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Abstract

We consider an autonomous agent operating in a stochastic,
partially-observable, multiagent environment, that explicitly
models the other agents as probabilistic deterministic finite-
state controllers (PDFCs) in order to predict their actions. We
assume that such models are not given to the agent, but in-
stead must be learned from (possibly imperfect) observations
of the other agents’ behavior. The agent maintains a belief
over the other agents’ models, that is updated via Bayesian
inference. To represent this belief we place a flexible stick-
breaking distribution over PDFCs, that allows the posterior
to concentrate around controllers whose size is not bounded
and scales with the complexity of the observed data. Since
this Bayesian inference task is not analytically tractable, we
devise a Markov chain Monte Carlo algorithm to approximate
the posterior distribution. The agent then embeds the result of
this inference into its own decision making process using the
interactive POMDP framework. We show that our learning
algorithm can learn agent models that are behaviorally accu-
rate for problems of varying complexity, and that the agent’s
performance increases as a result.

1 Introduction

An autonomous, rational agent operating in a stochastic, par-
tially observable environment selects actions that maximize
some objective function, usually the expected sum of future
rewards, as in the case of partially observable Markov de-
cision processes (POMDPs) (Kaelbling, Littman, and Cas-
sandra 1998). In multiagent settings, an additional source of
uncertainty is represented by the actions of other agents, that
affect the state of the environment. In this paper, we con-
sider an agent that maintains explicit models of other agents
in order to predict their actions. The interactive POMDP (I-
POMDP) framework (Gmytrasiewicz and Doshi 2005) pro-
poses that the agent maintains a belief over intentional mod-
els of other agents, that recursively describe their I-POMDP
structure, including nested beliefs and preferences. An al-
ternative we pursue in this paper is to use subintentional
models, intended as statistical predictive models of the other
agents’ behavior, that do not explicitly consider their pref-
erences and beliefs. Specifically, we consider the class of
probabilistic deterministic finite-state controllers (PDFCs),
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in which the transitions between nodes are deterministic and
actions are generated stochastically in each node.

In the remainder of this paper we assume that there are
two agents: the protagonist agent i and the modeled agent
j. We assume that agent i does not initially know the model
of agent j. Instead, the agent maintains a probability dis-
tribution over all possible PDFCs of j. Upon receiving ob-
servations from the environment, this belief is updated via
Bayesian inference to yield a posterior distribution that con-
centrates around likely models, to enable accurate predic-
tion of j’s actions. We note that agent i’s observations do
not, in general, expose j’s behavior perfectly, but are instead
only statistically correlated to j’s actions, based on the ef-
fect that these have on the environment and how agent i per-
ceives it. In this paper, we describe a two-phase approach:
in the first, agent i gathers observations and infers a poste-
rior distribution over j’s models, using a batch algorithm; in
the second, these models are embedded in i’s own decision
making process. This allows us to examine the properties of
learning and planning in isolation. While we view an online
approach that interleaves learning and planning as more re-
alistic in many situations, we leave the exploration of this
scenario for future work.

Of primary importance to our work is selecting a suit-
able prior distribution over PDFCs. Since the true size of
agent j’s controller is not known, we place a stick-breaking
prior over the PDFC’s nodes, that allows the posterior dis-
tribution to concentrate around PDFCs whose size scales
with the complexity of the observed data. This eliminates
the problem of having to choose a fixed model size. Since
the Bayesian inference problem at hand is too complex to
be amenable to conjugate analysis, we employ an ad-hoc
MCMC algorithm to approximate the posterior distribution
over the set of j’s PDFCs. This generates a finite ensemble
of possible models of j that are embedded in agent i’s own
decision making process by extending the state space as in
I-POMDPs.

