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Abstract

Many solution methods for Markov Decision Processes
(MDPs) exploit structure in the problem and are based
on value function factorization. Especially multiagent
settings, however, are known to suffer from an expo-
nential increase in value component sizes as interac-
tions become denser, restricting problem sizes and types
that can be handled. We present an approach to miti-
gate this limitation for certain types of multiagent sys-
tems, exploiting a property that can be thought of as
“anonymous influence” in the factored MDP. We show
how representational benefits from anonymity translate
into computational efficiencies, both for variable elimi-
nation in a factor graph and for the approximate linear
programming solution to factored MDPs. Our methods
scale to factored MDPs that were previously unsolvable,
such as the control of a stochastic disease process over
densely connected graphs with 50 nodes and 25 agents.

1 Introduction

Cooperative multiagent systems (MASs) present an impor-
tant framework for modeling the interaction between agents
that collaborate to solve a task. Decision-theoretic mod-
els like the Markov Decision Process (MDP) have seen
widespread use to address such complex stochastic planning
problems. Multiagent settings, however, have state and ac-
tion spaces that tend to grow exponentially with the agent
number, making common solution methods that rely on the
full enumeration of the joint spaces prohibitive.

Many problem representations thus attempt to exploit
structure in the domain to improve efficiency. Single and
multiagent factored MDPs (F(M)MDPs) represent the prob-
lem in terms of state and action spaces that are spanned
by a number of variables, or factors (Boutilier, Dean, and
Hanks 1999; Guestrin, Koller, and Parr 2002). Unfortu-
nately, the representational benefits from factored descrip-
tions do not in general translate into gains for policy compu-
tation (Koller and Parr 1999). Still, many solution methods
successfully exploit structure in the domain, both in exact
and approximate settings, and have demonstrated scalability
to large state spaces (Hoey et al. 1999; Raghavan et al. 2012;
Cui et al. 2015).
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In this paper we focus on approaches that additionally
address larger numbers of agents through value factoriza-
tion, assuming that smaller value function components can
approximate the global value function well (Guestrin et al.
2003; Kok and Vlassis 2006). The approximate linear pro-
gramming (ALP) approach of Guestrin et al. (2003) is one of
the few approaches in this class that retains no exponential
dependencies in the number of agents and variables through
the efficient computation of the constraints in the linear pro-
gram based on a variable elimination (VE) method. While
the approach improved scalability dramatically, the method
retains an exponential dependency on the induced tree-width
(the size of the largest intermediate term formed during VE),
meaning that its feasibility depends fundamentally on the
connectivity and scale of the factor graph defined by the FM-
MDP and chosen basis function coverage.

We present an approach that aims to mitigate the expo-
nential dependency of VE on the induced width, which is
caused by the need to represent all combinations of state
and action variables that appear in each manipulated factor.
In many domains, however, different combinations lead to
similar effects, or influence. Serving as a running example is
a disease control scenario over large graphs (Ho et al. 2015;
Cheng et al. 2013). In this setting the aggregate infection rate
of the parent nodes, independent of their individual identity,
fully defines the behavior of the propagation model. This ob-
servation extends to many MASs that are more broadly con-
cerned with the control of dynamic processes on networks,
e.g. with stochastic fire propagation models or energy dis-
tribution in power grids (Liu, Slotine, and Barabasi 2011;
Cornelius, Kath, and Motter 2013).

We propose to exploit this anonymity of influences for
more efficient solution methods for MMDPs. In particular:

1) We introduce a novel redundant representation (RR)
for the factors that VE manipulates which involves count
aggregators. 2) We show how to derive an efficient VE algo-
rithm, RR-VE, that makes use of the redundant representa-
tion, and prove its correctness. 3) We then propose RR-ALP,
which extends the ALP approach by making use of RR-VE,
and maintains identical solutions. 4) We show an empirical
evaluation of our methods that demonstrates speed-ups of
the ALP by an order of magnitude in a sampled set of ran-
dom disease propagation graphs and scale to problem sizes
that were previously infeasible to solve with the ALP.
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2 Background

We first discuss the background on factored MMDPs and
their solution methods that are based on value factorization.

