
Implicit Coordination in Crowded Multi-Agent Navigation

Julio Godoy and Ioannis Karamouzas and Stephen J. Guy and Maria Gini
Department of Computer Science and Engineering

University of Minnesota
200 Union St SE, Minneapolis MN 55455
{godoy, ioannis, sjguy, gini}@cs.umn.edu

Abstract

In crowded multi-agent navigation environments, the
motion of the agents is significantly constrained by the
motion of the nearby agents. This makes planning paths
very difficult and leads to inefficient global motion. To
address this problem, we propose a new distributed ap-
proach to coordinate the motions of agents in crowded
environments. With our approach, agents take into ac-
count the velocities and goals of their neighbors and op-
timize their motion accordingly and in real-time. We ex-
perimentally validate our coordination approach in a va-
riety of scenarios and show that its performance scales
to scenarios with hundreds of agents.

Introduction

Decentralized navigation of multiple agents in crowded en-
vironments has application in many domains such as swarm
robotics, traffic engineering and crowd simulation. This
problem is challenging due to the conflicting constraints in-
duced by the other moving agents; as agents plan paths in
a decentralized manner, they often need to recompute their
paths in real-time to avoid colliding with the other agents
and static obstacles. The problem becomes even harder
when the agents need to reach their destinations in a timely
manner while still guaranteeing a collision-free motion.

A variety of approaches have been proposed to address
this problem. Recently, velocity-based approaches have
gained popularity due to their robustness and their ability
to provide collision-free guarantees about the agents’ mo-
tions. Such approaches allow each agent to directly choose
a new collision-free velocity at each cycle of a continuous
sensing-acting loop. However, in crowded environments, ve-
locities that are locally optimal for one agent are not neces-
sarily optimal for the entire group of agents. This can result
in globally inefficient and unrealistic behavior, long travel
times and in worst case, deadlocks.

Ideally, to reach globally efficient motions, a centralized
entity needs to compute the best velocity for each agent.
In a decentralized domain, where agents have only partial
observation of the environment, such entity is not present.
Agents can only use their limited knowledge of the envi-
ronment to compute their local motions. In this paper, we

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) ORCA (b) C-Nav

Figure 1: Two groups of 9 agents each move to the opposite
side of a narrow corridor. (a) ORCA agents get stuck in the
middle. (b) Using our C-Nav approach, agents create lanes
in a decentralized manner.

hypothesize that if an agent could account for the intended
motion of its nearby agents, then it could choose a velocity
in a way that benefits not only itself but also its neighbor-
ing agents. Consider, for example, the two groups of agents
in Figure 1a. Here, two groups of agents try to move past
each other in a narrow hallway. The agents navigate using
a predictive collision-avoidance technique, but still end up
getting stuck in congestion. To address this, we seek to de-
velop a navigation method that encourages coordination to
emerge through agents’ interactions. We accomplish this, by
allowing agents to account for their neighbors’ intended ve-
locities during their planning. Figure 1b shows an example
of such coordinated motion.

Following this idea, we propose C-Nav (short for Co-
ordinated Navigation), a distributed approach to improve
the global motion of a set of agents in crowded environ-
ments by implicitly coordinating their local motions. This
coordination is achieved using observations of the nearby
agents’ motion patterns and a limited one-way communica-
tion, allowing C-Nav to scale to hundreds of agents. With
our approach, agents choose velocities that help their nearby
agents to move to their goals, effectively improving the time-
efficiency of the entire crowd.

This work makes three main contributions. First, we pro-
pose a framework for multi-agent coordination that leads to
time-efficient motions. Second, we show that accounting for
nearby agents when selecting an optimal velocity promotes
implicit coordination between agents. Third, we experimen-
tally validate our approach via simulations and show that it

2487

leads to more coordinated and efficient motions in a vari-
ety of scenarios as compared to a state-of-the-art collision
avoidance framework (van den Berg et al. 2011), and a re-
cently proposed learning approach for multi-agent naviga-
tion (Godoy et al. 2015).

