the probability distribution function for the ith agent
type. SEnv ⊆ sEnv represents the selected environment
states. In addition, we write the complement of Si and SEnv

with respect to si and sEnv as S̄i and S̄Env , respectively.

Our Framework
Fig. 1 illustrates the structure of the proposed framework
which consists of three layers, namely, pseudo-arclength
equilibrium solver (PAES), macro-micro bridge (MMB) and
micro-level simulator (MLS). Our framework is designed
for tracking the movement of the macroscopic equilibrium
states XE when the parameter λ continuously varies in the
interval space [λmin, λmax]. It requires two starting points
as inputs which are computed through Monte Carlo exper-
iments. The values -1 and 0 in the diagram stand for the
pseudo-arclength p which will be introduced in Section 4.2.
Once the two equilibrium states at p-1 and p0 are given,
Heun’s method (Süli and Mayers 2003) is employed to com-
pute the new equilibrium at p1. However, since ABS is not
differentiable, the secant direction generated by the two in-
put points acts as an approximation of the derivative (Secant
Predictor). Afterwards, the error e of the new equilibrium
state is computed (Error Calculator). If the error is smaller
than a threshold T , the output of Heun’s method is accepted;
otherwise, the iterative Newton-GMRES solver is utilized to
reduce the error. The new equilibrium

(
p1,X

E
1 , λ1

)
at p1 is

obtained and used as the new starting point for computing
the equilibrium at p2. This recursive process is computed

until the entire parameter space is fully explored.

In PAES, both the one-step corrector and Newton-
GMRES solver need to compute the macroscopic evolu-
tion dynamics of ABS. However, the macroscopic evolu-
tionary dynamics of ABS usually cannot be explicitly de-
noted by mathematical equations. Thus, in our framework,
we approximate the required macroscopic evolution through
short bursts of microscopic simulation. This is achieved
by developing the MMB module to bridge the micro- and
macro-levels. PAES can easily obtain macroscopic evolu-
tion results by exploiting MMB. We focus on the case
where the macroscopic variables are the distributions of
agents’ attributes. Hence, an algorithm based on the Markov
Chain Monte Carlo (MCMC) method is used to gener-
ate N sets of microscopic realizations conforming to the
macroscopic distributions in MMB (TA2I Module). Mean-
while, another algorithm based on the Kernel Density Es-
timation (KDE) technique is responsible for computing the
macroscopic distributions based on microscopic simulation
results (TI2A Module). In this way, the transformation be-
tween the micro- and macro-levels is achieved. In addition,
for continuous macroscopic variables, the sparse grid acts
as a better choice than the evenly distributed histogram for
depicting the macroscopic distributions because it requires
less number of points. The bottom layer of our framework is
MLS which encapsulates the microscopic simulation. When
N realizations are generated by MMB, MLS runs the micro-
scopic simulation for δt/dt steps and feeds back the results
to MMB. The detailed procedures of MMB and PAES will
be described in the following subsections.
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Algorithm 1: Macro-Micro Bridge
input : X0 =

[
P 1

0 , . . . , P
M
0 , SEnv,0

]
, δt, λ

output: Xδt =
[
P 1

δt, . . . , P
M
δt , SEnv,δt

]

1 for i ← 1 to M do
2 for j ← 1 to ni do
3 SP ← MCMC Init(P i

0(S
i, Attij))

4 for k ← 1 to Nb do
5 SP ← MCMC Transition(P i

0(S
i, Attij), SP )

6 for k ← 1 to N do
7 SP ← MCMC Transition(P i

0(S
i, Attij), SP )

8 S
i(k)
j ← SP , S̄i(k)

j ← Initial Value

9 s
i(k)
j ←

(
S

i(k)
j , S̄

i(k)
j

)

10 for k ← 1 to N do
11 S

(k)
Env ← SEnv,0, S̄(k)

Env ← Initial Value

12 x(k) ←
[
(sij)

i∈[1,M]

j∈[1,ni]
,
(
S

(k)
Env, S̄

(k)
Env

)]

13 for i ← 1 to δt/dt do
14 x(k) ← s(x(k), λ)