The choice to explicitly model the other agent is moti-
vated by the assumption that agent i is aware of the other
agent’s presence, and that agent j implements an agent func-
tion that maps its own observation history onto actions.
Moreover, agent i knows the environment’s dynamics in re-
sponse to the two agents’ combined actions, and its own re-
ward model. Without these assumptions, modeling the other
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agent explicitly would be ineffective, whereas POMDP rein-
forcement learning techniques, such as utile suffix memory
(Mccallum 1996), Bayes-adaptive POMDPs (Ross, Draa,
and Pineau 2007), infinite generalized policy representation
(Liu, Liao, and Carin 2011), infinite POMDPs (Doshi-Velez
et al. 2013), and others would be more suitable to solve the
problem, by implicitly treating the effect of the other agent’s
actions as noise and fold it into the environment’s transition
function. Clearly, learning the true model of another agent
exactly with probability one is only possible with an infinite
amount of observations, and in practice we may need a very
large observation sequence to converge to the true model, as
we see in our results. However, we show that our method
is able to pick up regularities in the modeled agent’s behav-
ior even from limited observations, and the prior distribution
naturally compensates for data scarcity in the Bayesian way.
This allows the agent’s performance to greatly improve even
when the true model is not actually discovered.

In game theory, deterministic finite automata (DFA) have
been employed to represent strategies with bounded ratio-
nality (Rubinstein 1998) and assuming the opponent’s ac-
tions are observable. (Carmel and Markovitch 1996) pro-
vides a heuristic for the on-line inference of a consistent
DFA, which does not guarantee any bound on the complex-
ity of the learned model. However, we do not use here the
classical game-theoretic solution concept of a Nash equi-
librium, building on the growing body of work that uses
the decision-theoretic solution concept (Oliehoek and Am-
ato 2014) and behavioral game theory (Wright and Leyton-
Brown 2012). Recent work (Conroy et al. 2015) describes a
two-phase approach to learning and planning for interactive
dynamic influence diagrams (Doshi, Zeng, and Chen 2009),
assuming fully observable behavior and limited horizon.

The rest of this paper is organized as follows. Section 2
provides background on POMDPs and PDFCs, and Section
3 introduces the prior over PDFCs. We describe the learn-
ing algorithm in Section 4 and the planning framework in
Section 5. Section 6 provides our results while Section 7
concludes the paper and provides hints for future work.

2 Background: POMDPs and PDFCs
A Partially observable Markov decision process (POMDP)
(Kaelbling, Littman, and Cassandra 1998) is a general model
for planning and acting in partially observable, stochastic
domains. It is a tuple P = (S,A,Ω, T, O,R), where: S
is the set of possible states of the world; A is the set of
agent’s actions; Ω is the set of observations the agent can
receive; T : S × A → Δ(S) is the state transition func-
tion; O : A × S → Δ(Ω) is the observation function;
R : S × A → R is the reward function. Frequently, an
optimal POMDP policy can be represented as a determin-
istic finite state controller. Some solution methods com-
pute POMDP policies by performing a search directly in
the space of FSCs (Hansen 1998), or search in the more
general space of stochastic FSCs (Meuleau et al. 1999;
Poupart and Boutilier 2003).

We use a version of FSCs called probabilistic determinis-
tic finite controllers (PDFC) to model other agent(s) policies.
In PDFCs the transitions between the memory states (nodes)

are deterministic, but the actions are chosen stochastically in
each node of the controller. The actions are stochastic in or-
der to enable more efficient search through the space of all
models. Formally, a PDFC is a tuple c = (Ω, A,Q, τ, θ, q0),
where: Ω is the set of observations of the agent; A is the set
of actions the agent can execute; Q is the set of nodes, the
internal states of the agent; τ : Q × A × Ω → Q is the de-
terministic node transition function; θ : Q → Δ(A) is the
probabilistic emission function; q0 is the initial node.

