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Abstract

The decision to take vaccinations and other protective inter-
ventions for avoiding an infection is a natural game-theoretic
setting. Most of the work on vaccination games has focused
on decisions at the start of an epidemic. However, a lot of
people defer their vaccination decisions, in practice. For exam-
ple, in the case of the seasonal flu, vaccination rates gradually
increase, as the epidemic rate increases. This motivates the
study of temporal vaccination games, in which vaccination de-
cisions can be made more than once. An important issue in the
context of temporal decisions is that of resource limitations,
which may arise due to production and distribution constraints.
While there has been some work on temporal vaccination
games, resource constraints have not been considered.
In this paper, we study temporal vaccination games for epi-
demics in the SI (susceptible-infectious) model, with resource
constraints in the form of a repeated game in complex social
networks, with budgets on the number of vaccines that can
be taken at any time. We find that the resource constraints
and the vaccination and infection costs have a significant im-
pact on the structure of Nash equilibria (NE). In general, the
budget constraints can cause NE to become very inefficient,
and finding efficient NE as well as the social optimum are
NP-hard problems. We develop algorithms for finding NE and
approximating the social optimum. We evaluate our results
using simulations on different kinds of networks.

Introduction

Despite a lot of progress in medical diagnostics and phar-
maceutical tools, infectious diseases remain a major chal-
lenge for governments all over the world. Even the annual
influenza epidemic in the US has a significant social and
economic burden, which is estimated to exceed $87.1 billion
(e.g., (Molinari et al. 2007)). For many diseases, especially
the annual influenza, there exist vaccines, though their ef-
ficacy might be quite variable. However, taking a vaccine
has a cost (economic cost, inconvenience and health effects).
Further, an individual can get protected without any inter-
vention if enough other people he/she comes in contact with
in the population are protected— this is referred to as herd
immunity in mathematical epidemiology, and is a natural set-
ting for a game-theoretical analysis. This has been a very
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active area of research both in epidemiology and network
security, e.g. (Bauch and Earn 2004; Grossklags, Christin,
and Chuang 2008; Khouzani, Sarkar, and Altman 2011;
Reluga and Galvani 2011; Saha, Adiga, and Vullikanti 2014);
see the related works section for a more detailed discussion.

In practice, most people do not take a preventive vac-
cine before the start of the epidemic, and instead wait for
some time. Often, the vaccination rate grows with the epi-
demic outbreak rate. There are many different and com-
plex reasons for vaccination decisions being made at dif-
ferent times, and understanding this remains a big open
problem, as well as an important public health issue. Al-
most all the work on vaccination games only considers
vaccination decision made only at the start of the epi-
demic, in a simultaneous game setting. The only studies
on temporal vaccination are by (Reluga and Galvani 2011;
Adiga, Venkataramanan, and Vullikanti 2016). The work
by (Reluga and Galvani 2011) uses a differential equation
approach, which assumes simplified and homogeneous con-
nectivity among individuals.

We build on the approach of (Adiga, Venkataramanan, and
Vullikanti 2016), which studies this as a repeated game on
a network, in the SI (Susceptible-Infectious) model of epi-
demics. They characterize Nash equilibria in such games,
and show that these exhibit interesting temporal structure,
such as a large fraction of nodes defer their vaccination de-
cisions. An important open question from their work is the
effect of resource constraints— they assume there are no
bounds on the number of individuals who can get vaccinated
at any time, and this is reflected in the solutions they find. In
practice, there are important resource constraints of various
kinds, e.g., capacity of hospitals and pharmacies in adminis-
tering vaccines, or the production capacity–see e.g., (CDC ;
Orenstein and Schaffner 2008). In this paper, we study the
temporal vaccination problem with resource constraints at
different times. Our main contributions are:

1. We formalize the temporal vaccination game with resource
constraints, BUDGETTEMPVACC, as a multi-stage game
on a network, and study the structure of Nash equilibria
(NE) in such games. There can be multiple NE even when
the network of interactions is a tree, and finding one with
the minimum cost is NP-complete.