Related Work

Multi-Agent Navigation. In the last two decades, a num-
ber of models have been proposed to simulate the motion
of agents. At a broad level, these models can be classi-
fied into flow-based methods and agent-based approaches.
Flow-based methods focus on the behavior of the crowd as
a whole and dynamically compute vector-fields to guide its
motion (Treuille, Cooper, and Popović 2006; Narain et al.
2009). Even though such approaches can simulate interac-
tions of dense crowds, due to their centralized nature, they
are prohibitively expensive for planning the movements of
a large number of agents that have distinct goals. In con-
trast, agent-based models are purely decentralized and plan
for each agent independently. After the seminal work of
Reynolds on boids (1987), many agent-based approaches
have been introduced, including social forces (Helbing and
Molnar 1995), psychological models (Pelechano, Allbeck,
and Badler 2007) as well as behavioral and cognitive mod-
els (Shao and Terzopoulos 2007). However, the majority of
such agent-based techniques do not account for the veloci-
ties of individual agents which leads to unrealistic behaviors
such as oscillations. These problems tend to be exacerbated
in densely packed, crowded environments.

To address these issues, velocity-based algorithms (Fior-
ini and Shiller 1998) have been proposed that compute
collision-free velocities for the agents using either sampling
(Ondřej et al. 2010; Moussaı̈d, Helbing, and Theraulaz 2011;
Karamouzas and Overmars 2012) or optimization-based
techniques (van den Berg et al. 2011; Guy et al. 2009). In
particular, the Optimal Reciprocal Collision Avoidance nav-
igation framework, ORCA (van den Berg et al. 2011), plans
provably collision-free velocities for the agents and has been
successfully applied to simulate high-density crowds (Cur-
tis et al. 2011; Kim et al. 2012). However, ORCA and its
variants are not sufficient on their own to generate time-
efficient agent behaviors, as computing locally optimal ve-
locities does not always lead to globally efficient motions.
As such, we build on the ORCA framework while allowing
agents to implicitly coordinate their motions in order to im-
prove the global time-efficiency of the crowd.

Coordination in Multi-Agent Systems. The coordination
of multiple agents sharing a common environment has
been widely studied in the Artificial Intelligence commu-
nity. When communication is not constrained, coordina-
tion can be achieved by casting it as a distributed con-
straint optimization problem, where agents send messages
back and forth until a solution is found (Modi et al. 2003;
Ottens and Faltings 2008). Guestrin et al. (2002) assume that
agents can directly communicate with each other by using
coordination graphs, which also rely on a message-passing
system. Other works such as (Fridman and Kaminka 2010)
assume similar behavior between the agents and use cog-

nitive models of social comparison. Similarly, our work
allows agents to compare motion features, but no socio-
psychological theory is used.

Coordination can also be achieved using learning meth-
ods, such as in (Melo and Veloso 2011), which learn the
value of joint actions when coordination is required, and
use Q-learning when it is not. The approaches of (Martinez-
Gil, Lozano, and Fernández 2014; Torrey 2010) use rein-
forcement learning for multi-agent navigation, allowing the
agents to learn policies offline that can then be applied to
specific scenarios. These works consider a few agents (up to
40), while our work focuses on environments with hundreds
of interacting agents. More recently, Godoy et al. (2015) use
an online learning approach for adapting the motions of mul-
tiple agents with no communication without the need for
offline training. However, the resulting behavior of this ap-
proach does not scale well to hundreds of agents, as opposed
to the technique we present here.

Problem Formulation

In our problem setting, there are n independent agents
A1 . . . An , each with a unique start and goal position. For
simplicity, we assume that the agents move on a 2D plane
where static obstacles O, approximated as line segments,
can also be present. We model each agent Ai as a disc with
a fixed radius ri. At time t, the agent Ai has a position pi

and moves with velocity vi that is subject to a maximum
speed υmax

i . Furthermore, Ai has a preferred velocity vpref
i

(commonly directed toward the agent’s goal gi with a mag-
nitude equal to υmax

i). We assume that an agent can sense
the radii, positions and velocities of at most numNeighs
agents within a limited fixed sensing range. We further as-
sume that agents are capable of limited one-way communi-
cation. Specifically, each agent uses this capability to broad-
cast its unique ID and preferred velocity. This type of com-
munication scales well, as it is not affected by the size of
the agent’s neighborhood, unlike two-way communication
whose complexity increases proportionally to the number of
neighbors.