3 A Prior for PDFCs

In this paper, we propose a Bayesian methodology to learn
over the class of possible PDFCs Cj , given an observed
trajectory h1:T that provides information about agent j’s
behavior. We want to compute the posterior distribution
p(cj |h1:T ) ∝ p(h1:T |cj) p(cj). Crucial to this task is pro-
viding a suitable prior distribution p(cj) over PDFCs; we
do not wish to bound, a priori, the number of nodes of j’s
PDFC. Since each node k in a PDFC of unbounded size is
associated to a real-valued parameter θk, Cj is an infinite-
dimensional sample space. Bayesian nonparametric (BNP)
techniques have increasingly been used in recent years to de-
sign priors over infinite-dimensional spaces, such as the case
of Dirichlet process mixture models (DPMMs) and varia-
tions thereof (Hjort et al. 2010). More similarly to our prob-
lem, nonparametric priors have been proposed for proba-
bilistic deterministic finite automata (PDFA) (Pfau, Bartlett,
and Wood 2010) and Dec-POMDP controllers (Liu et al.
2015).

In the following, we describe the prior distribution that
we adopt. For each starting node k = 1..∞, action j =
1..|A|, and observation h = 1..|Ωj |, the destination node
is drawn from a discrete infinite probability vector π, i.e.
τkjh ∼ π. This vector is in turn distributed according to
a stick-breaking process (Sethuraman 1994) with parame-
ter α, which corresponds to repeatedly breaking the remain-
ing part of a stick of initial length 1, each time drawing
the breaking point from Beta(1, α) scaled over such in-
terval. Following the standard convention, we write this as
π ∼ GEM(α). For each node k = 1..∞, the corresponding
emission distribution is drawn from a symmetric Dirichlet
distribution θk ∼ Dir

(
λ
|A| , . . . ,

λ
|A|

)
.

Strictly speaking, this setup describes a distribution over
PDFCs with infinite nodes, and not an unbounded finite
number of nodes. However, we are interested only in the fi-
nite “connected component” containing of the nodes that are
reachable from the initial node, ignoring the infinite subset
of nodes that are not connected. It is useful to determine an-
alytically the probability over the effective number of nodes
K induced by our prior distribution. It can be shown that:

p(K|α) = αK(KZ)!

α(KZ+1)

(K−1)Z∑
l=K−1

q̄(K, l)

l!
, (1)

where α(KZ+1) indicates the rising factorial, Z = |A||Ω|,
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Figure 1: Left: Probability of number of nodes K for differ-
ent values of α. Right: Bayesian model for PDFC learning.

and q̄(K,L) is given by the recurrence relation

q̄(K, l+1) = l q̄(K, l)+

{
q̄(K − 1, l) if l < (K − 2)Z

0 o.w.
,

(2)
starting with q̄(K,K) = 1. Figure 1-left shows the distri-
bution of K for various values of α, assuming |A| = 3 and
|Ω| = 2.

This type of stick-breaking prior over PDFCs has some
useful properties that simplify the inference process; in par-
ticular, the Chinese restaurant process (CRP) mechanism
still holds and is used within the MCMC sampler described
in the next section. Nonetheless, other similar priors can
be considered, such as ones based on the Pitman-Yor pro-
cess, which is a slight generalization of the one presented
here, and other forms of two-parameters stick-breaking pri-
ors (Paisley and Carin 2009). Moreover, some classes of
parametric prior distributions could be adapted to PDFCs,
such as the hierarchical distribution described in (Green and
Richardson 2001). Although these latter traditionally require
more convoluted inference based on reversible jump Markov
chain Monte Carlo methods, recent work (Miller and Harri-
son 2015) has shown promising results in deriving simpler
inferential methods. We leave the exploration of such prior
distributions for future work.

4 Inference

The Bayesian network in Figure 1-right depicts the learning
scenario graphically. In general, we may not be able to ob-
serve the trajectory of observations and actions (ωj

1:T , a1:T )
of agent j, and instead just receive our own sequence of
observations from the environment ωi

1:T . The sequences of
world states s1:T , actions a1:T , and j’s observations ωj

1:T
are related to the received sequence of observations via
the world’s transition and both agent’s observation func-
tions, which are here assumed to be known. We hence
need to infer the posterior distribution p(τ, θ|ωi

1:T ) ∝
p(ωi

1:T |τ, θ) p(τ, θ). If agent i is not a passive observer, its
actions might also influence the environment’s state. They
are not considered here so not to clutter the presentation, but
their integration is straightforward.