Factored Multiagent MDPs

Markov decision processes are a general framework for de-
cision making under uncertainty (Kochenderfer 2015). An
infinite-horizon Markov decision process (MDP) is defined
by the tuple 〈S,A, T, R, γ〉, where S = {s1, . . . , s|S|} and
A = {a1, . . . , a|A|} are the finite sets of states and actions,
T the transition probability function specifying P (s′ | s, a),
R(s, a) the immediate reward function, and γ ∈ [0, 1] the
discount factor of the problem.

Factored multiagent MDPs (FMMDPs) exploit structure
in state and action spaces by defining system state and
joint action with an assignment to state and action variables
X = {X1, . . . , Xn} and A = {A1, . . . , Ag}. Transition
and reward function decompose into a two-slice temporal
Bayesian network (2TBN) consisting of independent factors
(Boutilier, Dean, and Hanks 1999; Guestrin, Koller, and Parr
2002). The FMMDP transition function can be written as

P (x′ | x, a) =
∏
i

Ti(x
′
i | x[Pa(X ′

i)],a[Pa(X ′
i)]) (1)

where Pa(X ′
i) refers to the parent nodes of X ′

i in the 2TBN
and x[Pa(X ′

i)] to their value in state x. Collaborative FM-
MDPs assume that each agent i observes part of the global
reward and is associated with a local reward function, i.e.
R(x, a) =

∑g
i=1 Ri(x[Ci],a[Di]) given sets Ci and Di.

The solution to an (M)MDP is a (joint) policy that opti-
mizes the expected sum of discounted rewards that can be
achieved from any state. The optimal value function V∗(x)
represents the maximum expected return posssible from ev-
ery state (Puterman 2005). Such an (optimal) value function
can be used to extract an (optimal) policy by performing a
back-projection through the transition function to compute
the so-called Q-function:

∀x,a Q∗(x, a) = R(x, a)+γ
∑
x′

P (x′ | x,a)V∗(x), (2)

and subsequently acting greedy with respect to the Q-
function: the optimal action at x is a∗ = argmaxQ∗(x,a).

Control of Epidemics on Graphs

The susceptible-infected-susceptible (SIS) model has been
well-studied in the context of disease outbreak dynamics
(Bailey 1957) but only few approaches consider the complex
control problem of epidemic processes (Nowzari, Preciado,
and Pappas 2015; Ho et al. 2015).

SIS dynamics with homogeneous parameters are mod-
eled as an FMMDP as follows. We define the network as
a (directed or undirected) graph G = (V,E) with con-
trolled and uncontrolled vertices V = (Vc, Vu) and edge
set E ⊆ V × V . The state space S is spanned by state vari-
ables X1, . . . , Xn, one per associated vertex Vi, encoding
the health of that node. The action set A = {A1, . . . , A|Vc|}
factors similarly over the controlled vertices Vc in the graph
and denote an active modulation of the flow out of node

Vi ∈ Vc. Note that this model assumes binary state vari-
ables Xi = {0, 1} = {healthy, infected}, and actions Ai =
{0, 1} = {do not vaccinate, vaccinate} and that Au = {0}
for all uncontrolled nodes Vu.

The transition function factors on a per-node basis into
Ti(x

′
i | x[Pa(X ′

i)], ai) defined as:

Ti �
{
(1− ai)(1−

∏
j(1− βjixj)) if xi = 0

(1− ai) (1− δi) otherwise
(3)

distinguishing the two cases that Xi was infected at the pre-
vious time step (bottom) or not (top). Parameters βji and
δi are the known infection transmission probabilities from
node j to i, and node i’s recovery rate, respectively. The re-
ward function factors as R(x, a) = −λ1 ‖a‖1 − λ2 ‖x‖1
where the L1 norm records a cost λ2 per infected node and
an action cost λ1 per vaccination action at a controlled node.

Efficient Solution of Large FMMDPs

We build upon the work by Guestrin et al. (2003), who
present approximate solution methods for FMMDPs that are
particularly scalable in terms of the agent number. The ap-
proach represents the global Q-value function as the sum
of appropriately chosen smaller value function components,
each defined over a subset of state and action variables (re-
ferred to as factored linear value functions). To compute
a factored linear value function, they present an efficient
method to compactly represent the constraints in the approx-
imate linear programming (ALP) solution to MDPs.