Our task is to steer the agents to their goals without collid-
ing with each other and with the environment, while reach-
ing their goals as fast as possible. More formally, we seek
to minimize the arrival time of the last agent or equivalently
the maximum travel time of the agents while guaranteeing
collision-free motions:

minimize max
i

(T imeToGoal(Ai))

s.t. ‖pt
i − pt

j‖ > ri + rj , ∀
i�=j

i, j ∈ [1, n]

dist(pt
i, Oj) > ri, ∀i ∈ [1, n], j = 1 . . . |O|

‖vt
i‖ ≤ υmax

i , ∀i ∈ [1, n]
(1)

where T imeToGoal(Ai) is the travel time of agent Ai from
its start position to its goal and dist(·) denotes the Euclidean
distance. Since the agents navigate independently with only
limited communication, Eq. 1 has to be solved in a decen-
tralized manner. Therefore, at each time instant, we seek to
find for each agent a new velocity that respects the agent’s

2488

(a) (b)

Figure 2: Actions. (a) Agent-based actions: A. Towards the
goal at maximum speed, B. towards the goal at reduced
speed, C. stop, D. and E. towards the goal at a fixed angle.
(b) Neighborhood-based actions: follow a specific neighbor
agent or the goal-oriented motion at maximum speed.

geometric and kinematics constraints while progressing the
agent towards its goal.

To obtain a collision-free velocity, we use the ORCA nav-
igation framework (van den Berg et al. 2011). ORCA takes
as input a preferred velocity vpref and returns a new velocity
vnew that is collision-free and as close as possible to vpref ,
by solving a low dimensional linear program. While ORCA
guarantees a locally optimal behavior for each agent, it does
not account for the aggregate behavior of all the agents. As
ORCA agents typically have only a goal-oriented vpref , they
may get stuck in local minima, which leads to large travel
times, and subsequently, globally inefficient motions.

To address the aforementioned issues, in addition to the
set of preferred velocities defined in (Godoy et al. 2015)
(Figure 2a), we also consider velocities with respect to cer-
tain key neighbors (Figure 2b). This creates an implicit co-
ordination between the agents and enables our approach to
compute globally efficient paths for the agents as well as
scale to hundreds of agents. The ALAN framework (Godoy
et al. 2015) achieves good performance in several environ-
ments, but the absence of communication limits the ability
of agents to coordinate their motions.

The C-Nav Approach

With our approach, C-Nav, the agents use information about
the motion of their neighbors in order to make better deci-
sions on how to move and implicitly coordinate with each
other. This reduces the travel time of all the agents.

Algorithm 1 outlines C-Nav. For each agent that has not
reached its goal, we compute a new action, i.e., preferred
velocity, on average every 0.1 seconds (line 3). In each new
update, the agent computes which of its neighbors move in a
similar manner as itself and which neighbors are most con-
strained in their motions (line 4 and line 5, respectively),
and uses this information to evaluate all of its actions (line
7). After this evaluation, the best action is selected (line 9).
Finally, this preferred velocity vpref is broadcasted to the
agent’s neighbors (line 10) and mapped to a collision-free
velocity vnew via the ORCA framework (line 12) which is
used to update the agent’s position (line 13) and the cycle
repeats.

