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Abstract

In this paper, we study a cold-start heterogeneous-device
localization problem. This problem is challenging, because
it results in an extreme inductive transfer learning setting,
where there is only source domain data but no target do-
main data. This problem is also underexplored. As there is no
target domain data for calibration, we aim to learn a robust
feature representation only from the source domain. There is
little previous work on such a robust feature learning task;
besides, the existing robust feature representation propos-
als are both heuristic and inexpressive. As our contribution,
we for the first time provide a principled and expressive ro-
bust feature representation to solve the challenging cold-start
heterogeneous-device localization problem. We evaluate our
model on two public real-world data sets, and show that it
significantly outperforms the best baseline by 23.1%–91.3%
across four pairs of heterogeneous devices.

Introduction

Indoor localization using wireless signal strength has at-
tracted increasing interests from both research and indus-
trial communities (Haeberlen et al. 2004; Lim et al. 2006;
Zheng et al. 2008b; Xu et al. 2014). The state of the art in
wireless localization is learning-based approach (Haeberlen
et al. 2004; Zheng et al. 2008a). In an environment with
d1 ∈ Z

+ access points (APs), a mobile device receives wire-
less signals from these APs. The received signal strength
(RSS) values at one location are used as a feature vector
x ∈ R

d1 , and the device’s location is a label y ∈ Y , where Y
is the set of possible locations in the environment. In an of-
fline training stage, given sufficient labeled data {(xi, yi)},
we learn a mapping function f : R

d1 → Y . In an online
testing stage, we use f to predict location for a new x.

Most of the existing models work under the data homo-
geneity assumption, which is impractical given the prevalent
device heterogeneity. Specifically, the assumption requires
the data used in training f to have the same distribution as
that used in testing. However, in practice, users carry a va-
riety of heterogeneous mobile devices, which are different
from the device used to collect data in training f . Due to
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Figure 1: Accuracy drops from same-device (S → S) to
heterogeneous-device (S → T ) localization, on four pairs
of devices. Data details are given in the experiment. We used
SVM (Chang and Lin 2011) as the localization model.

different sensing chips, these heterogeneous devices easily
receive different RSS values even in the same location, thus
failing the model f . Denote a surveyor device as S, on which
we collect labeled data for training the f . Denote a target de-
vice as T , on which we have test data to predict the labels.
In Figure 1, we show that the localization accuracy can drop
significantly, if we apply the model trained on S’s training
data to T ’s test data (denoted as S → T ), other than the
same S’s test data (denoted as S → S).

In addition to the device heterogeneity, we face a more
challenging cold start scenario. Some pioneers have tried
to address the device heterogeneity, but they often assume
that the user is willing to help collect a sufficient amount of
calibration data (Haeberlen et al. 2004; Zheng et al. 2008a;
Zhang et al. 2013) to tune their models before localization
service is provided. Such an assumption is impractical – in
fact, we often face the cold start, i.e., no calibration data is
available for a new device at a new place.

In this paper, we aim to solve the following problem:
Problem 1 (Cold-start heterogeneous-device localization).
Given a surveyor device S, by which we collect sufficient
labeled training data Ds = {(x(i)

s , y
(i)
s )|i = 1, ..., ns}, we

aim to train a localization model f from Ds, such that f can
accurately predict locations for the online test data Dt =

{x(i)
t |i = 1, ..., nt} from a heterogeneous target device T .

As a cold start, there is no data from T to assist training f .
Problem 1 is challenging. Generally, we can character-

ize Problem 1 as an inductive transfer learning problem in
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a specific domain (i.e., heterogeneous-device localization)
with an extreme setting (i.e., cold-start). To make a better
analogy with transfer learning, we interchangeably refer to
surveyor device as source domain, and target device as tar-
get domain. Our extreme setting fails most of the existing
transfer learning methods, which often require at least some
target domain data to be available for calibration (Haeberlen
et al. 2004; Zheng et al. 2008a; Tsui, Chuang, and Chu 2009;
Park et al. 2011; Zhang et al. 2013).