Analytical computation of this posterior distribution is not
tractable. The inference mechanism that we propose is a
MCMC algorithm inspired by previous research on DPMM
inference. The state of the Markov chain is represented by

Algorithm 1 LearnPDFC(ωi
1:T ,M,R, S,Niter)

1: for n = 1..Niter do
2: τ ← incremental-move(τ, α, λ, a1:T , ω

j
1:T ,M)

3: if mod (n,R) = 0 then

4: τ ← split-merge(τ, α, λ, a1:T , ω
j
1:T , S)

5: end if
6: (a1:T , s1:T , ω

j
1:T ) ← sample-seq(τ, λ, ωi

1:T )

7: (α, λ) ← sample-hyperpars(τ, α, λ, a1:T , ω
j
1:T )

8: end for

the tuple (τ, s1:T , a1:T , ω
j
1:T )

1. In order to sample the next
state of the Markov chain, we use a Gibbs sampler that con-
siders individual transitions τkgh. We call these incremen-
tal moves, that change at most one PDFC transition at a
time. Incremental moves alone are sometimes insufficient to
quickly converge to the true mode of the posterior probabil-
ity, since this might require passing through low-probability
intermediate regions of the sample space (Jain and Neal
2004). For this reason, we implement split-merge moves,
that split a whole node or collapse two nodes in a single step,
thus enabling a more effective exploration of the sample
space. Split-merge moves are computationally more expen-
sive than incremental moves, therefore they are applied only
every Rth iteration, where R is a parameter of the MCMC
algorithm. At each iteration, the sequences s1:T , a1:T , ω

j
1:T

and the hyperparameters α and λ are also resampled. Algo-
rithm 1 captures the overall structure of the MCMC sampler,
and its operations are described in the following.
Incremental Moves. In order to perform an incremen-
tal Gibbs move, we first sample a single transition source
(k, g, h) uniformly at random out of the K|A||Ω| transitions
of the PDFC in the current state, where K is the current
number of PDFC nodes. We then proceed to sample the des-
tination of this transition from the probability distribution:

p(τkgh|α, τ−(kgh), ω
j
1:T , a1:T )

∝ p(τkgh|α, τ−(kgh)) p(a1:T |τ, ωj
1:T ),

(3)

where τ−(kgh) denotes all current values of τ except the one
being sampled. The first term of the RHS side of Equation 3
is the conditional prior distribution, given by:

p(τkgh = i|α, v) ∝ vi for existing node i

p(τkgh = ī|α, v) ∝ α for new node ī,
(4)

where vi is the number of transitions in τ−(kgh) that point
to node i. This formula implements the so-called Chinese
restaurant process (CRP) rule, that follows strictly from the
stick-breaking prior described in Section 3.

The second term of the RHS is the likelihood that the new
assignment awards to the action sequence a1:T , given j’s
observation sequence ωj

1:T . For existing nodes, this can be
computed by considering that τ , a1:T , and ωj

1:T jointly deter-
mine the values of the node sequence q1:T . Let us introduce

1θ and π are not present because, as we will see, they can be
integrated out analytically. Moreover, the node sequence q1:T is
not part of the state since it depends deterministically on the other
variables.
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a count matrix d, where each element dkg represents how
many times action g is generated in node k in such sequence.
Given that each action is conditionally independent, we can
use the properties of the Dirichlet-multinomial model (Gel-
man et al. 2003), and marginalize over the parameters θk’s:

p(a1:T |τ, ωj
1:T ) =

K∏
k=1

[
Γ(λ)

Γ(dk· + λ)

|A|∏
g=1

Γ(dkg + λ/|A|)
Γ(λ/|A|)

]
,

(5)
where dk· =

∑|A|
g=1 dkg is the number of times k is visited.