2. We show that many nodes defer their vaccination deci-
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sions, and the budget constraints lead to very significant
differences from the solution of (Adiga, Venkataramanan,
and Vullikanti 2016). Specifically, there exist families
of instances, where small changes in the budgets (while
keeping all other components of the problem fixed) lead
to very high inefficiencies. Further, unlike their formula-
tion (in which there is no need to consider more than two
time steps), we find that there can be nodes that choose to
vaccinate at each possible time step.

3. Computing the social optimum turns out to be a challeng-
ing optimization problem. We show that it is NP-hard to
approximate within a factor of O(nα) for any α ∈ (0, 1),
without violating any budget constraints. For the special
case of BUDGETTEMPVACC, with only two times at which
vaccination decisions are made, we design an algorithm
that approximately satisfies the budget constraints.

4. We study the characteristics of NE in different kinds of
networks experimentally. We use best response strategies,
and find that they usually converge to NE quickly. Corrob-
orating our theoretical results, we find very high sensitivity
of the solution cost, as well as the number of nodes that
defer vaccination decisions, to the budget constraints and
vaccination delays.

Some of the details, including proofs and experimental
results have been omitted from this abstract, because of space
limitations. They are presented the full version (Adiga and
Vullikanti 2015).

Preliminaries and Model

We extend the approach of (Adiga, Venkataramanan, and
Vullikanti 2016) and formally define BUDGETTEMPVACC
as a repeated game on an instance (G,p, T ,B,C,L) in the
following manner:

1. V is a set of n = |V | players, who form the nodes of
a graph G = (V,E), with an edge (u, v) ∈ E if the
epidemic can spread from u to v;

2. pi = Pr[source of infection is node i], with
∑

i pi = 1.

3. T = {t0 = 0, · · · , tk} is a set of time instants, at which
the vaccination decisions will be made;

4. B = {Bt | t ∈ T } specifies the vaccination budget,
where Bt is the number of vaccines allocated for time t;

5. C = {Ct
v | v ∈ V, t ∈ T } is the set of vaccination costs,

6. L = {Lv | v ∈ V } is the set of infection costs.

Epidemic model and strategies. We assume nodes are in
Susceptible (S) and Infectious (I) states, and the epidemic
spreads according to a simple discrete time SI (Easley and
Kleinberg 2010). In this model, if node v gets infected at time
t, each uninfected neighbor u will be infected at time t+ 1,
unless it gets vaccinated. The vaccine is assumed to have
100% efficacy, and starts protecting the node immediately
after taking it. A node’s strategy is to decide if and when to
get vaccinated. The strategy of node v at time 0 (before the
source of the infection is known) is denoted by Y (v, ·, 0) ∈
{0, 1}, with Y (v, ·, 0) = 1 if v gets vaccinated at time 0.
The source of the infection is known after time t = 0, and
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Figure 1: Example NE: Uniform vaccination cost C = 0.5
and infection cost L = 1 for all nodes, T = {0, 2}, p2 = 0.5,
p3 = 0.5, B0 = 3, B2 = 2.

Y (v, s, t) denotes the strategy of node v at time t given that
the source of infection is s. If node v gets vaccinated at time
t, it incurs a cost Ct

v, whereas if it gets infected at any time,
it incurs a cost Lv . Throughout, we assume that Lv > Ct

v for
all t, so that it is always cheaper to get vaccinated, instead
of getting infected. The complete strategy vector is denoted
by Y (·), and the expected cost associated with it is denoted
by cost(Y ).
Example. Fig. 1 shows an example where Y (1, ·, 0) =
Y (6, ·, 0) = Y (7, ·, 0) = 1 and Y (v, ·, 0) = 0 for
v = 2, 3, 4, 5. For t = 2, Y (4, 2, 2) = Y (5, 2, 2) = 1
and Y (v, s, 2) = 0 for all other v and s combinations. Note
that if node 1 decides to become insecure, then, the cost in-
curred is p2L+p3C > 0.5 = C. The same holds for 6 and 7.
At t = 2, if 2 is the source, then only 4 and 5 can be saved,
while if 3 is the source, none can be saved. By definition no
other node can be the source.
Resource constraints. We assume at most Bt people
can be vaccinated at time t–this can capture resource con-
straints, e.g., due to production or distribution limits. There-
fore, a strategy vector Y (·) is feasible if for any time t:
(1)