Problem 1 is underexplored. Since there is no target do-
main data, the only solution to Problem 1 is to find a ro-
bust feature representation, by which we can train f with
Ds and test f with Dt. To the best of our knowledge, there
is little previous work for Problem 1: for example, in (Kjaer-
gaard and Munk 2008), the authors proposed to use the RSS
value ratio between every pair of APs as the robust feature
representation; while in (Yedavalli et al. 2005), the authors
used the RSS value ranking between every pair of APs as
the robust feature representation. As we can see, the previ-
ous robust feature proposals are: 1) heuristic, thus lacking a
formal guarantee of robustness; 2) inexpressive, since they
are limited to using pairwise RSS comparison as features,
which are only second-order w.r.t. the number of APs and
not discriminative for locations (to show later).

We are looking for a principled and expressive robust fea-
ture representation to solve Problem 1. We ask two funda-
mental questions: first, what is the desired form of such a ro-
bust feature representation? For robustness, we need to make
the RSS vectors collected by different devices at the same lo-
cation to have the same representation. For expressiveness,
we need to involve more than two APs in the representa-
tion. We thus propose a novel High-order Pairwise (HOP)
feature representation, which is expressive by considering
multiple RSS comparisons in one feature, and provably ro-
bust by leveraging the radio propagation theory (Rappaport
1999). Second, how do we obtain features with the desired
representation? There can be infinite features satisfying the
desired representation, but not all of them can represent the
data well. We thus propose a novel constrained Restricted
Boltzmann Machine model to enable automatic learning of
the HOP features from data. To make our HOP features more
discriminative, we also integrate the robust feature learning
with the localization model training.

In summary, our contributions are as follows:

• We for the first time provide a principled and expressive
robust feature representation, and use it to solve the chal-
lenging cold-start heterogeneous-device localization task.

• We evaluate our model on real-world data sets, and show
it significantly outperforms the best baseline by 23.1%–
91.3% across four pairs of heterogeneous devices.

Related Work

Problem 1 is unique as an inductive transfer learning prob-
lem with an extreme setting when there is no data for cal-
ibration from the target domain. Depending on whether a
transfer learning method requires labeled or unlabeled data
from the target domain in training, we categorize the exist-
ing work into three groups as follows.

The first group of transfer learning methods, including
LFT (Haeberlen et al. 2004), KDEFT (Park et al. 2011) and
LatentMTL (Zheng et al. 2008a), all require target domain
labeled data in training. Specifically, both LFT and KDEFT
learn a feature mapping function from S to T , while La-
tentMTL learns a common feature representation for both S
and T that can do localization well.

The second group of transfer learning methods, including
ULFT (Tsui, Chuang, and Chu 2009), KLIEP (Sugiyama et
al. 2008), KMM (Huang et al. 2007) and SKM (Zhang et al.
2013), all require target domain unlabeled data in training.
Specifically, ULFT uses expectation maximization to itera-
tively label the target unlabeled data and fit the feature map-
ping function from S to T . KLIEP, KMM and SKM all aim
to account for the data distribution difference between S and
T , however they adopt different approaches: KLIEP uses in-
stance re-weighting, KMM relies on matching the sample
mean in the kernel space, while SKM tries to directly align
the kernel matrices of S and T .

As the above two groups of methods both require data
from the target domain for training, they are not applica-
ble to our cold-start setting. There is little work that al-
lows transfer learning in cold-start localization. So far as
we know, HLF (Kjaergaard and Munk 2008) and ECL (Ye-
davalli et al. 2005) are most relevant. HLF uses RSS ratio
between each pair of APs as the robust feature. However,
HLF’s ratio feature is limited to second order (i.e., for each
pair of APs); besides, such a ratio can be still different across
different devices, and thus does not fundamentally solve the
heterogeneity problem. On the other hand, although ECL
uses a RSS-ranking based feature representation, it still turns
the ranking into pairwise comparison, which is second order;
besides, it lacks a formal robustness guarantee.

Finally, we note that, although there is some general trans-
fer learning work on cold start, they are often in differ-
ent domains, such as recommendation (Li, Yang, and Xue
2009), crowd-sourcing (Zhao et al. 2014), which makes their
conclusions not applicable to our problem. There is also
other transfer learning work that considers different cold-
start setting; e.g., zero-data learning (Larochelle, Erhan,
and Bengio 2008) and zero-shot learning (Gan et al. 2015;
Chang et al. 2015) study that testing has different classes
with training and the testing classes have no data in training.
In contrast, our testing and training have the same classes.