Algorithm 1: The C-Nav framework for agent i
1: initialize simulation
2: while not at the goal do
3: if UpdateAction(t) then
4: compute most similar agents
5: compute most constrained agents
6: for all a ∈ Actions do
7: Ra ← SimMotion(a)
8: end for
9: vpref ← argmaxa∈Actions Ra

10: broadcast ID and vpref to nearby agents
11: end if
12: vnew ← CollisionAvoidance(vpref)
13: pt ← pt-1 + vnew ·Δt
14: end while

Agent neighborhood information

With information obtained by sensing (radii, positions and
velocities) and via communication (IDs and preferred veloc-
ities) from all the neighbors within the sensing range, each
agent estimates the most similar nearby agents and the most
constrained ones.
Neighborhood-based actions. Each agent i computes how
similar the motions of its neighbors are to its own motion
(see Algorithm 2). This allows the agent to locate neigh-
bors that are moving faster than itself and in a similar di-
rection. By following such neighbors, the time-efficiency of
the agent can be increased. Specifically, the preferred veloc-
ities of the nearby agents are used to first select neighbors
which goals in the same direction as the agent i (line 4). The
actual velocity of each of these neighbors is then compared
to i’s goal-oriented vector to quantify the similarity between
the agents (line 5). Algorithm 2 sorts these similarity values
in a descending order and returns the corresponding list of
the neighbors’ indices.

Algorithm 2: Compute most similar neighbors of i
1: Input: list of neighbors Neighs(i)
2: Output: Simrank, list of indices of the most similar

neighbors
3: for all j ∈ Neighs(i) do

4: if vpref
j · gi−pi

‖gi−pi‖ > 0 then

5: SimV alj ← vnew
j · gi−pi

‖gi−pi‖
6: end if
7: end for
8: Simrank ← Sort(SimV al)

Once an agent knows which of its nearby agents have a
similar motion, it can use this information to choose a ve-
locity with maximum speed towards one of these neighbors
(Figure 2b), in addition to the goal-oriented motion. These
actions, unlike the ones in Figure 2a, do not have a fixed an-
gle with respect to the agent’s goal, as they depend on the
position of individual neighbors.

2489

Constrained neighborhood motion. Each agent i uses Al-
gorithm 3 to evaluate how constrained the motions of its
neighbors are and, thus, determine agents that are more
likely to slow down the overall progress of the crowd. By
yielding to those constrained neighbors, the global time-
efficiency of the system increases. To avoid circular depen-
dencies which can give rise to deadlocks, the agent i only
considers neighbors that are closer than itself to its goal (line
4). This ensures that no two agents with the same goal will
simultaneously defer to each other. We estimate how con-
strained a neighbor is based on the difference between its
preferred and actual velocity (line 5). The larger the differ-
ence, the more likely it is that its motion is impeded. The
agent keeps a list C with the evaluation of how constrained is
the motion of each of its neighbors. After all neighbors have
been evaluated, Algorithm 3 sorts C in descending order,
and returns a list Crank of the indices of the sorted neigh-
bors (line 8). The agent uses this information when evaluat-
ing each of its available actions.

Algorithm 3: Compute most constrained neighbors of i
1: Input: list of neighbors Neighs(i)
2: Output: Crank, list of indices of the most constrained

neighbors
3: for all j ∈ Neighs(i) do
4: if ‖gi − pj‖ < ‖gi − pi‖ then

5: Cj ← ‖ vpref
j − vnew

j ‖
6: end if
7: end for
8: Crank ← Sort(C)

Action evaluation and selection

Agents can choose a preferred velocity from two sets of ac-
tions, an agent-based (Figure 2a) and a neighborhood-based
(Figure 2b) action set. In the latter, agents consider up to
s neighbors (0 ≤ s ≤ numNeighs). To estimate the fit-
ness of the actions, the agent simulates each action for a
number of timesteps and evaluates two metrics: its poten-
tial progress towards its goal, and its effect in the motion of
its k most constrained neighbors (0 ≤ k ≤ numNeighs).
Algorithm 4 outlines this procedure.
Motion simulation. As a first step towards the selection of
an action, an agent simulates the evolution of its neighbor-
hood dynamics (line 4), that is, it updates the velocities and
positions of itself and its neighbors for each timestep within
a given time horizon T (line 3), for each possible action. Two
timesteps is the minimum time horizon required to observe
the effect of the agent’s chosen motion.