Factored Value Functions Value factorization represents
the joint value function as a linear combination of locally-
scoped terms. In the case of factored linear value functions
given basis functions H = {h1, . . . , hk}, V can be written
as the linear combination V(x) = ∑k

j=1 wjhj(x) where hj

is defined over some subset of variables Chj ⊆ X (omitted
for clarity), and wj is the weight associated with basis hj .

Factored linear (state) value functions induce factored Q-
value functions if transitions and rewards are factored into
local terms. This is because the expectation over an individ-
ual basis functions (called a basis back-projection) can be
computed efficiently, avoiding the sum over exponentially
many successor states in Equation 2.
Definition 1 (Basis back-projection). Given a basis function
hj : C → R, defined over scope C ⊆ X, and a factored
2TBN transition model P (x′ | x, a) (see Equation 1), define
the basis back-projection of hj (Guestrin 2003):

gj(x, a) =
∑

x′ P (x′ | x, a)hj(x
′[C])

=
∑

c′ P (c′ | x[Pa(C)], a[Pa(C)])hj(c
′)

(4)
where Pa(C) �

⋃
Xi∈C Pa(Xi) denotes the union of respec-

tive parent (state and action) variables in the 2TBN.
Functions gj are thus again locally-scoped, defined pre-

cisely over the parent scope Pa(C) (omitted for clarity in
the remainder of the presentation). Basis back-projections
are used to compute a factored Q-value function:

Q(x, a) =
∑

r Rr(x[Cr], a[Dr]) + γ
∑

j wjgj(x,a)
(5)
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The factor graph spanned by a factored Q-value function
is in this context often referred to as a coordination graph
(CG).

VE The variable elimination (VE) algorithm can be used
for computing the max over a set of locally-scoped functions
in a factor graph efficiently. Similarly to maximum a posteri-
ori (MAP) estimation in Bayesian networks, VE maximizes
over single variables at a time rather than enumerating all
possible joint configurations followed by picking the max-
imizing one (Koller and Friedman 2009). Variable elimina-
tion performs two operations, AUGMENT and REDUCE, for
every variable Xl to be eliminated. When considering the
maximization over the state space, AUGMENT corresponds
to the sum of functions that depend on Xl, and REDUCE
to the maximization over Xl in the result. The execution
time is exponential in the size of the largest intermediate
term formed which depends on the chosen elimination or-
der. While the problem of determining the optimal elimina-
tion order is NP-complete, effective heuristics for variable
ordering exist in practice (Koller and Friedman 2009).

ALP The ALP method for solving MDPs computes the
best approximation (in a weighted L1 norm sense) to the op-
timal value function in the space spanned by the basis func-
tions H (Puterman 2005). The ALP yields a solution in time
polynomial in the sizes of S andA but these are exponential
for MASs.

Guestrin (2003) introduces an efficient implementation of
the ALP for factored linear value functions that avoids ex-
ponentially many constraints in the ALP. It is based on the
insight that all (exponentially many) constraints in the ALP
can be reformulated as follows:
∀x, a V(x) ≥ R(x,a) + γ

∑
i wi gi(x, a)

∀x, a 0 ≥ R(x,a) +
∑

i wi[γgi(x, a)− hi(x)]
⇒ 0 ≥ maxx,a[

∑
r Rr(x[Cr], a[Dr]) +∑

i wi[γgi(x, a)− hi(x)]]
(6)

The reformulation replaces the exponential set of linear con-
straints with a single non-linear constraint (last row in Equa-
tion 6). Using a procedure similar to VE, this max constraint
can be implemented with a small set of linear constraints.

3 Anonymous Influence
At the core of the ALP solution above lies the assumption
that VE can be carried out efficiently in the factor graph
spanned by the local functions that make up the max con-
straint of Equation 6, i.e. that the scopes of all intermediate
terms during VE remain small. This assumption is often vio-
lated in many graphs of interest, e.g. in disease control where
nodes may possess large in- or out-degrees.

In this section we develop a novel approach to deal with
larger scope sizes when only the joint effects of sets of
variables—rather than their identity—suffices to compactly
describe the factors that appear in the max constraint and are
manipulated during VE. We introduce a novel representation
that is exponentially smaller than the equivalent full encod-
ing of intermediate terms and show how VE retains correct-
ness. We assume binary variables but the results carry over
to the discrete variable setting.