∑
v Y (v, ·, 0) � B0, if t = 0, and (2)

∑
v Y (v, s, t) �

Bt, for any source s. Let F denote the set of all feasible
strategy vectors.
Stages of BUDGETTEMPVACC. This involves the follow-
ing rounds:

1. At time t = 0, all the nodes play a simultaneous vaccina-
tion game to decide whether to get vaccinated or not. As
mentioned earlier, the vaccination takes effect immediately.
If node v gets vaccinated at this time, we denote this by
Y (v, ·, 0) = 1. As mentioned above, at most B0 nodes can
get vaccinated at this time, so that

∑
v Y (v, ·, 0) � B0.

2. A randomly chosen node s ∈ V is selected to be the
source of the epidemic. We assume that if Y (s, ·, 0) =
1, it remains immune, and the infection does not spread.
If Y (s, ·, 0) = 0, then s gets infected and the infection
spreads to each uninfected neighbor in subsequent times.
We also assume perfect information, so all nodes know
about the source s.

3. For each t = 1, 2, . . ., we have the following two steps:
(a) If t ∈ T , a simultaneous vaccination game is played at
time t, and each node v decides whether to get vaccinated
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at this time or not— this is denoted by Y (v, s, t) ∈ {0, 1},
with 1 denoting vaccination and s the source. Further, for
feasibility, we have

∑
v Y (v, s, t) � Bt.

(b) Let It−1 denote the set of nodes which are infected at
time t−1. For each node u ∈ It−1, each uninfected neigh-
bor v ∈ N(u) will get infected at time t, (i.e., v �∈ It−1),
unless v gets vaccinated at or before time t. Recall that
vaccination takes precedence over infection in our model.
Define set It = It−1 ∪ {v : v gets infected at time t} to
be the set of all infected nodes till this time.

4. The game stops at time t if there are no more uninfected
nodes that can be infected from their neighbors, and t′ �∈ T
for all t′ � t (i.e., there are no more vaccination games
to be played). Each node v incurs cost Lv if it ever got
infected, i.e., v ∈ It. It incurs cost Ct′

v if it got vaccinated
at time t′ � t. The overall cost for node v is the expectation
over all possible choices of the source.

Cost of a feasible strategy. For every Y ∈ F ,
we define the cost incurred by v ∈ V (G) given
strategy Y as: cost(v, Y ) = C0

vY (v, ·, 0) +∑
s∈V ps

(∑
T∈T CT

v Y (v, s, T ) + LvI(v, s, Y )
)
, where

I(s, v, Y ) = 1 if v gets infected due to s in the strategy Y .
We define cost(Y ) =

∑
v cost(v, Y ).

Nash equilibria and social optimum. For a strategy profile
Y (·), let Y−v(·) be the strategy profile for all the remaining
players. We say that a strategy Y (·) is a Nash equilibrium
(NE) (Leyton-Brown and Shoham 2008) if for each v ∈ V :
cost(v, Y ′) � cost(v, Y ) where Y ′ is any strategy profile
such that Y ′

−v(·) = Y−v(·), i.e., Y ′(·) has the same strate-
gies as Y (·) for all other players v′ �= v. In other words, no
player v can reduce its expected cost by unilaterally changing
its strategy, given that the other players’ strategies are fixed.
We define the social optimum as a strategy Y (·) that has the
minimum cost, over the space of all possible strategies— this
is not necessarily (and is not usually) a pure NE. Therefore,
the cost of a pure NE relative to the social cost is an impor-
tant measure, and the maximum such ratio over all possible
pure NE is known as the price of anarchy (Koutsoupias and
Papadimitriou 1999).
Source probability. For simplifying our discussion, hence-
forth, we will assume that the source is chosen uniformly
at random, i.e., ps = 1

n for all s ∈ V . Most of our results
extend to general source distributions.