It should be noted here that in very crowded areas, agents
often have no control over their motions, as they are being
pushed by other agents in order to avoid collisions. Hence,
simulating the dynamics of all the agent’s neighbors often
results in the same velocity for all simulated actions. This
does not help, because the agent would not be able to select
a velocity that improves the motion of its most constrained
neighbors. Therefore, the agent considers in its simulation

Algorithm 4: SimMotion(a) for agent i
1: Input: integer a ∈ Actions, list of neighbors

Neighs(i)
2: Output: Ra, estimated value of action a
3: for t = 0, . . . , T − 1 do
4: simulate evolution of neighborhood dynamics
5: if t > 0 then
6: for all j ∈ Neighs(i) do
7: if rank(j ∈ Crank) < k then

8: Rc
a ← Rc

a + υmax
i − ‖ vpref

j − vnew
j ‖

9: end if
10: end for
11: end if
12: Rg

a ← Rg
a + vnew

i · gi−pi

‖gi−pi‖
13: end for
14: Rg

a ← Rg
a

T ·υmax
i

,Rc
a ← Rc

a

(T−1)·k·υmax
i

15: Ra ← (1− γ) · Rg
a + γ · Rc

a

only the neighbors that are closer to its goal than itself, ‘ig-
noring’ the agents that are behind it. Even if the best valued
action is not currently allowed, we expect that the neighbor-
ing agents will eventually try to relax the constraints that
they impose on the agent.

Neighborhood influence. After simulating a specific action
for the given time horizon, the agent can estimate how this
action affects each of its k most constrained neighbors. It
computes this based on the difference between j’s predicted
collision-free velocity vnew

j and its communicated preferred
velocity vpref

j (line 8).

Motion evaluation. To decide what motion to perform next,
the agent aims at minimizing the amount of constraints im-
posed by its neighbors, while also ensuring progress towards
its goal. Our reward function balances these two objectives,
by taking a linear combination of a goal-oriented, and a
constrained-reduction component (Eq. 2). Each component
has an upper bound of 1 and a lower bound of -1 and is
weighted by the coordination-factor γ.

Ra = (1− γ) · Rg
a + γ · Rc

a (2)

The goal-oriented component Rg
a computes, for each

timestep in the time horizon, the scalar product of the
collision-free velocity vnew of the agent with the normalized
vector which points from the position p of the agent to its
goal g. This component encourages preferred velocities that
lead the agent as quickly as possible to its goal. Formally:

Rg
a =

T−1∑
t=0

(
vnew
i · gi−pi

‖gi−pi‖
)

T · υmax
i

(3)

The constrained-reduction component Rc
a averages the

amount of constraints introduced in the agent’s k most con-
strained neighbors. This component promotes preferred ve-
locities that do not introduce constraints into these k agents.

2490

Figure 3: Scenarios. Bidirectional: two groups of agents
move to the opposite side of a narrow corridor. Crowd:
agents’ initial and goal positions are placed randomly in a
small area. Circle: agents move to their antipodal positions.

More formally:

Rc
a =

T−1∑
t=1

∑
j∈Crank

(
υmax
i − ‖ vpref

j − vnew
j ‖)

(T − 1) · k · υmax
i

(4)

If an agent only aims at maximizing Rg
a, its behavior

would be selfish and it would not consider the constraints
that its actions impose on its most constrained neighbors.
On the other hand, if the agent only tries to maximize Rc

a,
it might have no incentive to move towards its goal, which
means it might never reach it. Therefore, by maximizing a
combination of both components, the agent implicitly coor-
dinates its goal-oriented motion with that of its neighbors,
resulting in lower travel times for all agents.

Experiments

We evaluated C-Nav on three different scenarios using a
varying number of agents (see Figure 3). Each result corre-
sponds to the average over 30 simulations (see http://motion.
cs.umn.edu/r/CNAV/ for videos). The scenarios are as fol-
lows:

• Circle: Agents are placed along the circumference of a
circle and must reach their antipodal positions.