Mixed-Mode Functions

We define count aggregator functions to summarize the
“anonymous influence” of a set of variables. In the disease
propagation scenario for example, the number of active par-
ents uniquely defines the transition model Ti.

Definition 2 (Count Aggregator). Let Z =
{
Z1, . . . , Z|Z|

}
be a set of binary variables, Zi ∈ {0, 1}. The count aggrega-
tor (CA) #{Z} : Z1 × . . .×Z|Z| �→ {0, . . . , |Z|} is defined
as: #{Z}(z) �

∑|Z|
i=1 zi. Z is also referred to as the count

scope of CA #{Z}.
Hence, CAs simply summarize the number of variables

that appear ‘enabled’ in its domain. Conceptual similarities
with generalized (or ‘lifted’) counters in first-order inference
are discussed in Section 7. Functions that rely on CAs can
be represented compactly.

Definition 3 (Count Aggregator Function). A count aggre-
gator function (CAF), is a function f : Z → R that maps
Z to the reals by making use of a CA. That is, there exists a
function f : {0, . . . , |Z|} → R such that f is defined as

f(z) � [f ◦#{Z}] (z). (7)

To make clear f ’s use of a CA, we use the notation f(#(z)).

CAFs have a compact representation which is precisely
the function f. It is compact, since it can be represented using
|Z|+ 1 numbers and |Z|+ 1 2|Z|.

We now introduce so-called “mixed-mode” functions f
that depend both on CAs and on other variables X that are
not part of any CA:

Definition 4 (Mixed-Mode Function). A function f : X ×
Z → R is called a mixed-mode function (MMF), de-
noted f(x,#(z)), if and only if ∀x ∃fX s.t. f(x, z) =
fX(#(z)). That is, for each instantiation x, there exists a
CAF fX(#(z)). We refer to Xi ∈ X as proper variables
and Zj ∈ Z as count variables in the scope of f .

Consider Ti(Xi | Pa(Xi)) in the (binary) disease propa-
gation graph. Then Ti(Xi | #{Pa(Xi)}) is a mixed-mode
function that induces two CAFs, one for xi and one for x̄i.

Mixed-mode functions generalize simply to those with
multiple CAs, f : X × Z1 × . . . × ZN → R, denoted
f(x,#1(z1), . . . ,#N (zN )). The following cases can occur:

1) MMFs with fully disjoint scopes have mutually dis-
joint proper and count variable sets (i.e., X ∩ Zi = ∅ ∀i =
1, . . . , N and Zi ∩ Zj = ∅ ∀i �= j); 2) MMFs have shared
proper and count variables (if and only if ∃i s.t. X ∩ Zi �=
∅); 3) MMFs have non-disjoint counter scopes (if and only
if ∃(i, j), i �= j s.t. Zi ∩ Zj �= ∅).

Summarizing, it is possible to represent certain anony-
mous influences using mixed-mode functions. In the follow-
ing we will show that these can be compactly represented,
which subsequently forms the basis for a more efficient VE
algorithm.

Compact Representation of MMFs

Just as CAFs, a mixed-mode function f has a compact rep-
resentation f : X × {0, ..., |Z|} → R where f(x,#(z)) �
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f(x,
∑|Z|

i=1 zi). A mixed-mode function f can thus be de-
scribed with (at most) K |X|(|Z|+1) parameters where K is
an upper bound on |Dom(Xi)|.

As mentioned before, we also consider MMFs with
multiple CAs. In particular, let us examine a function
f(#1(a, b),#2(b, c)) with two CAs that have a overlap-
ping scope since both depend on shared variable B. In or-
der to consistently deal with overlaps in the count scope,
previous work has considered so-called shattered repre-
sentations (Taghipour et al. 2013; Milch et al. 2008). A
MMF with overlapping count scopes f(#1(a, b),#2(b, c))
can always be transformed into an equivalent one with-
out overlapping count scopes f ′(#′

1(a),#
′
2(c),#(b)) �

f(#1(a, b),#2(b, c)).
We can now distinguish between different representations

of these MMFs with overlapping count scopes.
Definition 5 (Shattered Representation). The shattered rep-
resentation of f is the representation of f ′, i.e.

f(#1(a, b),#2(b, c)) � f(k1, k2, k3)

where k1 := a, k2 := c, k3 := b and f : {0, 1} × {0, 1} ×
{0, 1} → R.