15 for i ← 1 to M do
16 Point Seti ←

[
(x(k).Attij ,x

(k).S
i(k)
j )

k∈[1,N]

j∈[1,ni]

]

17 for l ← 1 to Ni
SG do

18 P i
l ← KDE

(
SGi

l ,Point Set
i
)

19 P i
δt ← [P i

1 , . . . , P
i

Ni
SG

]

20 SEnv,δt ← 1
N

∑N
k=1 x(k).SEnv

21 Xδt =
[
P 1

δt, . . . , P
M
δt , SEnv,δt

]

Macro-Micro Bridge
Due to the complexity of ABS, it is usually impossible to de-
note the macroscopic probability distributions P (Atti, Si)
with mathematical equations. For discrete states and at-
tributes, it is straightforward to use histogram to represent a
distribution. However, for continuous cases, the distribution
function usually needs to be evenly segmented into a discrete
grid that approximately represents P (Atti, Si) with the his-
togram. This involves O(NDim) degrees of freedom, where
Dim denotes the dimensionality of the distribution and N
denotes the number of points in one dimension. Thus, the
required number of points for approximating the distribution
grows up exponentially as the dimensionality increases.

The differentiability of P (Atti, Si) in our framework pro-
vides a better choice to achieve the approximation of contin-
uous macroscopic probability distributions. This is ensured
by the KDE-based transformation algorithm which will be
introduced later in this section. Under the condition of differ-
entiability, the sparse grid can be used to leverage the expo-
nential freedom degrees O(NDim) of the evenly distributed
grid, since it only requires O(N · (logN)Dim−1) degrees
of freedom. Sparse grid divides the space in a hierarchical
way and approximates the desired distribution function with
linear basis functions. Sparse Grid Interpolation Toolbox is
used in the experiments to calculate the coordinates of the
grid points and conduct interpolation. More details on sparse
grid can be found in (Bungartz and Griebel 2004).

Algorithm 1 shows the basic procedures of MMB. It is

designed to conduct the macroscopic evolution while keep-
ing the details of the microscopic simulation at the micro-
level. The inputs of the algorithm are: the initial values of
macroscopic variables X0, the macroscopic step δt and the
parameter value λ. The output is the macroscopic evolu-
tion result Xδt, namely, the values of macroscopic variables
after δt. MMB starts with the MCMC algorithm to gen-
erate N realizations conforming to P i

0(S
i, Attij) for each

agent (line 1-line 9). MCMC computes samples from the de-
sired probability distribution through constructing a Markov
chain whose equilibrium distribution is the same as the de-
sired distribution. It randomly selects a point as the start-
ing point for the state transition process of the Markov
chain (line 3). As the initial point is not chosen based on the
desired distribution, MCMC conducts the burn-in process
through generating Nb steps of state transitions, where Nb

is a manually defined large number (line 4-line 5). After the
burn-in process, required microscopic states can be obtained
through conducting N steps of state transitions (line 6-line
8). A detailed description of MCMC can be found in (An-
drieu et al. 2003). In this framework, since the static attribute
vector Atti remains constant during the simulation run, the
conditional probability distribution P i

0(S
i|Attij) should be

used for generating the microscopic realizations. Consider-
ing that MCMC only requires the probability ratio of two
neighboring points, the probability distribution P i

0(S
i, Attij)

is used to replace the conditional distribution. Otherwise,∫
P i
0(S

i, Attij)dS
i is required for computing the conditional

distribution from the joint distribution. In the algorithm, the
ignored microscopic state vector S̄i needs to be set as man-
ually selected initial values (line 8). The error in S̄i can be
reduced by the simulation as the slow-changing states grad-
ually dominate and the macroscopic states move towards the
emergent equilibrium (Kevrekidis and Samaey 2009).