• Bidirectional: Agents are clustered in two groups that
move to the opposite side of a narrow corridor formed
by two walls.

• Crowd: Agents are randomly placed in a densely popu-
lated area and are given random goals.

To evaluate our approach, we measure the time that the
agents spent in order to resolve interactions with each other
and the environment. We estimate this time by comput-
ing the difference between the maximum travel time of the
agents and the hypothetical travel time if agents were able to
just follow their shortest paths to their goals at full speed:

max
i

(T imeToGoal(Ai))−max
i

(
shortestPath(Ai)

υmax
i

)

We call this metric interaction overhead. A theoretical prop-
erty of this metric is that an interaction overhead of 0 repre-
sents a lower bound on the optimal travel time for the agents,

Figure 4: Performance comparison between ORCA, ALAN
and our C-Nav approach. In all scenarios, agents using our
coordination approach have the lowest overhead times. The
error bars correspond to the standard error of the mean.

and it is the best result that an optimal centralized approach
could potentially achieve.

Using the interaction overhead metric, we compared C-
Nav to vanilla ORCA (greedy goal-oriented motion) and
the ALAN approach of Godoy et al. (2015). In all our ex-
periments, we used ORCA’s default settings for the agent’s
radii (0.5 m), sensing range (15 m) and maximum number
of agents sensed (numNeighs=10). We set T=2 timesteps,
υmax=1.5 m/s, γ=0.9, k=3 and s=3. The timestep duration,
Δt, is set to 25 ms. The number of timesteps T was chosen
because it is the minimum needed to observe the effects of
the motion and it produces the best results, though even with
larger values our approach still outperforms both ALAN and
ORCA. All simulations ran in real time for all evaluated
methods.

Results

We evaluated the interaction overhead time in the Circle sce-
nario with 128 agents, the Bidirectional scenario with 18
agents, and the Crowd scenario with 300 agents. Results can
be seen in Figure 4. Agents using ALAN outperform ORCA
agents in the Bidirectional scenario, and are on par with
them in the Circle scenario. However, ALAN’s performance
fails to scale to 300 agents in the Crowd scenario. The inter-
action overhead of C-Nav is lower than ORCA and ALAN
in all cases, which indicates that by considering informa-
tion about their neighborhood, agents can coordinate their
motion and improve their time-efficiency. In terms of quali-
tative results, we observe emergent behavior in the Bidirec-
tional and Circle scenario, where agents going in the same
direction form lanes. Such lanes reduce the constraints in
other agents leading to more efficient simulations.
Scalability. We analyzed the scalability of our approach in
the Bidirectional and Circle scenarios by varying the number
of simulated agents. The results are depicted in Figure 5. In
both scenarios, the difference between the overhead times
of ORCA and C-Nav increases as more agents are added.
However, the overhead time introduced by each added agent
in the system is lower in our approach than in ORCA.
Action sets. We evaluated how the use of only agent-based
or neighborhood-based action sets compares to the com-
bined action set that C-Nav employs. The results for the

2491

(a) Bidirectional

��

���

���

����

�� ���� ���� ����

	

�
�
��
��
��

��
��
��

���������

	����

����
�

(b) Circle

Figure 5: Scalability results in the Bidirectional and Circle
scenarios, in terms of interaction overhead time. In Bidirec-
tional, the number of agents varied from 50 to 200. In the
Circle, the number of agents varies from 64 to 512.

��

���

 ��

!��

"��

#��

$��

%��

&��

������� ��'�	�
�	�����'���

�
(�
��
�
	�
�)

��
��
��

�'��'������	�(��'������������
������'��''	����	�
���������	�
�')����	�����(��

Figure 6: Performance of the four action selection methods
in terms of interaction overhead time, for three scenarios.

three scenarios are shown in Figure 6. For completeness,
we also report the performance of ORCA, i.e., the overhead
time when only a single goal-oriented action is used. We
can observe that the combined set of actions is either better
or no worse than using just the neighborhood-based or the
agent-based action set. The only exception is in the Bidirec-
tional scenario, where the neighborhood-based set outper-
forms the combined one (the difference in overhead time is
statistically significant). With only neighborhood-based ac-
tions, an agent will deviate from its goal-oriented velocity
only when it can follow a neighbor which is already moving
in a less constrained manner towards the agent’s goal.