High-Order Pairwise (HOP) Features

As there is no target domain data, we aim to learn a robust
feature representation to solve the cold-start heterogeneous-
device localization problem. Specifically, for robustness, we
want to learn a feature representation g : Rd1 → R

d2 , such
that for two RSS vectors xs and xt collected at the same
location ỹ ∈ Y by device S and device T , we have:

g(E[xs]|ys = ỹ) = g(E[xt]|yt = ỹ), (1)

where the expectation is taken over each dimension of x to
account for the randomness in the received signal strength
from each AP. Finally, given this g(·), we build a new f :
R

d2 → Y from only S’s data to predict labels for T ’s data.
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At location y2, surveyor device S’s RSS (in dBm):
  

AP1 

AP2 

AP3 

y1 

y2 

At location y1, surveyor device S’s RSS (in dBm): 
    

At location y1, target device T’s RSS: 
  

xs,1 = [x1s,1, x2s,1, x3s,1] = [−34,−45,−21]

xt,1 = [x1t,1, x2t,1, x3t,1] = [−44,−58,−29]

xs,2 = [x1s,2, x2s,2, x3s,2 ] = [−54,−75,−47]

Figure 2: An example of three APs and two locations.

Insight for HOP Features

Different devices at the same location can receive different
signal strengths from the same AP. Denote a device e at lo-
cation yj receives a RSS vector xe,j ∈ R

d1 from d1 APs.
For example, in Figure 2, device S at location y1 receives a
RSS vector xs,1 ∈ R

3 from three APs, and device T at y1
receives a RSS vector xt,1 ∈ R

3. We can see that, for each
APi, x

s,1
i is different from xt,1

i .
Individual RSS values’ sensitivity to the device hetero-

geneity can be systematically explained by the radio propa-
gation theory. Denote zi|� as a RSS value collected at a dis-
tance � from APi. According to the log-normal shadowing
model (Rappaport 1999), zi|� can be generated by

zi|� = zi|�0 − 10β log(
�

�0
) + ψi, (2)

where zi|�0 is a RSS value from APi at a reference distance
�0. ψi is a Gaussian noise with zero mean. β is a constant
denoting the path loss exponent. Eq.(2) implies that a RSS
value is decided by: 1) zi|�0 , which is unique to device, thus
explaining why different devices get different RSS values at
the same location; 2) distance �, such that the small � is, the
larger zi|� is; 3) noise ψi, explaining the signal fluctuation.

Pairwise RSS comparison is robust across devices. In Fig-
ure 2, we observe xs,1

3 − xs,1
1 > 0 and xt,1

3 − xt,1
1 > 0. In

other words, a second-order feature representation δ(xe,j
3 −

xe,j
1 > 0) is robust, where δ(r) is an indicator function re-

turning one if r is true and zero otherwise. We can explain
the robustness by Eq.(2). Intuitively, if xs,1

3 − xs,1
1 > 0 (i.e.,

signal from AP3 is stronger), then S is generally1 closer to
AP3 than AP1. Hence, T at the same location is likely to see
xt,1
3 − xt,1

1 > 0. In other words, the pairwise comparison is
robust because it essentially evaluates the relative closeness
from a location to two APs, which is device-insensitive.

Pairwise RSS comparison is not discriminative for differ-
ent locations. In Figure 2, we observe δ(xs,1

k1
− xs,1

k2
> 0) =

δ(xs,2
k1

−xs,2
k2

> 0) for any APk1
and APk2

(e.g., try k1 = 3,
k2 = 1). This means the pairwise RSS comparison feature
cannot differentiate y1 and y2. Such a limitation is caused by
the feature being only second-order and inexpressive.

Since each pairwise RSS comparison is robust, if we com-
bine multiple pairwise RSS comparisons together, then we
are still evaluating the relative closeness (which ensures the
robustness), but in a higher order (which makes the feature

1We will formalize this intuition in Theorem 1.

more expressive for discriminativeness). In Figure 2, we can
see xs,1

3 − xs,1
1 > xs,1

1 − xs,1
2 for y1, while xs,2

3 − xs,2
1 <

xs,2
1 −xs,2

2 for y2. In other words, a third-order pairwise fea-
ture (xe,j

3 − xe,j
1 ) − (xe,j

1 − xe,j
2 ) > 0 is discriminative for

y1 and y2. Such discriminativeness is due to our comparing:
1) a location yj’s relative closeness between AP3 and AP1;
and 2) yj’s relative closeness between AP1 and AP2.