After generating the required number of microscopic re-
alizations, MMB calls MLS to run δt/dt steps of simulation
for each realization (line 10-line 14). Then, MMB extracts
the simulation results as a point set with N×ni dimensions,
followed by computing the probability value at each sparse
grid point using the KDE algorithm (line 15-line 19):

KDE
(
SGi

l,Point Set
i
)
=

1

niNh

N∑
k=1

ni∑
j=1

K

(
SGi

l − (x(k).Attij ,x
(k).S

i(k)
j )

h

)
(5)

where l = 1, 2, . . . , N i
SG. N i

SG stands for the required num-
ber of grid points for the ith type agent. SGi

l represents
the coordinates of the grid point. K(·) stands for the kernel
function and h is the bandwidth. According to Equation 5, if
the kernel function has bounded derivatives at any order, the
obtained probability distribution should also have the same
property. In this work, we have adopted RBF kernel which
is differentiable at any order. Thus, the differentiability of
P (Atti, Si) can be ensured, which lays the foundation for
using the sparse grid. As for the selection of h, there are
many methods listed in (Jones, Marron, and Sheather 1996).
In the two testbeds used by us, we use a fixed bandwidth.
The last two steps of the algorithm compute the macroscopic
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Algorithm 2: Pseudo-Arclength Equilibrium Solver
input : (p−1,X

E
−1, λ−1), (p0,X

E
0 , λ0): the two starting points;

δp: the step length of p;
[λmin, λmax]: the parameter interval

output: (p1,X
E
1 , λ1),(p2,X

E
2 , λ2) . . .

1 for i ← 1 to NPAES do
2 pi ← pi−1 + δp

3 XE
G ← Xi−1 + δp(Xi−1 − Xi−2)/(pi−1 − pi−2)

4 XE
G ← Distribution-Check(XE

G )
5 λG ← λi−1 + δp(λi−1 − λi−2)/(pi−1 − pi−2)

6 XC ← MMB(XE
G , δt, λG)

7 δX ← XC − XG

8 δG ← PA Error(XE
G ,XE

i−1, λG, λi−1, pi, pi−1);
9 e ← 1√

length(δX )+1
|| [C · δX , δG] ||2

10 if e ≤ T then
11 (XE

i , λi) ← (XC , λG)

else
12 (XE

i , λi) ← Newton-GMRES(pi,X
E
G , λG)

13 if λi /∈ [λmin, λmax] then
break

environment states SEnv,δt by averaging all the N realiza-
tions and assemble the macroscopic variables (line 20-line
21). Since MCMC and KDE can easily handle discrete vari-
ables using the given expression, we consider the more chal-
lenging case with continuous variables in the testbeds.

Pseudo-Arclength Equilibrium Solver
According to the condition of emergent equilibrium (Equa-
tion 3), the equilibrium states XE to be solved by our frame-
work need to fulfill the condition shown in Equation 6.

δX :=XE −MMB(XE , δt, λ) = 0 (6)

According to the NC theory, relying only on Equation 6
may lead the numerical computation to get stuck at singu-
lar points in the parameter space (Shroff and Keller 1993).
Thus, the pseudo-arclength p which represents the arclength
of equilibrium movement in the joint multi-dimensional
space of states and the parameter is introduced with the con-
tinuity constraint δG(p,X, λ) = 0 (Shroff and Keller 1993).
Therefore, the equilibrium should fulfill:

e :=
1√

length(δX) + 1
|| [C · δX , δG] ||2 = 0 (7)

where C is the parameter used to balance the scale of δX and
δG. In the implementation, we only require e ≤ T , where T
is the threshold chosen based on the maximum variation of
equilibrium states at the two starting points.

Algorithm 2 shows the procedures of PAES. It is designed
for adaptively exploring the desired parameter interval based
on the pseudo-arclength method. The inputs to the algo-
rithm include the step length of p, the parameter interval
[λmin, λmax], and two starting points obtained from using
MCE at the selected parameter values. The output of PAES
is a set of points that represent the emergent equilibrium for
different λ values. Since the algorithm adaptively adjusts the

parameter λ, the exact number of output points cannot be de-
cided before running the program.