Characterization of Nash Equilibria

First we will define valid strategy.
Definition 1. A strategy Y is valid if it satisfies the budget
constraints, i.e.,

∑
v Y (v, ·, 0) � B0 and ∀t ∈ T \ {0},∑

v Y (v, s, t) � Bt.
From the definition of BUDGETTEMPVACC, Y (v, s, T ) =

1 implies that a vaccine is “reserved” for node v if s is the
source. However, even if s is the source, it is possible that it
is secure (i.e., Y (s, ·, 0) = 1) or the infection never reaches v
(because of other nodes that chose to be vaccinated at time T ).
In both cases, v will not incur the cost of Cv/n. This notion
has important implications for the structure of NE, in the

sense that it does not hurt a node v to choose Y (v, s, T ) = 1
if the budget constraints allow for this.

We now discuss a characterization of the pure NE for
BUDGETTEMPVACC for the special case where T = {0, T}.
We start with some definitions. Let G[V ′] be the subgraph
of G induced by the set V ′ of nodes. Let V0(Y ) = {v :
Y (v, ·, 0) = 1} and Vs(Y ) = {v : Y (v, s, T ) = 1} be the
sets of nodes that are vaccinated at time 0 and time T when
the source is s, respectively. Let C(v,G′) be the connected
component containing node v in the graph G′. For v, s ∈ V ,
let I(v, s,G[V − V0(Y ) − Vs(Y )]) = 1 if s ∈ C(v,G′),
Y (v, ·, 0) = 0 and Y (s, ·, 0) = 0, i.e., I(·) is the indicator of
the event “v will be infected if s is the source.” Let d(x, y,G)
denote the distance of x from y in G. Let A(v, Y ) be the
set of potential sources s for which it is still possible for
node v to get vaccinated at time T , i.e. A(v, Y ) = {s |
Y (v, s, T ) = 0, |Vs(Y )| < BT , d(v, s,G[V − V0(Y ) −
Vs(Y )) � T, I(v, s,G[V − V0(Y )− Vs(Y )]) = 1}.

Lemma 2. Consider an instance (G,p, T =
{0, T},B,C,L) of BUDGETTEMPVACC. A valid
strategy Y (·) is a pure NE iff

1. If Y (v, ·, 0) = 0 then either (a)
∑

s I(v, s,G[V −V0(Y )−
Vs(Y )])Lv

n � Cv or (b) |V0| = B0.
2. If Y (v, ·, 0) = 1 then the following conditions hold: (a)∑

s I(v, s,G[V −V0(Y )−Vs(Y )∪{v}])Lv

n > Cv , and (b)∑
s∈V−A(v,Y ) I(v, s,G[V − V0(Y )− Vs(Y ))Lv

n > Cv .

3. If Y (v, s, T ) = 0 and Y (v, ·, 0) = 0 then either
(a) I(v, s,G[V − V0(Y )− Vs(Y )]) = 0 or (b) |Vs(Y )| =
BT .

The proof is in the full version (Adiga and Vullikanti
2015).

Existence and Complexity of finding NE

In this section, we first propose a best-response algorithm to
compute NE (if it exists) for the special case T = {0, T}.
This will be followed by results on minimum cost pure NE
and the price of anarchy.
Best response strategy: Consider an instance (G,p, T =
{0, T},B,C,L) of BUDGETTEMPVACC.

1. We start with a feasible strategy Y (·) (one possibility is to
start with all nodes insecure).

2. If there exists node v such that Y (v, ·, 0) = 0 and∑
s I(v, s,G[V − V0(Y )− Vs(Y )])Lv

n > Cv , then:

(a) If |V0| < B0, then switch the strategy of node v: set
Y (v, ·, 0) = 1. Set Y (v, s, T ) = 0 for all s.

(b) If |V0| = B0: For each s ∈ A(v, Y ), we set
Y (v, s, T ) = 1.