Effect of the coordination-factor (γ). We evaluated how
the balance between the goal-oriented and the constrained-
reduction components of our reward function (Eq. 2) con-
trolled by the coordination-factor γ, affects the performance
of our C-Nav approach. We can observe in Figure 7 that us-
ing any of the two extremes of γ, i.e., either a pure goal-
oriented reward (γ=0) or a pure constrained-reduction re-
ward (γ=1), can reduce the performance. Accounting only
for goal-oriented behavior forces agents to choose veloci-
ties that in many cases prevent other agents from moving to
their goals, reducing the overall time-efficiency in their nav-
igation. On the other hand, giving only preference to reduc-
ing the other agents’ constraints does not promote progress
to the goal in low-density environments. Because C-Nav
agents consider only neighbors that are likely to slow down
the global motion, a high value of the coordination-factor

Figure 7: Performance of C-Nav agents, with different val-
ues of the coordination-factor γ.

(γ=0.9) helps both the agent and its neighbors to move to
their respective goals, which results in the best performance.
Effect of number of constrained neighbors k. We also
evaluated how the number of constrained neighbors (k) in
the constrained-reduction component of the optimization
function (Eq. 4) affects the performance of our approach. In
general, the interaction overhead time decreases while k in-
creases. As agents account for more neighbors upon comput-
ing a new velocity, their motion becomes more coordinated
and the travel time of the entire system of agents is reduced.
In the Crowd scenario, the interaction overhead time de-
creases nearly linearly as k increases, while in the other two
scenarios the overhead time decreases exponentially with in-
creasing k. We note, though, that in all of our experiments,
considering more than 3 neighbors does not lead to any sig-
nificant performance improvement.

Conclusions and Future Work

We have proposed C-Nav, a coordination approach for large
scale multi-agent systems. C-Nav agents use their sensing
input and a limited one-way communication to implicitly
coordinate their motions. Each agent takes advantage of the
motion patterns of its nearby neighbors to avoid introducing
constraints in their motions, and temporarily follow other
agents that have similar motion. By doing this, agents in
dense environments are able to reach their goals faster than
using a state-of-the-art collision-avoidance framework and
an adaptive learning approach for multi-agent navigation.

Our implementation assumes that agents can broadcast
their preferred velocities. If this is not the case (i.e. non-
communicative agents), C-Nav would still work, though
agents would only optimize their motions based on their
own goal progress. To address this limitation, we would like
to explore methods to predict the agents’ preferred veloc-
ities from a sequence of observed velocities, using, e.g., a
hidden Markov model. Adapting C-Nav to physical robots
moving in human populated environments is another excit-
ing avenue for future work. The recent work of (Choi, Kim,
and Oh 2014) and (Trautman et al. 2015) can provide some
interesting ideas in this direction.
Acknowledgment: Support for this work is gratefully ac-
knowledged from the University of Minnesota Informatics
Institute.