PAES begins with computing the pseudo-arclength value
pi for the new equilibrium using the starting points pi−1 and
pi−2 (line 2). Then, the secant method is employed to predict
the states and parameter’s value of the new equilibrium (line
3 and line 5). Since the secant prediction may produce a neg-
ative probability value, the Distribution-Check function is
utilized to set the negative values to be 0 (line 4). Based on
the predicted equilibrium states, a simple one-step correc-
tion is conducted by calling MMB to solve the macroscopic
evolution dynamics (line 6). The error of the newly obtained
equilibrium is computed using Equation 7 (line 7-line 9). For
the secant prediction, δG can be computed using the follow-
ing equation proposed by (Shroff and Keller 1993):

δG =
1

si − si−1

[||XE
G −Xi−1||22+

(λG − λi−1)2 − (si − si−1)2
]

(8)

If the error e is smaller than the threshold T , the corrected
states XC and the secant prediction of parameter λG will
be accepted as the new equilibrium (line 11). Otherwise, the
Newton-GMRES solver (Kelley 2003) is used to solve the
equations [C · δX , δG]

T = 0 (line 12). This solver avoids
the computation of Jacobian matrix by using the matrix-
free iterative eigensolver to construct the gradient direction.
Through the Newton iterations, the error will be reduced to
be smaller than T , and the solution of the target equations
which is also the new equilibrium is obtained. Then, the
newly obtained equilibrium will be used to compute next
equilibrium, and this recursive process terminates when λi

goes out of the desired parameter space (line 13) or the max-
imum rounds of computation NPAES are reached (line 1).

Experiments
In order to evaluate the performance of our framework, we
have applied it to two testbeds. The first one is the opinion
dynamics model, and the second one is the labour market
model with more complex interaction rules from the domain
of economics (Fagiolo, Dosi, and Gabriele 2004).

Opinion Dynamics Model
Opinion dynamics model considers a group of agents who
interact with each other to reach an agreement. Each agent
has an opinion x ∈ [0, 1]. Agents also have a certain level
of confidence on the the accuracy of their opinions, which is
depicted by the confidence bound ε. When interacting with
each other, agents only allow their opinions to be swayed
by those who hold opinions within the confidence bound
of theirs. In other words, if the opinion difference of two
agents is smaller than the confidence bound, they can reach
a consensus after interaction (for example, face-to-face dis-
cussion); otherwise, their opinions remain unchanged. For-
mally, the interaction among agents is defined as a ran-
dom process (Equation 9) in which two agents i and j
are randomly selected to perform the action at each time
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Figure 2: Execution Time Comparison

step (Hegselmann and Krause 2002).

xk(t+ 1) =

{
xj(t)+xi(t)

2 ||xi(t)− xj(t)|| ≤ ε
xk(t) otherwise

(9)

where k can be i or j.
We add an additional attribute, age (denoted as l), to

agents to make the testbed more practical, and the state
of agent i can be described as < li, xi >. In our model,
old agents may die and leave the system at any time step
while new-born ones join the system to keep the total num-
ber of agents constant. We assume the probability of an
agent living to an age of l to follow Weibull distribution,
P (l;λ, k) = k

λ

(
l
λ

)k−1
e−(l/λ)

k

, where k > 0 is the shape
parameter and λ > 0 is the scale parameter (Rinne 2008).
In this model, these two parameters reflect the living mode
and the average age of the population, respectively. Thus,
the probability for a agent to leave during l and l + 1 is

PL([l, l + 1];λ, k) = 1− 1− ∫ a=l+1

a=0
P (a;λ, k)

1− ∫ a=l

a=0
P (a;λ, k)

(10)

By setting k to be 1, we adopt the constant hazard model
without “burn-in” nor “wear” process. In addition, we set
5λ as the upper bound of an agent’s age. If an agent’s age
reaches the upper bound, it will be forced to die.