Computing the likelihood term for the new node is more
complicated, since when a new node is considered, its own
outgoing transitions need to be evaluated. According to the
prior, such transitions can in turn point to some other new
node, and so on recursively. It is therefore unfeasible to sum
over all the countably infinite transition configurations that
stem out of the new node. This situation is akin to DPMMs
with non-conjugate priors, where the components’ parame-
ters cannot be integrated analytically. A simple solution to
this problem could be to use a Metropolis-Hastings (MH)
step instead of Gibbs to sample the new transition, simi-
lar to the algorithm proposed in (Pfau, Bartlett, and Wood
2010). In our case, however, such method leads to slow mix-
ing rates. A better solution is to adapt the auxiliary variables
algorithm of (Neal 2000). The key idea is to approximate the
integration over possible new nodes by sampling M can-
didate transition configurations for the new node from the
conditional prior distribution, which is obtained by recur-
sively sampling from the CRP until no new node is gener-
ated. Once the likelihood of these candidates is evaluated,
we sample the transition τkgh from Equation 3, distributing
α uniformly among the M candidates, so that the total prior
probability of generating a new node is still proportional to
α.

Splitting and Merging Nodes. This step starts by sam-
pling two transition sources uniformly at random. If these
transitions point to the same node, a split of such node is
proposed, otherwise a merge of the two destination nodes is
proposed. Once a split or merge is proposed, it is accepted
or rejected using the MH criterion. In order to propose high-
likelihood splits, the algorithm described in (Jain and Neal
2007) is adapted to our case. When splitting a node, its in-
coming transitions are re-directed towards either one of the
two newly created nodes using S iterations of a “restricted
Gibbs sampler” (S is a parameter of the algorithm,) that also
samples the new nodes’ outgoing transitions. This produces
a split that reflects to some extent the observed data instead
of being just randomly sampled, and hence has a higher
chance of being accepted. A merge is proposed using a sim-
ilar method, that collapses two nodes into one and samples
its outgoing transitions.

Sampling Sequences. The sequences a1:T , s1:T , and
ωj
1:T are sampled together and in block, given the PDFC in

the current state. For each timestep, the following formula

can be derived:

p(at−1, st, ω
j
t |st−1, qt−1, ω

i
t:T , τ)

∝ p(at−1|qt−1) p(st|st−1, at−1) p(ω
j
t |at−1, st)

× p(ωi
t|at−1, st) p(ω

i
t+1:T |st, qt = τqt−1at−1ω

j
t
).

(6)

All but the last term of the RHS are known from either the
current PDFC or the world’s dynamics. The last term can be
efficiently pre-computed as a backward probability message,
using the following recursion:

p(ωi
t+1:T |st, qt) = ξt(st, qt)

=
∑

at
p(at|qt)

∑
st+1

p(st+1|st, at) p(ωi
t+1|at, st+1)

×∑
ωj

t+1
p(ωj

t+1|at, st+1) ξt+1(st+1, τqtatω
j
t+1

),

(7)
starting at ξT (·, ·) = 1 and proceeding backward. Once ξ1:T
is computed, the new values of a1:T , s1:T , and ωj

1:T can be
sampled using Equation 6, moving forward from t = 1 to T .
Sampling Hyperparameters. In order to make the learn-
ing more flexible, we place a hierarchical exp(0.1) prior on
both the concentration parameter α and the Dirichlet dis-
tribution parameter λ. At each iteration the parameters are
resampled using MH with lognormal proposal distribution.
The likelihood terms in the MH acceptance ratios are com-
puted as in Equations 1 and 5, respectively for α and λ.