3. If there exists node v such that Y (v, ·, 0) = 1 and∑
s∈V−A(v,Y ) I(v, s,G[V −V0(Y )−Vs(Y )∪{v}])Lv

n �
Cv , we switch the strategy of node v and set Y (v, ·, 0) = 0.
Then, for s ∈ A(v, y), we set Y (v, s, T ) = 1.

When there are no budget constraints a pure NE need not ex-
ist (Adiga, Venkataramanan, and Vullikanti 2016). However,
for BT = 0 and uniform vaccination and infection costs, it
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can be shown that the best response strategy always converges
to a pure NE. The proof is based on a potential function ar-
gument by (Aspnes, Chang, and Yampolskiy 2006), where
they prove the same result for the special case where B0 is
unbounded. The same proof holds for B0 < n.
Lemma 3. For an instance of BUDGETTEMPVACC, where
(1) T = {0, T}, and (2) vaccination and infection costs
are uniform for all the nodes (i.e., there exist c, L such that
Cv = C and Lv = L for all v ∈ V ), and (3) BT = 0 for all
t ∈ T , the above algorithm converges to a pure NE.

In Experimental Results section, we discuss the perfor-
mance of the best response strategy on several networks.
Minimum cost NE. By a reduction from the Firefighter prob-
lem (Finbow et al. 2007), we showed that it is hard to compute
the minimum cost NE.
Lemma 4. Finding a minimum cost pure NE is NP-complete
even on instances of BUDGETTEMPVACC where G is a tree.

The proof is in the full version (Adiga and Vullikanti
2015).
Price of anarchy (PoA). When there are no budget con-
straints, it was shown in (Adiga, Venkataramanan, and Vul-
likanti 2016) that the price of anarchy can be Ω(n). Clearly
this holds for BUDGETTEMPVACC as well. However, with
the budget constraints, the PoA is Ω(n) even for trees.
Lemma 5. There exist instances I = (G,p, T ,B,C,L) of
BUDGETTEMPVACC, where G is a tree with root s, ps = 1
and B0 = 0 for which the price of anarchy is Ω(n).

Effect of budget constraints

We now show that the budget constraints have a very signif-
icant impact on the cost of a NE, as well as on the social
optimum.
Lemma 6. There exist instances I = (G,p, T ,B,C,L) of
BUDGETTEMPVACC, for which there exist strategies Y (·)
and Y ′(·) such that:
1. Y (·) is a NE for I that satisfies the budget constraints,
2. Y ′(·) is a NE for the instance I ′ obtained by removing all

the budget constraints for T �= 0 in T in instance I (i.e.,
setting BT = ∞ for all T ∈ T , T �= 0), and

3. cost(Y )/cost(Y ′) = Θ(n).
The proof is in the full version (Adiga and Vullikanti

2015).
Extending the instance constructed in the above proof, we

can see that in the absence of budget constraints, for each
random source s, all nodes at distance T from s choose to
get vaccinated, where T = min{t ∈ T : t > 0} is the
first time in T when the vaccination decisions can be made.
As a result, it suffices to consider only one time step in T
at which the vaccination game needs to be played, as was
observed in (Adiga, Venkataramanan, and Vullikanti 2016).
In contrast, because of the budget constraints in an instance of
BUDGETTEMPVACC, vaccination decisions might be made
in each round. Further, nodes far away from the source might
choose to get vaccinated, which might cause a large outbreak.
Further, it does not help to increase the budget at time t = 0
alone, as discussed in the next lemma.

Lemma 7. There exist instances I = (G,p, T ,B,C,L) of
BUDGETTEMPVACC, with B0 = ∞, for which removing the
budget constraint BT (i.e., setting BT = ∞) can reduce the
cost of NE by a factor of Θ(n).