In this experiment, the joint distribution P (l, x) is se-
lected to be the macroscopic variable. We study the effects of
changing the scale factor λ. The total number of agents is set
to 5000. The macroscopic step δt is chosen as 6000 micro-
scopic simulation steps, and the number of microscopic real-
izations is set to 10. The confidence bound ε is chosen as 0.5.
In executing our experiment, we use MATLAB 2013a run-
ning on Intel Xeon CPU E5-1650, 16 GiB RAM and Ubuntu
14.04LTS operating system. Fig. 2 shows the computation
time of running this testbed through our framework against
that through MCE. The two starting points for our frame-
work are selected as λ = 5000 and λ = 4900 which corre-
spond to the two rightmost square points in the figure. They

are computed using MCE in our framework. Our framework
starts to automatically explore the desired parameter space
[2500, 5000] by conducting prediction and correction at the
third points. Since the equilibrium moves smoothly as the
parameter changes in opinion dynamics, Heun’s method was
selected by our framework at all the auto-selected parameter
values, which leads to the constant parameter value interval
and the similar execution time for all values.

Table 1: Results for B-test (Significance Level α = 0.1)
λ 2500 3000 3500 4000 4500

p-value 0.6738 0.3980 0.5316 0.3875 0.2254

We manually conduct MCE for comparison at some
parameter values and use B-test (Zaremba, Gretton, and
Blaschko 2013) to examine whether the equilibrium states
computed by MCE and our framework are the same. The
obtained equilibrium states are tested for the following null
hypothesis H0 and alternative hypothesis HA:
H0 : PDFO = PDFMCE ,HA : PDFO �= PDFMCE

where PDFO and PDFMCE denote the probability distri-
bution function at the equilibriums computed by our frame-
work and MCE, respectively. The significance level α is cho-
sen as 0.1. Thus, if the computed p-value in B-test is big-
ger than 0.1, the null hypothesis will be accepted; otherwise
the alternative hypothesis will be accepted. The total number
of simulation steps is manually set to be a very large num-
ber (40,000 in this case) to ensure the convergence of the
system. From the B-test results shown in Table 1, we can
conclude that there is no significant difference between the
equilibrium states solved by two methods. Meanwhile, from
the comparison of computation time in Fig. 2, we can con-
clude that our framework can significantly reduce the time
needed for solving the equilibrium states. Furthermore, we
analyze the error variation during MCE in details, and take
the inflection point as the mark for reaching the convergence.
The execution time required for reaching the inflection point
stands for the smallest time needed for the convergence of
MCE. As shown in the figure, the smallest time needed by
MCE is much longer than the execution time of our frame-
work at every selected point.

Labour Market Model
The labour market model describes an economy with F
firms and N workers. A firm i in the model is denoted by
< qit, wit, w

s
it >, where qit, wit and ws

it represent the pro-
duction, the real wage offered and the “satisficing” wage, re-
spectively. A worker j is described by < ws

jt, w
R
j >, where

ws
jt and wR

j stand for the “satisficing” and reservation wage,
respectively. The continuous interaction between these two
types of agents lead the system to reach a macroscopic equi-
librium state. Specifically, at time step t, the output of firm i
is assumed to be linearly proportional to the labour used:

qit = αitnit (11)
where αit is the labour productivity and nit is the number of
workers hired. Thus, the profit can be computed as

πit = (ptαit−1 − wit)nit (12)
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where wit is the contractual wage offered by firm i. Any
firm i has a “satisficing” wage ws

it at time t which the firm
wants to offer to its workers. Any worker j also has a ‘sat-
isficing” wage ws

jt which he wants to get from firms. Fur-
thermore, worker j can only accept contractual wages if the
contractual wages are greater or equal to their reservation
wage wR

j , which we assume to be a constant for simplicity.
The interaction between workers and firms at time step t can
be summarized as the following six steps and the more de-
tailed explanation of the interaction process can be found in
(Fagiolo, Dosi, and Gabriele 2004):

1. Firm i decides the number of vacancies vit as �pt−1qit−1

wit−1
	,

where �·	 stands for the “ceiling” operation.
2. Each worker j goes to the market and visits firm i with

a probability proportional to wit−1. If the selected firm
has places available in the queue, the worker gets in and
demands a wage equal to ws

jt−1.
3. At time step t, firm i observes mit workers in the queue.

Thus, it adjusts its satisficing wage according to the ex-
pected wage of workers:

wit = βws
it−1 + (1− β)

1

mit

mit∑
h=1

mitw
s
jht−1 (13)

If wit ≥ wR
j , worker j in the queue will accept the job,

and set ws
jt−1 to be wit. Similarly, a firm which has filled

at least a job opening will replace ws
it−1 with wit.