We introduce a novel redundant representation of f . Re-
dundant representations retain compactness with many over-
lapping count scopes. This becomes relevant when we intro-
duce operations on MMFs (e.g., for variable elimination).
Definition 6 (Redundant Representation). The redundant
representation of MMF f(#1(a, b),#2(b, c)) is a function
f : {0, 1, 2} × {0, 1, 2} → R:

f(#1(a, b),#2(b, c)) � f(k1, k2)

where k1 := a+ b and k2 := b+ c.
If we choose to store MMFs with redundant representa-

tions, we may introduce incompatible assignments to vari-
ables that appear in overlapping count scopes. The following
definition formalizes this observation.
Definition 7 (Consistent Count Combination). Let
#1{A,B},#2{B,C} be two CAs with overlapping
count scopes. We say that a pair (k1, k2) is a consis-
tent count combination (consistent CC) for #1,#2 if
and only if there exists an assignment (a, b, c) such that
(k1, k2) = (#1(a, b),#2(b, c)). If no such (a, b, c) exists,
then (k1, k2) is called an inconsistent CC. Further, let
f(#1,#2) be a MMF. We say that a consistent CC (k1, k2)
for #1,#2 is a consistent entry f(k1, k2) of the representa-
tion of f . Similarly, if (k1, k2) is an inconsistent CC, then
f(k1, k2) is referred to as an inconsistent entry.

Inconsistent entries can only occur in redundant repre-
sentations since the shattered representation of f is defined
for f ′ without overlapping count scopes. Even though re-
dundant representations appear to have a disadvantage since
they contain incostent entries, they also have a big advantage
since they can be exponentially more compact than shattered
ones:
Lemma 1. Consider MMF f : X × Z1 × . . . × ZN →
R, N ≥ 2. Let Z =

⋃N
i=1 Zi. In the worst case, a partition

of Z requires p = min{2N − 1, |Z|} splits into mutually
disjoint sets and the shattered representation of f is of size
O(Sp) where S is an upper bound on the resulting set sizes.
The same function has a redundant representation of size
O(KN ) where K is an upper bound on |Zi|+ 1.

Consider, e.g., an MMF f(#1{A,B,C,D,E},
#2{A,B,X, Y, Z}, #3{A,C,W,X}) with overlap-
ping count scopes. The redundant representation of f
requires 6 · 6 · 5 = 180 parameters but contains inconsistent
entries. The shattered representation defined using equiv-
alent MMF f ′(#{A},#{B}, #{C},#{D,E},#{X},
#{W},#{Y, Z}) requires 288 parameters.

We now show how mixed-mode functions with compact
redundant representations can be exploited during variable
elimination and during constraint generation in the ALP.

4 Efficient Variable Elimination

Here we describe how AUGMENT and REDUCE are effi-
ciently implemented to work directly on the redundant rep-
resentations of MMFs. Particular care has to be taken to en-
sure correctness since we observed previously that reduced
representations contain inconsistent entries.

AUGMENT takes a set of MMFs and adds them together.
We implement this operation directly in the redundant rep-
resentation. AUGMENT(g, h) returns a function f that is de-
fined as: ∀x, y, k1 ∈ {0, . . . , N1}, k2 ∈ {0, . . . , N2}

f(x, y, k1, k2) = g(x, k1) + h(y, k2). (8)

The implementation simply loops over all x, y, k1, k2 to
compute all entries (consistent or inconsistent).

REDUCE maxes out a variable. Here we show how this
operation is implemented for MMFs directly using the re-
dundant representation. Let g(x, y, z,#1(a, b, z),#2(b, c))
be a MMF with redundant representation g(x, y, z, k1, k2).
We discriminate different cases:

1) Maxing out a proper variable: If we max out x,
f(y, z, k1, k2) � max {g(0, y, z, k1, k2), g(1, y, z, k1, k2)}

2) Maxing out a non-shared count variable: If we
max out a, f(x, y, z, k1, k2) � max{g(x, y, z, k1, k2),
g(x, y, z, k1 + 1, k2)}. The resulting function has signature
f(x, y, z,#′

1(b, z),#
′
2(b, c)). The values of x, y, z, b, c are

fixed (by the l.h.s. of the definition) in such a way that
#′

1(b, z) = k1 and #′
2(b, c) = k2. The maximization that

we perform over a ∈ {0, 1} therefore has the ability to in-
crease k1 by 1 or not, which leads to the above maximization
in the redundant representation.