Finding the social optimum

Since BUDGETTEMPVACC generalizes the formulation stud-
ied in (Adiga, Venkataramanan, and Vullikanti 2016), it is
easy to verify that finding the social optimum is NP-complete.
We show that even approximating the social optimum of
BUDGETTEMPVACC is very hard. This motivates bicriteria
approximation algorithms, in which the budget constraints
can be violated.
Theorem 8. The social optimum of an instance
(G,p, T ,B,C,L), of BUDGETTEMPVACC cannot be
approximated within a factor of nα in polynomial time for
α ∈ (0, 1), unless P = NP .

The proof is by a reduction from a game-theoretic version
of the FireFighter problem studied in (Anshelevich et al.
2009) (see in the full version (Adiga and Vullikanti 2015)).

Bicriteria Approximation Algorithm

Approximating the social optimum. We now discuss
an approximation algorithm for computing the social op-
timum for the special case of T = {0, T}. Our algorithm
builds on (Hayrapetyan et al. 2005), and involves a linear-
programming (LP) rounding approach. We use the following
notation below: (1) x(j, s) is an indicator variable, which is 1
if node j gets infected due to source s; (2) y(j) is an indicator
which is 1 if node j is vaccinated at time 0; (3) y(j, s) is an
indicator which is 1 if node j is vaccinated at time T , when
the source is s; (4) P d(s, j) is the set of paths from s to j
of length d; (5) P<d(s, j) is the set of paths from s to j of
length less than d.

We now describe an integer programming formulation P
for the social optimum below. Let, f(x,y) =

∑
v C

0
vy(v) +

1
n

∑
s,v C

T
v y(v, s) +

1
n

∑
s,j Ljx(j, s).

min
y

f(x,y) such that
∑

v∈p

y(v) � 1− x(j, s), ∀s, j, ∀p ∈ P<T (s, j) (1)

∑

v∈p

y(v) + y(j, s) � 1− x(j, s), ∀s, j, ∀p ∈ PT (s, j)

(2)
y(j) + y(j, s) � x(u, s)− x(j, s), ∀u ∈ N(j), ∀s, j (3)
x(s, s) = 1− y(s)
∑

v

y(v) � B0 (4)

∑

v

y(v, s) � Bt, ∀s, t (5)

y(v), y(v, s), x(i, j) ∈ {0, 1}, ∀s, v, i, j ∈ V

(6)

Constraint (1) ensures that if a node j is within T hops
of a source s, if node j does not get infected due to source
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s, then at least some node on every path from s to j of path
length less than T has a vaccinated node. In constraint (2)
for paths of length T , node j could be vaccinated at time T
to ensure the same effect. Constraint (3) ensures that if j is
not vaccinated at either 0 or T , then, it gets infected if any
of its neighbors does. Budget constraints are captured by (4)
and (5).

Lemma 9. The optimum solution (x,y) to the program P is
the social optimum of the BUDGETTEMPVACC instance.

We describe an approximation algorithm based on relaxing
and rounding the solution of P for the special case where
B0 = 0. For A ⊆ V , let N(A) = {v /∈ A | ∃u ∈
A, u is adjacent to v}. The algorithm involves the following
steps:

1. Solve a linear relaxation PR with the constraints
y(i), y(i, j), x(i, j) ∈ [0, 1], for all i, j. Let xf ,yf de-
note the fractional solution to this relaxed program.

2. We round xf ,yf to an integral solution in the following
manner:

(a) For each j, s, define x′(j, s) = min{2xf (j, s), 1},
y′(j) = min{2yf (j), 1}, y′(j, s) =
min{2yf (j, s), 1}.

(b) For each j, if y′(j) � 1
T−1 , set Y (j, ·, 0) = 1.

(c) For each j, s, if y′(j, s) � 1
T , set Y (j, s, T ) = 1.

(d) For each s ∈ V , pick “suitable” rs ∈ [0, 1] (as discussed
in the proof of Theorem 10)

i. Let A(s, rs) = {j : x′(j, s) � rs} and C(s, rs) =
N(A(s, rs))−A(s, rs).

ii. For each j ∈ C(s, rs), define Y (j, s, T ) = 1.

We show below that this randomized strategy Y (·) satisfies
the budget constraints approximately, and cost(Y ) is within
a constant factor of the fractional LP value. Ensuring that
all the budget constraints are satisfied is a challenging open
problem.