5 Interactive POMDPs

As in the interactive POMDP framework (Gmytrasiewicz
and Doshi 2005), we extend the definition of POMDP
to multiagent settings by defining a tuple P̄i =
(S̄i, A,Ωi, T, Oi, Ri), where A is the set of joint actions
a = (ai, aj) and the transition function T describes how the
world evolves as an effect of joint actions; similarly, Oi and
Ri specify how agent i receives observation and rewards,
depending on the state and the joint action performed. The
interactive state space S̄i = S × Mj is the cross prod-
uct of the physical state and the set of possible models of
agent j, each of which is a tuple mj = (hj , fj , Oj), where
fj : Hj → Δ(Aj) is an agent function mapping observation
histories to distributions over actions, and hj is a particu-
lar observation history. Here, we consider models where the
agent function is implemented by a PDFC cj ∈ Cj and the
history of observations is replaced by the internal state qj ,
i.e. mj = (qj , cj , Oj). Note that, with respect to the more
general I-POMDP case, we only consider a class of subin-
tentional models for other agents (i.e. their reward function
is not explicitly modeled.)

An interactive state is therefore a tuple s̄ = (s, qj , cj , Oj).
We assume that the PDFC of the other agent does not change
during execution, and its observation model of Oj is known.
Moreover, we consider a finite set of PDFCs Cj (it will be
the finite ensemble of models obtained during the learning
phase.) The belief update function returns the probability
of an interactive state when action ai is executed and ob-
servation ωi is received, given the previous belief over S̄i.
The formula can be derived as in I-POMDPs, by consider-
ing agent i’s prediction over j’s action, as follows:
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p(s̄′|b̄, ai, ωi)

= β
∑

s̄ : cj=c′j
b̄(s̄)

∑
aj

p(aj |qj , cj) Oi(ai, aj , s
′, ωi)

× T (s, ai, aj , s
′)
∑

ωj
Oj(ai, aj , s

′, ωj) p(q
′
j |cj , qj , aj , ωj),

(8)

where β is a normalization constant, and p(aj |qj , cj) and
p(q′j |qj , cj , ωj) are derived from the components θ and τ
of PDFC cj . The value function is defined similarly to
POMDPs, and its property of piece-wise linearity and con-
vexity carries over from the single-agent POMDP case.

Standard POMDP algorithms can be adapted to solve
subintentional I-POMDPs since there are no nested inten-
tional beliefs. However, the size of the interactive state space
can be very large, even for simple problems, since we are
considering a potentially large number of models of agent j.
In this paper, we use the Monte Carlo tree search method for
POMDPs (POMCP) described in (Silver and Veness 2010)
to solve the subintentional I-POMDPs. The running time of
the algorithm is virtually independent from the size of the
problem, since it makes use of a generator implementation
of the I-POMDP rather than a flat or factorized specification.

6 Experimental Results
We evaluate our approach on three problems of varying
complexity. The first is the multiagent Tiger Problem in-
troduced in (Gmytrasiewicz and Doshi 2005). The optimal
(true) controller used by agent j has 5 nodes. The second
problem is a variation of the 3x4 Maze problem described
in (Russell and Norvig 2009). Agent i is tasked with chasing
j (reward 1), while j receives a reward of 20 when reach-
ing the top-right corner and pays 1 when caught. Each move
costs the agents 0.04, and is successful with 0.8 probability.
Agent j receives warning signals when adjacent to i but is
unaware of its own position, except for a specific location
where it is revealed. The true controller used by j has 42
nodes. Agent i knows its own position and its observations
reveal j’s position with 0.8 accuracy. The third problem is
a 5 × 5 instance of the UAUV reconnaissance problem de-
scribed in (Zeng and Doshi 2012), with the difference that
observations are received by i at each timestep and reveal j’s
position with 0.9 accuracy. Agent j tries to reach a safehouse
(reward 1) while i is tasked with intercepting j (reward 1).
Each move costs 0.04 and is deterministic for both agents.
Agent j only perceives its location relative to the safehouse
when adjacent to it with accuracy 0.8. The true controller of
agent j has 36 nodes. For all problems, we assume that j
is unaware of i’s presence, except for the Maze in which j
models i as stationary at a given location. Our evaluation has
two purposes. First, we want to validate our PDFC learning
algorithm: if we can observe j’s behavior directly, are we
able to learn PDFCs that are close to the true one? Second,
we want evaluate agent’s i performance gain when learning
and planning under realistic observability conditions.