3) Maxing out a shared count variable: If we max out
b, f(x, y, z, k1, k2) � max{g(x, y, z, k1, k2), g(x, y, z, k1 +
1, k2 + 1)} This is similar to the previous case, but since b
occurs in both #′

1 and #′
2, it may either increase both k1 and

k2, or neither.
4) Maxing out a shared proper/count variable: In case

we max out z, f(x, y, k1, k2) � max{g(x, y, 0, k1, k2),
g(x, y, 1, k1 + 1, k2)}. Since z occurs as both proper and
count variable (in #1), a choice of z = 1 also increments k1
by 1 while z = 0 does not.

We refer to VE with the elementary operations defined as
above as redundant representation VE (RR-VE).
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Theorem 1. RR-VE is correct, i.e., it arrives at the identi-
cal solution as VE using the full tabular representation of
intermediate functions.

Sketch of proof. The full proof is given in the extended
version of the paper (Robbel, Oliehoek, and Kochenderfer
2015). Intuitively, the modified AUGMENT and REDUCE op-
erations ensure that, for consistent entries, the factors they
produce are correct, since (for those consistent entries) they
will only query consistent entries of the input factors to pro-
duce the result. As such, we can show that VE will never
access inconsistent entries. Since there are no other modifi-
cations to the regular VE algorithm, RR-VE is correct.

5 Exploiting Anonymity in the ALP
The results for RR-VE can be exploited in the ALP so-
lution method that was introduced in Section 2. The non-
linear max constraint in Equation 6 is defined over func-
tions ci � γgi − hi ∀hi ∈ H and reward factors Rj , j =
1, . . . , r, which are all locally-scoped and together span a
factor graph. As outlined previously, a VE procedure over
this factor graph can translate the non-linear constraint into
a set of linear constraints that is reduced compared to the
standard formulation of the ALP.

The key insight of this section is that for a class of factored
(M)MDPs defined with count aggregator functions in the
2TBN the same intuition about reduced representations as
in the previous section applies to implement the non-linear
max constraint even more compactly.

We first establish that basis functions hi ∈ H , when back-
projected through the 2TBN (which now includes mixed-
mode functions), retain correct basis back-projections gi
with reduced representations. The basis back-projection is
computed with summation and product operations only
(Equation 4). We have previously shown that summation
(AUGMENT) of mixed-mode functions is correct for its con-
sistent entries. The same result holds for multiplication when
replacing the sum operation with a multiplication. It follows
that gi (and ci) share the compact reduced representations
derived in Section 3 and that they are correctly defined on
their consistent entries.

The exact implementation of the max constraint in Equa-
tion 6 with RR-VE proceeds as for the regular VE case. All
correctness results for RR-VE apply during the computation
of the constraints in the RR-ALP. The number of variables
and constraints is exponential only in the size of the repre-
sentation of the largest MMF formed during RR-VE. Fur-
ther, the representation with the smaller set of constraints is
exact and yields the identical value function solution as the
ALP that does not exploit anonymous influence.

6 Experimental Evaluation
We evaluate our methods on undirected disease propaga-
tion graphs with 30 and 50 nodes. For the first round of
experiments, we contrast runtimes of the normal VE/ALP
method (where possible) with those that exploit “anonymous
influence”. We then consider a disease control problem with
25 agents in a densely connected 50-node graph that can-
not be solved with the normal ALP. Problems of this size

Figure 1: Sample of three random graphs in the test set with
30 nodes and a maximum out-degree of 10. Rightmost: test
graph with increased out-degree sampled from [1, 20].