Formulation of HOP Features

We generalize our intuition of combining multiple pairwise
RSS comparisons together to formulate high-order pairwise
(HOP) features. In Figure 2, the third-order pairwise fea-
ture (xe,j

3 − xe,j
1 ) − (xe,j

1 − xe,j
2 ) > 0 is a linear combina-

tion of two pairwise RSS differences. To use more APs, we
consider more pairwise RSS differences. Denote a pairwise
RSS difference as (xe,j

k1
−xe,j

k2
) for APk1

and APk2
. For no-

tation simplicity, we omit the superscript e,j and only use
(xk1

− xk2
) in our feature representation. Then, we linearly

combine multiple pairwise RSS differences:∑
(k1,k2)

ck1,k2
(xk1

− xk2
) > 0, (3)

where ck1,k2
∈ R can be seen as the normalized number

of times that (xk1
− xk2

) is used to construct the linear
combination. The summation in Eq.(3) is over all the pos-
sible (k1, k2)’s, which means Eq.(3) is capable of providing
the highest-order representation by using all the APs in one
feature. As RSS value is noisy (c.f., the shadowing model),
Eq.(3) may not always hold for different RSS samples col-
lected over time. To deal with this random noise, we intro-
duce b ∈ R as a “slack” to Eq.(3). Finally, we have

Definition 1 (HOP feature). A HOP feature h is defined as

h = δ

(∑
(k1,k2)

ck1,k2(xk1 − xk2) + b > 0

)
. (4)

HOP feature is expressive, thanks to using more APs. HOP
feature is also robust, as we will prove in Theorem 1.

HOP Feature Learning and Robustness

There are many possible h’s that meet Definition 1, due to
the infinite choices for parameter (ck1,k2 , b)’s. However, not
all of them can represent the data well. Some h can be trivial;
e.g., when all the ck1,k2 = 0 and b is any real value, h is still
robust as different x’s are transformed to the same value. But
such a h is not discriminative for locations, and thus cannot
represent the data well. We propose to learn a set of h’s, such
that they are representative for the data:

h∗ = argmax
h∈{0,1}d2

∑nL

k=1
logP (x(k);h), (5)

where h = [h1, ..., hd2
] is a vector of d2 HOP features;

P (x;h) is the data likelihood (to define later) with h.

Learning by Constrained RBM

Directly learning h∗ leads to optimizing an excessive num-
ber of parameters. Based on Eq.(4), to learn h’s parameters
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(ck1,k2 , b), we shall enumerate all the (xk1 − xk2)’s, which
are quadratic to the number of APs. As a result, in all we
have to optimize at least O(d21×d2) parameters. Fitting more
parameters generally require more data, thus increasing the
labeling burden. We can reduce the number of parameters
by rewriting Eq.(4) to an equivalent form, which avoids the
explicit pair enumeration. As

∑
(k1,k2)

ck1,k2
(xk1

−xk2
)+b

admits a linear form over different xi’s, we can organize:∑
(k1,k2)

ck1,k2
(xk1

− xk2
) + b =

∑d1

i=1
αixi + b, (6)

where αi =
∑

(k1,k2)
[ck1,k2

δ(k1 = i)− ck1,k2
δ(k2 = i)].

The weights for each xk1
and xk2

are ck1,k2
and −ck1,k2

.
Therefore, by summing up weights for all the (k1, k2) pairs,
the sum becomes zero. In other words,

∑d1

i=1 αi is zero:
d1∑
i=1

αi
1
=

d1∑
i=1

∑
(k1,k2)

[ck1,k2δ(k1 = i)− ck1,k2δ(k2 = i)]

2
=

∑
(k1,k2)

[
d1∑
i=1

ck1,k2
δ(k1 = i)−

d1∑
i=1

ck1,k2
δ(k2 = i)

]

3
=
∑

(k1,k2)
(ck1,k2

− ck1,k2
) = 0,

(7)
where at step 1 we plug in the definition of αi; at step 2,
we swap the summations over i and (k1, k2); step 3 holds,
because each xk1 always corresponds to one xi. Eq.(7) im-
plies that, a HOP feature of Eq.(4) corresponds to a special
feature transformation function with constraint:

h = δ

(∑d1

i=1
αixi + b > 0

)
, s.t.