Theorem 10. Suppose B0 = BT = B. The solution Y (·)
constructed by the above algorithm satisfies the following
properties: (1)

∑
v Y (v, ·, 0) � (2T ) · B, (2) for each s,∑

v Y (v, s, T ) � (8T ) ·B, (3) cost(Y ) � (8T ) · f(xf ,yf ).

Experimental Results

We now explore the structure of the NE obtained through the
best response strategy. In particular, we study how it behaves
with respect to the budget at time 0, B0, time T , the budget
at time T , BT , and the vaccination cost C. The algorithm
was applied on three synthetic graphs: Erdős-Rényi with
100 nodes and average degree 7 (ER); random power-law
graph generated using the Chung-Lu model with power-law
index γ = 2.5, 93 nodes and average degree 4 (CL), and a
random regular graph with 100 nodes and average degree 4
(RR). We chose these networks because they are commonly
used in social network analysis (see, e.g., (Newman 2003)),
and together model both homogeneous and heterogeneous
degree networks. Recall that the best response algorithm
requires computing I(v, s, Y ) each time a node changes its
strategy. For this we need to use the all-pairs shortest path

algorithm. Therefore, we study relatively small networks
here.

To keep the framework simple, we assumed uniform vac-
cination cost C < 1 and infection cost L = 1 for all nodes.
We ran the best response algorithm for various values of B0,
BT , T , and C. The results presented are averaged across
20 iterations, each producing a NE. Where the results are
consistent across networks, plots are shown for only CL net-
work. The remaining plots are in the full version (Adiga and
Vullikanti 2015).

Structure of NE with respect to B0 and BT . The results
are shown in Fig. 2. We used two criteria to study the effects
of B0 and BT , viz. average cost of the NE (cost(Y )) and the
average number of nodes which vaccinate at time 0 (E[|V0|]).
Comparing column 1 to column 3, we note that across all
networks, the effect of B0 on the cost(Y ) is more pronounced
than that of BT . The plots in column 2 are quite interesting in
the sense that they exhibit a threshold phenomenon. We note
that E[|V0|] increases steadily (possibly linearly) with B0

and then tapers off. The point at which it hits a plateau is
a function of BT . Qualitatively, these plots indicate that
greater the guarantee of vaccine availability at a later stage,
the higher the inclination to postpone vaccination. Possible
directions from here are to determine when these regime
changes occur, exploring the role of network structure in this
behavior.

Effect of vaccination cost C. We observe that the vacci-
nation cost has a significant influence on the average cost of
the NE—see Fig. 3 first plot, which shows the average cost
of solution vs. B0 for different values of T and BT . We have
only shown results for CL due to lack of space.

Convergence time. We observed that the best response
algorithm generally converges quickly and shows little varia-
tion with budget constraints (Fig. 3 second plot). However, it
would be interesting to see how it performs as the network
size increases.

Effect of time T . From Fig. 4, we observe that the effect
of T depends on BT ; higher the BT , the more sensitive is
the cost to T . Note that when BT is small, even if the second
stage of vaccination happens early, it is not enough to secure
enough nodes from the source. A possible future direction
is to quantify this effect based on network properties such as
density, expansion, etc.

Related Work

There is a large literature on vaccination games, which can
be broadly partitioned into differential equation based or
network based models. We summarize them below.

One of the earliest works on vaccination games is
by (Bauch and Earn 2004), who use a differential equa-
tion based model to study vaccination decisions made at
the start of the epidemic. They show that the vaccinated
fraction in NE can be expressed in terms of the reproduc-
tive number, R0, which is the expected number of sec-
ondary infections caused by an infected individual. Vac-
cination is a special kind of behavioral change in the con-
text of epidemics. There has been a lot of research on dif-
ferent kinds of game formulations arising out of epidemic
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Figure 2: The effect of budget constraints on the structure of
NE from the best response algorithm: Each row corresponds
to a particular network. The first column is a plot of average
cost of the NE vs. B0, for various values of BT . The second
column corresponds to similar plots for average number of
nodes vaccinating at time 0.