|C1|, VE, ALP |CRR|, RR-VE,-ALP
|CRR|
|C1|

RR-VE
VE

RR-ALP
ALP

131475, 6.2s, 1085.8s 94023, 1.5s, 25.37s 0.72 0.24 0.02
24595, 1.1s, 3.59s 12515, 0.17s, 1.2s 0.51 0.15 0.33
55145, 3.5s, 30.43s 27309, 0.4s, 8.63s 0.5 0.11 0.28
74735, 3.0s, 115.83s 41711, 0.69s, 12.49s 0.56 0.23 0.11
71067, 4.16s, 57.1s 23619, 0.36s, 8.86s 0.33 0.08 0.16
24615, 1.6s, 1.15s 4539, 0.07s, 0.35s 0.18 0.04 0.30
63307, 2.2s, 141.44s 34523, 0.39s, 4.03s 0.55 0.18 0.03
57113, 0.91s, 123.16s 40497, 0.49s, 2.68s 0.71 0.54 0.02
28755, 0.54s, 17.16 24819, 0.36s, 3.86s 0.86 0.67 0.22
100465, 2.47s, 284.75s 38229, 0.62s, 36.76s 0.38 0.25 0.13

Average relative size: 0.53 0.25 0.16

Table 1: Constraint set sizes, VE and ALP solution times
for normal (column 1) and methods exploiting anonymous
influence (column 2). The last three columns show their rel-
ative magnitudes. Maximal reductions are shown in bold.

(|S| = 250, |A| = 225) are prohibitively large for exact so-
lution methods to apply and are commonly solved heuristi-
cally. To assess quality of the RR-ALP solution, we evaluate
its policy performance against a vaccination heuristic.

In all experiments, we use indicator functions IXi
, IX̄i

on each state variable (covering the two valid instantiations
{healthy, infected}) as the basis set H in the (RR-)ALP. We
use identical transmission and node recovery rates through-
out the graph, β = 0.6, δ = 0.3. Action costs are set to
λ1 = 1 and infection costs to λ2 = 50. All experiments
use the identical greedy elimination heuristic for both VE
and RR-VE, which minimizes the scope size of intermedi-
ate terms at the next iteration.

Runtime Comparison We use graph-tool (Peixoto 2014)
to generate 10 random graphs with an out-degree k sampled
from P (k) ∝ 1/k, k ∈ [1, 10]. Out-degrees per node thus
vary in [1, 10]; the mean out-degree in the graphs in the test
set ranges from 2.8 (graph 1) to 4.2 (graph 10). Figure 1
illustrates a subset of the resulting networks.

The runtime results comparing the VE/ALP method to
RR-VE/RR-ALP are summarized in Table 1. Shown are the
number of constraints for each method, the wall-clock times
for VE to generate the constraints, and the ALP runtimes to
solve the value function after the constraints have been com-
puted. The last three columns show the relative magnitude
of each measure, i.e. the gains in efficiency of the meth-
ods exploiting anonymous influence in each of the 10 ran-
dom graphs. On average, the RR-ALP solution time reduces
to 16% of the original ALP runtime while maintaining the
identical solution. Reductions by a factor of 50 are observed
for two of the random graphs in the set (corresponding to the
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Figure 2: Statistics of the mean returns of the three policies
for the disease control problems. Mean returns are computed
over 50 randomly sampled starting states after 200 steps of
policy simulation (each mean return is computed over 50
independent runs from a given s0). Visualized in the box
plots are median, interquartile range (IQR), and ±1.5 ·IQR
(upper and lower whiskers) of the mean returns.

highlighted entries in the last column).
We performed a final experiment with a graph with a

larger out-degree (k sampled from the interval [1, 20], shown
at the right of Figure 1). The disease propagation problem
over this graph cannot be solved with the normal VE/ALP
because of exponential blow-up of intermediate terms. The
version exploiting anonymous influence completes success-
fully, performing constraint computation using RR-VE in
124.7s and generating |CRR| = 5816731 constraints.

Policy Performance In this section we show results of
policy simulation for three distinct policies in the disease
control task over two random graphs (30 nodes with 15
agents and 50 nodes with 25 agents, both with a maximum
out-degree per node set to 15 neighbors). The disease con-
trol problem over both graphs is infeasible for the regular
VE/ALP due to the exponential increase of intermediate fac-
tors during VE. We compare the solution of our RR-ALP
method to a random policy and a heuristic policy that applies
a vaccination action at Xi if Xi is infected in the current
state and is controlled. The heuristic is reactive and referred
to as the “copystate” heuristic in our evaluation. It serves
as our main comparison metric for these large and densely
connected graphs where optimal solutions are not available.

To evaluate the policy performance, we compute the mean
returns from 50 randomly sampled starting states s0 after
200 steps of policy simulation (each mean return is com-
puted over 50 independent runs from a given s0). Figure 2
shows statistics of these mean returns and provides an indi-
cation of the sensitivity to the initial conditions in the disease
graph.