∑d1

i=1
αi = 0. (8)

As a result, to learn HOP features, we only need to focus
on learning linear weights for each individual RSS value xi,
subject to a zero-sum constraint. In this case, we only need to
optimize O(d1×d2) parameters, which are several orders of
magnitude smaller than the brute-force learning’s O(d21×d2)
(as d1 is often hundreds in practice).

Although there have been many feature learning meth-
ods, none of them can be directly applied to learn HOP fea-
tures. According to Eq.(5) and Eq.(8), we need a generative
model to learn h, such that: 1) each h ∈ h has a binary out-
put, based on a δ-function of a linear transformation over
the numeric input xi’s; 2) the linear transformation weights
αi’s have a zero-sum constraint. These two requirements for
learning h fail the existing feature learning methods, includ-
ing classic dimensionality reduction such as principle com-
ponent analysis (Jolliffe 2005), kernel methods (Huang et al.
2007; Zhang et al. 2013) and deep learning such as Convo-
lution Network (Krizhevsky, Sutskever, and Hinton 2012).

We propose a novel constrained Restricted Boltzmann
Machine (RBM) to learn our HOP features.

First, because (Gaussian-Bernoulli) RBM (Hinton 2010)
is well known as a generative model for feature learning with
numeric input, binary output and linear mapping, we use
RBM to instantiate the data likelihood P (x;h) in Eq.(5).
In particular, RBM considers the data likelihood as

P (x;h) =
1

Z

∑
h
e−E(x,h), (9)

where E(x,h) =
d1∑
i=1

(xi−ai)
2

2π2
i

−
d2∑
j=1

bjhj − ∑
i,j

xi

πi
hjwij

is an energy function. The first term of E(x,h) models a
Gaussian distribution over each xi, where ai and πi are
the mean and standard deviation. The second term models
the bias bj for each hj . The third term models the linear
mapping between x and hj . Finally, Z =

∑
x,h e−E(x,h)

is a partition function. In RBM, each hj can be seen as
hj = δ(

∑d1

i=1
xi

πi
wi,j + bj > 0), and it is sampled by a

conditional probability (Krizhevsky and Hinton 2009):

P (hj = 1|x) = σ

(∑d1

i=1

xi

πi
wi,j + bj

)
, (10)

where σ(r) = 1
1+e−r is a sigmoid function.

Second, we extend RBM to incorporate the zero-sum con-
straint. We emphasize that, as this zero-sum constraint guar-
antees robustness (later proved in Theorem 1) and it has
never been studied, our constrained RBM is a novel ro-
bust feature learning model. To take the zero-sum constraint
into account, we compare Eq.(10) and Eq.(8), and set each
αi = 1

πi
wij . Denote the parameters as Θ = {wij , ai, bj}.

Finally, our robust feature learning minimizes:

L1(Θ) = − 1

nL

nL∑
k=1

logP (x(k)), s.t.
d1∑
i=1

1

πi
wij = 0, ∀j.

(11)
As hj is sampled by P (hj = 1|x), to take this uncertainty

into account, we define our robust feature representation as:

g(x) � [P (h1 = 1|x), ..., P (hd2 = 1|x)]. (12)

As g(x) is differentiable for Θ, Eq.(12) also makes it possi-
ble to integrate with localization model training for getting
more discriminative HOP features, as shown later.

Robustness Guarantee

As a principled robust feature representation, we shall prove
Eq.(12) meets the robustness requirement in Eq.(1).

Theorem 1 (Robustness). Given Eq.(10) subject to the con-
straint

∑d1

i=1
1
πi
wij = 0, ∀j as our HOP feature, we have

∀j : P (hj = 1|E[xs]) = P (hj = 1|E[xt]).

Our intuition for the proof is to generalize the robustness
discussion in Figure 2 from the second-order pairwise RSS
comparison to the high-order features.