6.1 PDFC Learning

We evaluate how similar the learned PDFCs are to j’s true
controller, when i is able to observe perfectly j’s action and
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Figure 2: Weighted KL distance between the learned and the
true controllers (line) and number of nodes of learned PDFC
(bars). The fourth panel reports the timing results.

observation sequence (making line 6 in Algorithm 1 super-
fluous.) To derive a similarity measure, suppose that a hy-
pothetical agent operates according to the true controller cT ,
and another does so according to the learned controller cL.
Let us denote as ηqLqT the co-frequency, or probability of
the two agents being simultaneously in nodes qL and qT
of the respective controllers. We then define the weighted
Kullback-Leibler distance between the two controllers as:

wKL(cL, cT ) =
∑

(qL,qT )∈QL×QT
ηqLqT KL(θqL , θqT ),

(9)
which is a measure of similarity between the distributions
over actions sequences induced by the two controllers (de la
Higuera 2010), hence reflecting a behavioral similarity be-
tween PDFCs. For each of the considered problems and for
different lengths of observed history (Tlearn), we performed
10 learning trials. The following parameters were used for
the MCMC sampler: M = 50, R = 50, S = 2. In each trial,
the MCMC sampler was run for 5000 iterations, and the sec-
ond halves of the generated sample chains were subsampled
every 100 iterations, resulting in ensembles of 25 PDFCs
per trial. We computed the overall mean wKL across trials,
which is reported in Figure 2 along with the median size of
the learned PDFCs.

For the Tiger problem, we see that the wKL quickly ap-
proaches zero (Tlearn ≥ 64) and the number of nodes sta-
bilizes at 5, the size of the true controller. For the other
two problems, the wKL decreases more gradually, eventu-
ally converging towards zero. For the AUAV problem, the
number of nodes approaches the size of the true controller
(36 nodes) for long sequences. In the Maze problem, the
size of the PDFCs grows steadily but remains lower than
the true size (42 nodes), even when the wKL approaches
zero. While it seems that for this problem we may need an
impossibly long sequence to eventually learn the true num-
ber of nodes, the learned PDFCs are behaviorally very close
to j’s true controller. In order to shed some light over this
result, Figure 3 reports the fraction of time spent in each
node of the true controller, sorted in decreasing order. We
can see that the distribution decreases rapidly for the Maze

2534



0 10 20 30
0

0.1

0.2

Nodes

5x5 AUAV

0 10 20 30 40
0

0.1

0.2

Nodes

N
o
d
e
o
cc
u
p
a
n
cy

3x4 Maze

Figure 3: Node occupancy for Maze and AUAV problems.
The vertical line indicates the 99% percentile.

problem, with less than 1% of the time spent in more than
50% of the nodes. This means that most of the complex-
ity of the observed agent’s behavior can be captured with
fewer nodes. For the AUAV problem, the distribution de-
creases more gradually, meaning that more nodes are re-
quired to accurately describe the observed behavior. The re-
lation between node occupancy and convergence to the true
controller is important to establish theoretical properties or
learning, and will be explored more in depth in future work.

The bottom-right panel of Figure 2 reports the running
time of the MCMC algorithm2, which is at most linear in
the amount of data considered. Notice that the growth rate
for the AUAV problem is almost constant for large values of
Tlearn, while it increases for the Maze problem, indicating
higher dependence on the PDFC’s size than on Tlearn. This
is due to optimizations in the computation of the quantities
d used in Equation 5, which contains the only dependency
of running time on Tlearn (since line 6 is not executed here.)