The “copystate” heuristic works reasonably well in the
30-node/15-agent problem (left-hand side of Figure 2) but
is consistently outperformed by the RR-ALP solution which
can administer anticipatory vaccinations. This effect actu-
ally becomes more pronounced with fewer agents: we exper-
imented with 6 agents in the identical graph and the results
(not shown) indicate that the “copystate” heuristic performs
significantly worse than the random policy. This is presum-

ably because blocking out disease paths early becomes more
important with fewer agents since the lack of agents in other
regions of the graph cannot make up for omissions later.

In the 50-node/25-agent scenario the reactive “copystate”
heuristic does not provide a statistically significant improve-
ment over a random policy (right-hand side of Figure 2). It
is outperformed by the RR-ALP solution by roughly a factor
of 3 in our experiments. In the same figure it is also apparent
that the performance of the heuristic depends heavily on the
initial state of the disease graph.

7 Related Work
Many recent algorithms tackle domains with large (struc-
tured) state spaces. For exact planning in factored domains,
SPUDD exploits a decision diagram-based representation
(Hoey et al. 1999). Monte Carlo tree search (MCTS) has
been a popular online approximate planning method to scale
to large domains (Silver, Sutton, and Müller 2008). These
methods do not apply to exponential action spaces without
further approximations. Ho et al. (2015), for example, eval-
uated MCTS with three agents for a targeted version of the
disease control problem. Recent variants that exploit factor-
ization (Amato and Oliehoek 2015) may be applicable.

Our work is based on earlier contributions of Guestrin
(2003) on exploiting factored value functions to scale to
large factored action spaces. Similar assumptions can be ex-
ploited by inference-based approaches to planning which
have been introduced for MASs where policies are repre-
sented as finite state controllers (Kumar, Zilberstein, and
Toussaint 2011). There are no assumptions about the pol-
icy in our approach. The variational framework of Cheng et
al. (2013) uses belief propagation (BP) and is exponential
in the cluster size of the graph. A more detailed comparison
with (approximate) loopy BP is future work.

Generalized counts in first-order (FO) models eliminate
indistiguishable variables in the same predicate in a single
operation (Sanner and Boutilier 2009; Milch et al. 2008).
Our contributions are distinct from FO methods. Anony-
mous influence applies in propositional models and to node
sets that are not necessarily indistiguishable in the problem.
We also show that shattering into disjoint counter scopes is
not required during VE and show how this results in effi-
ciency gains during VE.

There is a conceptual link to approaches that exploit
anonymity or influence-based abstraction in decentralized or
partially-observable frameworks. Oliehoek, Witwicki, and
Kaelbling (2012) define influence-based policy abstraction
for factored Dec-POMDPs, which formalizes how differ-
ent policies of other agents may lead to the same influ-
ence. Algorithms for search in this influence space have
been presented for the subclass of TD-POMDPs (Witwicki,
Oliehoek, and Kaelbling 2012). Their use in our prob-
lem, however, would require imposing decentralization con-
straints (i.e., restrictions on what state factors agents can
base their actions on) for MMDPs. We provide a more scal-
able approach for MMDPs by introducing a practical way of
dealing with aggregation operators.

Also closely related is the work by Varakantham,
Adulyasak, and Jaillet (2014) on exploiting agent anonymity
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in transitions and rewards in a subclass of Dec-MDPs
with specific algorithms to solve them. Our definition of
anonymity extends to both action and state variables; our
results on compact, redundant representation of anonymous
influence further also applies outside of planning (e.g., for
efficient variable elimination).

8 Conclusions and Future Work

This paper introduces the concept of “anonymous influence”
in large factored multiagent MDPs and shows how it can be
exploited to scale variable elimination and approximate lin-
ear programming beyond what has been previously solvable.
The key idea is that both representational and computational
benefits follow from reasoning about influence of variable
sets rather than variable identity in the factor graph. These
results hold for both single and multiagent factored MDPs
and are exact reductions, yielding the identical result to the
normal VE/ALP, while greatly extending the class of graphs
that can be solved. Potential future directions include ap-
proximate methods (such as loopy BP) in the factor graph
to scale the ALP to even larger problems and to support in-
creased basis function coverage in more complex graphs.
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