Proof. As P (hj = 1|E[xs]) = σ
(∑d1

i=1
E[xs

i ]
πi

wi,j + bj

)
by Eq.(10), to prove P (hj = 1|E[xs]) = P (hj = 1|E[xt]),

we only need to define Δ =
(∑d1

i=1
E[xs

i ]
πi

wi,j + bj

)
−
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(∑d1

i=1
E[xt

i]
πi

wi,j + bj

)
and prove Δ = 0 as below:

Δ
1
=

d1∑
i=1

1

πi
wij(E[z

s
i|�i ]− E[zti|�i ])

2
=

∑d1

i=1

1

πi
wij(E[z

s
i|�0 + ψ

(s)
i ]− E[zti|�0 + ψ

(t)
i ])

3
=

∑d1

i=1

1

πi
wij [(μs − 0)− (μt − 0)]

4
= (μs − μt)

∑d1

i=1

1

πi
wij

5
= (μs − μt) · 0 = 0,

where at step 1, we cancel the bj’s and let xi = zi|� based on
the shadowing model. At step 2, we plug in Eq.(2) and can-
cel the expectation-independent term 10β log( �i�0 ). At step 3,
without particular requirement on the APs, we assume zi|�0
follows a normal distribution zi|�0 ∼ N(μ, σ2

�0
), where μ is

the mean RSS value at a reference distance �0 to different
APs, σ2

�0
is the variance. In the shadowing model, ψi is a

zero-mean noise. Step 5 holds as
∑d1

i=1
1
πi
wij = 0.

Integration with Localization
To make our HOP features more discriminative for localiza-
tion, we are inspired by (Weston, Ratle, and Collobert 2008)
to consider integrating feature learning with classifier train-
ing. Specifically, as we have multiple locations, we define f
as a multi-class classifier and train it with the popular one-
vs-one setting. We let f = {f ′

m1,m2
|m1 ∈ Y,m2 ∈ Y},

where each f ′
m1,m2

= vm1,m2
· g(x) is a binary classifier

for locations m1 and m2, with vm1,m2
∈ R

d2 as the pa-
rameter. We emphasize how to best design f ′

m1,m2
is not the

focus of this paper. For each f ′
m1,m2

, we generate a set of
labels {y′1, ..., y′nm1,m2

}, where each y′k ∈ {1,−1} depends
on whether an instance in Ds has its label to be m1 or m2.
Finally, we consider a hinge loss to optimize f ′

m1,m2
:

L̃2(f
′
m1,m2

)=
∑nm1,m2

k=1
max

(
1− y′kf

′
m1,m2

(g(x(k)), 0
)
.

Given Θ for g(x), we define the total loss for f as:

L2(f ; Θ) =
∑

m1

∑
m2:m2 �=m1

L̃2(f
′
m1,m2

).

We use voting of the f ′
m1,m2

’s to do prediction.
In all, we optimize the following objective function:

minΘ,f L1 + λ2L2, s.t.
∑d1

i=1

1

πi
wij = 0, ∀j (13)

where λ2 > 0 is a parameter to tune. Recall that in Eq.(12)
we defines g(x) as differentiable to Θ, then we can optimize
Eq.(13) by gradient descent on L2. In practice, for compu-
tational convenience, we relax the constraint in Eq.(13) as a

regularization term R1 = 1
2

∑d2

j=1

(∑d1

i=1
1
πi
wij

)2

. Then,
we optimize the regularized objective function:

minΘ,F L1 + λ1R1 + λ2L2. (14)
In training, we optimize Eq.(14) iteratively with Θ and F .
For Θ we use contrast divergence to compute the gradient for
optimization. For F we compute subgradient for the hinge
loss for optimization. Due to space limit, we skip the details.

Table 1: Description for our data sets.
#(SAMPLE) #(LOC.) #(AP) #(DEVICE) ENVIROMENT

HKUST 4,280 107 118 2 64m × 50m

MIT 13,658 18 202 4 39m × 30m

Table 2: Description for the devices.
DEVICE CATEGORY WIRELESS CHIPSET ROLE

HKUST T43 IBM laptop Intel PRO/W 2200BG Source
T60 IBM laptop Intel PRO/W 3495BG Target

MIT N810 Nokia phone Conexant CX3110X Source
X61 IBM laptop Intel 4965AGN Target

D901C Clevo laptop Intel 5300AGN Target
N95 Nokia phone TI OMAP2420 Target

Experiments

Data sets: we use two public real-world data sets: HKUST
data set (Zheng et al. 2008a) and MIT data set2 (Park et al.
2011), as shown in Tables 1 and 2. For each data set, we
follow the previous work (Zheng et al. 2008a; Park et al.
2011) to choose the source device S and the target devices
T ’s. Totally, we have four pairs of heterogeneous devices
for experiments: 1) S = T43, T = T60, 2) S = N810, T =
D901C, 3) S = N810, T = N95, 4) S = N810, T = X61.