6.2 Learning and Planning

In this section, we drop the assumption of perfect observ-
ability of agent j’s behavior. Even so, we show how PDFC
learning allows agent i to improve its performance. In our
setting, j is oblivious to i’s actions, and always operates ac-
cording to its true controller. We consider the reward col-
lected by agent i with respect to the amount of observa-
tions used for learning j’s models, and compare it against
the following baselines: (U) i models j’s actions uniformly
at random, p(aj) = |A|−1 ; (P) i predicts j’s action pro-
portionally to their long-term frequency; and (T) i knows
j’s true PDFC. For each problem and observation size, we
performed 20 learning and planning trials; for each trial, the
MCMC algorithm was run for 5000 iterations and 25 sam-
ple PDFCs were retained as before, which constitute Cj in
our I-POMDP model. The performance of the resulting I-
POMDPs was then computed by averaging the total reward
collected during 1000 runs of the POMCP algorithm, with
discount factor 0.9 and using 210 simulations for exploring
the search tree at each step; all other POMCP parameters
were set as in (Silver and Veness 2010).

Figure 4 reports agent i’s mean total reward for the three
problems and the median size of j’s PDFCs. Numbers along
the x-axes indicates the base-2 logarithm of the observa-
tion size, while letters identify baseline models. Notice that,
since the Tiger problem is much smaller, we consider shorter

2Implemented in MATLAB R© and running on an Intel R© Xeon R©

2.27 GHz processor.
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Figure 4: Reward by agent i with different models of agent
j (lines) and number of nodes of learned PDFCs (bars). The
fourth panel reports learning time results.

training sequences. For all problems, the performance ob-
tained when using the learned models of j is always higher
than using uniform or proportional models, and approaches
the upper bound (known j’s true model) with longer train-
ing sequences. This is because, with more information avail-
able, agent i is able to learn more accurate models that better
predict j’s actions. This is also reflected in the size of the in-
ferred controllers, which as expected grows with the amount
of data. However, the PDFCs learned in this settings are usu-
ally smaller than the ones learned with perfect observability
of j’s behavior (previous section.) This is because now i’s
perception of j’s behavior is filtered by noisy world’s dy-
namics, and therefore longer observations are needed to al-
low identification of the same behavioral patterns.

We underline how, even with shorter observation se-
quences, agent i is able to learn models that provide a large
performance gain over the random or proportional models.
In particular for the Maze problem, using only 256 obser-
vations for learning, agent i’s performance grows to about
90% of the difference between using the true model and
the random model. Similar, albeit less extreme jumps are
also observable for the other problems. This is a demonstra-
tion that, even though learning the exact model of another
agent is unattainable, especially with realistic observability
assumptions, we can still largely improve our performance
by recognizing behavioral patterns that are statistically sig-
nificant and encode them in a compact model.

The fourth panel of Figure 4 reports the learning times.
With respect to the previous section, we observe that sam-
pling sequences makes the procedure more time consuming.
Unfortunately, this sampling is an iterative procedure that
cannot be vectorized or optimized algorithmically. However,
other choices of implementation language can make the pro-
cedure much faster, and preliminary results have shown no
noticeable loss in performance if sequences are sampled less
frequently than every iteration.
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7 Conclusion and Future Work

In this paper, we have introduced a suitable Bayesian prior
for PDFCs that model the behavior of other agents, and char-
acterized such distribution in terms of number of nodes. We
presented an ad-hoc MCMC inference algorithm that works
with imperfect observations, and explained how the learned
models of other agents can be embedded in the modeling
agent’s decision making process. Our results show that it is
possible to learn accurate models using our approach, and
that the reward of the modeling agent increases as a result of
this learning even when the behavior is not directly observ-
able. Future work will be focused on developing an online
method that interleaves learning and planning, in order to ex-
tend the applicability of our work to more realistic settings.
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