4. After hiring workers, firms produce the products accord-
ing to Equation 11. Then, the products are sold with
the “pseudo-Walrasian” price pt which is given by pt =

Wt/Qt. Here, Qt =
∑F

i=1 qit is the aggregate output and
Wt =

∑N
j=1 wjt is the total wage.

5. According to Equation 12, the profit of every firm can
be computed. Then, firms with negative profits will be
weeded out and new entrants with the average “charac-
teristics” are added into the market.

6. Assume that each firm has an invariant desired ratio of
filled to opened jobs ρi ∈ (0, 1]. The current filling ratio
rit = nit/vit is compared with the desired ratio to adjust
the satisficing wage as:

ws
it =

{
ws

it−1(1 + |Y |), if rit < ρi
ws

it−1(1− |Y |), if rit ≥ ρi
(14)

where Y follows the standard normal distribution. Mean-
while, the satisficing wage ws

it for worker j is updated as:

ws
jt =

{
ws

jt−1(1− |Y |), unemployed
ws

jt−1(1 + |Y |), employed (15)

Besides, if ws
jt becomes less than wR

j , it will be directly
set as the latter.

At every time step, all agents repeatedly conduct interaction
according to these 6 steps, and finally, the labour market will
converge to a certain macroscopic equilibrium.

In this model, we also use MCE and our framework to
compute the equilibrium states for comparison. The total
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Figure 3: Execution Time Comparison

number of firms and works is set to be 200 and 1000, respec-
tively. The macroscopic time step δt is selected as 50 mi-
croscopic simulation steps, and the number of microscopic
realizations is set to 50. For simplicity, we only use the dis-
tribution of ws to describe firms at the macro-level because
q and w are computed without considering the previous val-
ues at every step. Thus, q and w are reinitialized to be the ini-
tial values for every step of macroscopic evolution. Workers’
macroscopic states are represented by the joint distribution
P (ws, wR). ρ = 0.80 and ρ = 0.81 are used as the two start-
ing points. δs is set to be 0.1. In order to avoid the effects of
macroscopic variable simplification in comparison, we also
reinitialize q and w every 50 simulation steps in MCE.

Table 2: Results for B-test (Significance Level α = 0.1)
ρ 0.8151 0.8202 0.3080 0.4988

p-value for Firms 0.7974 0.4542 0.5316 0.3875
p-value for Workers 0.4683 0.5593 0.4969 0.5144

Table 2 shows the B-test results for the macroscopic dis-
tributions of firms and workers, which illustrates that there
is no significant difference between the equilibrium results
of our framework and the MCE. Meanwhile, Fig. 3 shows
the execution time comparison between the two methods.
As shown in the figure, our framework performs much better
than the traditional MCE (the total number of steps is set to
be 1000). Compared with the opinion dynamics model, the
labour market model is a more complex, leading the frame-
work to use the Newton-GMRES solver to reduce the error
at some points. This causes an increase in the execution time
at the corresponding points.

Conclusion
In this paper, we propose a novel three-layer framework to
help modelers compute the emergent equilibrium over the
parameter space more efficiently. Using two previously ob-
tained equilibrium states as the starting points, PAES in our
framework can adaptively explore the parameter space at the
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macro-level, while the refined ABS simulation is executed
at the micro-level. To bridge the micro- and macro-levels,
MMB is introduced between PAES and the microscopic sim-
ulation. It approximates the macroscopic evolution dynam-
ics through short bursts of a large amount of microscopic
simulation. Experimental results on two models confirm that
our framework can achieve a much higher efficiency in com-
puting the emergent equilibrium of ABS comparing with
the traditional MCE. For future work, instead of relying on
the probability distribution, we will apply data mining tech-
niques, such as Diffusion Maps, to generalize our frame-
work. We will also improve the micro-level solver for more
complex macroscopic variables and implement a proactive
algorithm to detect sharp equilibrium state changes which
can cause the failure of the NC theory.
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