In each pair of devices, for S, we randomly selected 50%
of its data at each location as the labeled training data. We
used the other 50% of S’s data as test data only in Figure 1 to
demonstrate the device heterogeneity. For T , we used 100%
of its data as test data. We repeated the above process for five
times, and report results with mean and standard deviation
(depicted as error bars in Figures 3 and 4).
Baselines: as our cold-start problem requires no data from
the target domain, in the experiment we only compare with
the baselines that also fall into this setting. First, we com-
pare with SVM (Chang and Lin 2011), which ignores device
heterogeneity. Second, we compare with transfer learning
methods that require no data from the target device, includ-
ing HLF (Kjaergaard and Munk 2008) and ECL (Yedavalli
et al. 2005), as discussed in the related work.
Evaluation metric: following the convention of localiza-
tion study (Haeberlen et al. 2004; Lim et al. 2006; Xu et al.
2014), we evaluated the accuracy under an error distance
(i.e., the accuracy when the prediction is within a certain
distance to its ground truth). We will study the impact of er-
ror distance later in Figure 4(a). Unless specified, we set the
error distance as 4 meters in evaluation.

Impact of Model Parameters

We study the impact of λ1, λ2 and d2. In Figure 3, we fix
λ2 = 1, d2 = 100 and tune λ1. Our model tends to achieve
higher accuracies when λ1 is bigger. This means we prefer
the zero-sum constraint to hold. Then, we fix λ1 = 10, d2 =
100 and tune λ2. Our model is generally insensitive to λ2.
When λ2 = 100, the accuracies tend to drop. This may be
because a too big λ2 makes the loss of f overwhelm the

2We do not use the devices N810(2) and EEE900A due to their
low heterogeneity to N810 as reported in (Park et al. 2011).
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Figure 3: Impact of model parameters.
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Figure 4: Comparison with baselines.

objective function. Finally, we fix λ1 = 10, λ2 = 1 and tune
d2. Our model tends to achieve the best accuracies when
d2 = 150. In practice, like other dimensionality reduction
methods (Jolliffe 2005; Krizhevsky, Sutskever, and Hinton
2012), we suggest tuning d2 empirically. In the following,
we fix λ1 = 10, λ2 = 1 and d2 = 150.

Comparison with Baselines

We first compare with the baselines by using all the training
data of S, and evaluate the localization accuracy under dif-
ferent error distances. As shown in Figure 4(a), our model
is consistently better than the baselines. Besides, we com-
pare with the baselines by using different amount of training
data from S, and evaluate the localization accuracy under
4-meter error distance. As shown in Figure 4(b), our model
is in general consistently better than the baselines. In sum-
mary, by using all the training data of S and under the error
distance of 4 meters, our model can achieve 23.1%–91.3%
relative accuracy improvement than the best baseline (i.e,
ECL) across different pairs of devices. Such improvements
are all statistically significant – according to our t-tests, both
one-tailed test p1 < 0.01 and two-tailed test p2 < 0.01.

Our model is better than SVM, as we address device het-
erogeneity. Our model is better than HLF, as HLF only uses

pairwise RSS ratio features, which are not discriminative (as
we discussed in Figure 2) and are sensitive to the RSS val-
ues. In fact, we observe that HLF is sometimes even worse
than SVM. Our model is also better than ECL, since ECL
is limited in using pairwise comparison (in contrast with our
using higher-order pairwise features). Finally, we emphasize
both HLF and ECL lack robustness guarantee as we do.

Conclusion

We studied the cold-start heterogeneous-device localization
problem, where we have to train a localization model only
from a surveyor device’s data and test it with a heteroge-
neous target device’s data. This problem corresponds to an
extreme inductive transfer learning setting when there is no
target domain data to assist training. Due to cold start, we
aim to find a robust feature representation. We proposed a
novel HOP feature representation, which is principled with
robustness guarantee and expressive to be able to repre-
sent the data and discriminate locations. We also proposed
a novel constrained RBM model to enable automatic learn-
ing of the HOP features from data. Finally, we integrated the
robust feature learning with the localization model training,
so as to get more discriminative HOP features and complete
the localization framework. Our model can achieve 23.1%–
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91.3% relative accuracy improvement than the best state-of-
the-art baseline. In the future, we wish to extend our method
to incorporate unlabeled data from the source domain.
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