2492

References

Choi, S.; Kim, E.; and Oh, S. 2014. Real-time navigation
in crowded dynamic environments using gaussian process
motion control. In Proc. IEEE Int. Conf. on Robotics and
Automation, 3221–3226.
Curtis, S.; Guy, S. J.; Zafar, B.; and Manocha, D. 2011. Vir-
tual tawaf: A case study in simulating the behavior of dense,
heterogeneous crowds. In Proc. Workshop at Int. Conf. on
Computer Vision, 128–135.
Fiorini, P., and Shiller, Z. 1998. Motion planning in dynamic
environments using Velocity Obstacles. Int. J. Robotics Re-
search 17:760–772.
Fridman, N., and Kaminka, G. A. 2010. Modeling pedes-
trian crowd behavior based on a cognitive model of social
comparison theory. Computational and Mathematical Or-
ganization Theory 16(4):348–372.
Godoy, J. E.; Karamouzas, I.; Guy, S. J.; and Gini, M.
2015. Adaptive learning for multi-agent navigation. In Proc.
Int. Conf. on Autonomous Agents and Multi-Agent Systems,
1577–1585.
Guestrin, C.; Venkataraman, S.; and Koller, D. 2002.
Context-specific multiagent coordination and planning with
factored MDPs. In Proc. AAAI Conference on Artificial In-
telligence, 253–259.
Guy, S. J.; Chhugani, J.; Kim, C.; Satish, N.; Lin, M.;
Manocha, D.; and Dubey, P. 2009. Clearpath: highly paral-
lel collision avoidance for multi-agent simulation. In Proc.
ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, 177–187.
Helbing, D., and Molnar, P. 1995. Social force model for
pedestrian dynamics. Physical review E 51(5):4282.
Karamouzas, I., and Overmars, M. 2012. Simulating and
evaluating the local behavior of small pedestrian groups.
IEEE Trans. Vis. Comput. Graphics 18(3):394–406.
Kim, S.; Guy, S. J.; Manocha, D.; and Lin, M. C. 2012. In-
teractive simulation of dynamic crowd behaviors using gen-
eral adaptation syndrome theory. In Proc. of the ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
55–62.
Martinez-Gil, F.; Lozano, M.; and Fernández, F. 2014. Marl-
ped: A multi-agent reinforcement learning based framework
to simulate pedestrian groups. Simulation Modelling Prac-
tice and Theory 47:259–275.
Melo, F. S., and Veloso, M. 2011. Decentralized MDPs with
sparse interactions. Artificial Intelligence 175(11):1757–
1789.
Modi, P. J.; Shen, W.-M.; Tambe, M.; and Yokoo, M. 2003.
An asynchronous complete method for distributed constraint
optimization. In Proc. Int. Conf. on Autonomous Agents and
Multi-Agent Systems, volume 3, 161–168.
Moussaı̈d, M.; Helbing, D.; and Theraulaz, G. 2011.
How simple rules determine pedestrian behavior and crowd
disasters. Proc. of the National Academy of Sciences
108(17):6884–6888.

Narain, R.; Golas, A.; Curtis, S.; and Lin, M. C. 2009. Ag-
gregate dynamics for dense crowd simulation. ACM Trans.
Graphics 28(5):122.
Ondřej, J.; Pettré, J.; Olivier, A.-H.; and Donikian, S. 2010.
A synthetic-vision based steering approach for crowd simu-
lation. ACM Trans. Graphics 29(4):123.
Ottens, B., and Faltings, B. 2008. Coordinating agent plans
through distributed constraint optimization. In Proc. of the
ICAPS-08 Workshop on Multiagent Planning.
Pelechano, N.; Allbeck, J.; and Badler, N. 2007. Control-
ling individual agents in high-density crowd simulation. In
Proc. ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, 99–108.
Reynolds, C. W. 1987. Flocks, herds and schools: A dis-
tributed behavioral model. ACM Siggraph Computer Graph-
ics 21(4):25–34.
Shao, W., and Terzopoulos, D. 2007. Autonomous pedestri-
ans. Graphical Models 69(5-6):246–274.
Torrey, L. 2010. Crowd simulation via multi-agent rein-
forcement learning. In Proc. Artificial Intelligence and In-
teractive Digital Entertainment, 89–94.
Trautman, P.; Ma, J.; Murray, R. M.; and Krause, A. 2015.
Robot navigation in dense human crowds: Statistical models
and experimental studies of human–robot cooperation. The
Int. J. of Robotics Research 34(3):335–356.
Treuille, A.; Cooper, S.; and Popović, Z. 2006. Continuum
crowds. ACM Trans. Graphics 25(3):1160–1168.
van den Berg, J.; Guy, S. J.; Lin, M.; and Manocha, D. 2011.
Reciprocal n-body collision avoidance. In Proc. Interna-
tional Symposium of Robotics Research. Springer. 3–19.

2493