behaviors, e.g., (Bauch and Earn 2004; Khouzani, Sarkar,
and Altman 2012; Khouzani, Altman, and Sarkar 2012;
Khouzani, Sarkar, and Altman 2011; Galvani, Reluga, and
Chapman 2007; Reluga 2010; Reluga and Galvani 2011;
Trajanovski et al. 2015; Manfredi and D’Onofrio 2013). Re-
luga et al. (Reluga and Galvani 2011) develop a general
approach that combines population games with Markov deci-
sion process, and allows decisions at different times. There
has also been work on repeated game formulations that take
information and past experience into account. (Conforth et al.
2011) study the effects of vaccination decisions based on past
epidemics, and find that individuals with number of contacts
above a threshold get vaccinated, whereas individuals with
fewer than these many contacts do not, leading to erratic flu
behavior. (Bauch and Bhattacharyya 2012) use an evolution-
ary game theory based model to study the feedback between
disease prevalence and vaccinating behavior, especially in
the context of vaccine scares.

A different area of research involves the use of network
based models. One of the earliest works in this direction
is (Aspnes, Rustagi, and Saia 2007). They formalize the net-
work version of the vaccination game problem of (Bauch and
Earn 2004), and design algorithms for computing NE and
the social optimum. This turns out to be a challenging prob-
lem, and they develop an approximation algorithm for the
social optimum, that is based on linear programming round-
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Figure 3: Best response algorithm on Chung-Lu graph CL:
Plot (1) corresponds to effect of C on the average cost.
Plot (2) shows how average convergence time varies with
respect to budget constraints.
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Figure 4: The effect of T on the cost of NE. Plots (1) and (2)
show cost vs. B0 for BT = 10 and 60 respectively.

ing. This approximation bound was improved by (Chen,
David, and Kempe 2010; Kumar et al. 2010). All these
approaches have assumed a simplistic model of epidemic
spread, which models highly contagious diseases. There
has been work on more realistic SIS (Susceptible-Infectious-
Susceptible) models, e.g., (Omic, Orda, and Mieghem 2009;
Trajanovski et al. 2015). An alternative approach was studied
by (Saha, Adiga, and Vullikanti 2014), who develop a for-
mulation based on the spectral radius (the first eigenvalue of
the network), in which the utility is based on whether or not
the spectral radius is above a threshold or not. One limitation
of all of these works is that they only consider vaccination
decisions at the start of the epidemic, in a one-shot simul-
taneous game formulation. The work most closely related
to our paper is by (Adiga, Venkataramanan, and Vullikanti
2016), who formalize a temporal vaccination game, in which
vaccination decisions can be done at multiple times. How-
ever, there are no budget constraints in their formulation. As
mentioned earlier, this has a very significant impact on both
the structure and complexity of the problem.

Conclusions

In this paper, we formalize the temporal vaccination problem
with resource constraints on complex networks, as a repeated
game BUDGETTEMPVACC. This captures many realistic
aspects of epidemic spread in real networks. The budget
constraints have a very significant impact on the structure
of the game solutions, as well as on the complexity of find-
ing equilibria. A significant fraction of nodes that do get
vaccinated, choose to defer their vaccination decision— the
specific effects depend on the network structure, the budgets,
and the vaccination and infection costs. Computing prop-
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erties of such repeated games becomes more challenging,
compared to those of standard vaccination games. Some
of the interesting open problems that arise out of our work
include: (1) understanding networks in which pure NE ex-
ist and can be computed efficiently, and (2) extending our
results to other epidemic models, and improving the algo-
rithmic bounds. This work has been partially supported by
the following grants: DTRA Grant HDTRA1-11-1-0016,
DTRA CNIMS Contract HDTRA1-11-D-0016-0010, NSF
ICES CCF-1216000, NSF NETSE Grant CNS-1011769, NIH
MIDAS Grant 5U01GM070694, NSF DIBBS Grant ACI-
1443054.
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