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Abstract

Automatic image annotation is an important problem in sev-
eral machine learning applications such as image search.
Since there exists a semantic gap between low-level image
features and high-level semantics, the description ability of
image representation can largely affect annotation results. In
fact, image representation learning and image tagging are
two closely related tasks. A proper image representation can
achieve better image annotation results, and image tags can be
treated as guidance to learn more effective image representa-
tion. In this paper, we present an optimal predictive subspace
learning method which jointly conducts multi-view represen-
tation learning and image tagging. The two tasks can promote
each other and the annotation performance can be further im-
proved. To make the subspace to be more compact and dis-
criminative, both visual structure and semantic information
are exploited during learning. Moreover, we introduce pow-
erful predictors (SVM) for image tagging to achieve better
annotation performance. Experiments on standard image an-
notation datasets demonstrate the advantages of our method
over the existing image annotation methods.

With the rapid development of social network and digital
equipment, large amounts of unlabeled or weakly labeled
images are shared on websites such as Flicker and Facebook.
To quickly access the interesting content from numerous im-
ages, an effective retrieval mechanism is required. Although
image search has been studied for years, the search engines
still mainly rely on textual queries instead of images. Since
automatic image annotation can assign relevant tags to un-
labeled images enriching their textual description, it is be-
coming an essential tool for searchable image databases and
attracting more and more research interest.

A variety of methods have been developed for image an-
notation (Makadia, Pavlovic, and Kumar 2008; Guillau-
min et al. 2009; Lin et al. 2013; Gao et al. 2014). Some
methods adopt nearest neighbour method to annotate images
by propagating tags from their nearest neighbours (Maka-
dia, Pavlovic, and Kumar 2008; Guillaumin et al. 2009).
Some methods adopt linear predictors or linear reconstruc-
tion for image tagging (Chen, Zheng, and Weinberger 2013;
Lin et al. 2013). Moreover, matrix completion is adopted in
TMC (Wu, Jin, and Jain 2013) where the tag-image relation
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is represented by a tag matrix. By searching the optimal tag
matrix that is consistent with both the textual and the visual
similarity, the images are tagged by relevant tags. A critical
factor affecting the annotation performance is the descrip-
tion abilities of the visual features. It is easier to annotate
images by using more powerful image descriptors.

Compared with single feature based representation, im-
ages can be described by multiple features such as SIFT,
HOG and LBP. Different features capture different aspects
of visual characteristics, and each type of feature can be
treated as a view for describing an instance. Multiple views
can complement with each other and generate more pow-
erful descriptions for learning tasks. Thus, some image an-
notation methods are proposed based on multi-view data
(Kalayeh, Idrees, and Shah 2014; Gao et al. 2014). NMF-
KNN (Kalayeh, Idrees, and Shah 2014) first learns a query-
specific nearest neighbour model and then predict tags by
the matrix product of the learned coefficients with the basis
of tags. OGL (Gao et al. 2014) is a semi-supervised method
that learns an optimal graph from multiple views, which can
accurately represent the relationships among image data.

Nevertheless, most of the methods predict tags based on
low-level visual descriptors, which may contain noise and
redundant features. In addition, since there exists a seman-
tic gap between low-level visual features and high-level se-
mantics, it is difficult to derive the true semantic infor-
mation directly utilizing the low-level features. A practi-
cal solution is to find an appropriate representation to en-
hance the performance of learning tasks. Subspace learn-
ing methods (Belhumeur, Hespanha, and Kriegman 1997;
1997; Roweis and Saul 2000; Belkin and Niyogi 2001) are
proposed to obtain new representations from original fea-
tures and achieves promising performance. However, most
of these methods ignore the semantic information associated
with images such as tags and the learning process are rela-
tively independent with the follow-up tasks. So the obtained
representation are not optimal for the learning tasks and their
performance is limited.

In fact, representation learning and image tagging are two
closely correlated works. On one hand, an appropriate im-
age representation can well reflect the semantic relations of
images and facilitate tag prediction. On the other hand, im-
age tags are high-level semantic information and can guide
the representation learning. Thus, joint conducting the two
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tasks can make them benefit each other and achieve the over-
all optimal performance. In this paper, we propose an opti-
mal predictive subspace learning (OPSL) method which in-
tegrates multi-view representation learning and image tag-
ging into a unified learning framework. Instead of predicting
tags from original feature spaces, our method conduct im-
age tagging from the optimal predictive subspace, where im-
ages can be appropriately represented for tag prediction. We
jointly learn the subspace and tag predictors to make the two
tasks promote each other so that the annotation performance
can be further improved. To guarantee that the learned sub-
space achieves good predictive ability, we adopt the follow-
ing methods. First, the intrinsic geometric structure of multi-
view data is preserved in the subspace, and the semantic
information is utilized to enhance the structure preserving.
Second, we adopt softmax activation function for subspace
learning which makes the learned subspace effectively min-
imize the disagreement between views and better capture
the complementary information. Furthermore, we introduce
powerful predictors (support vector machines, SVM) for tag
prediction. In turn, the trained SVM is used to guide the
subspace learning. Thus, the discriminative abilities of the
learned subspace and SVM predictors can be mutually im-
proved. Experiments are conducted on standard image anno-
tation datasets and the results show that our method achieves
promising image annotation performance compared with the
existing methods.

The main contributions are summarised as follows.
• We propose a unified subspace learning framework to si-

multaneously learn the proper image representation and
tag predictors. The correlations of the two tasks are well
explored so that they can promote each other and generate
promising annotation performance.

• Both visual structure and semantic information are pre-
served during subspace learning, which makes the learned
representation more compact and discriminative. We
adopt softmax activation function for multi-view struc-
ture preserving which can capture the difference between
views and sufficiently encode the multi-view complemen-
tary information.

• Instead of adopting linear regression predictors which
are commonly used in the existing image tagging works,
we introduce SVM for its powerful classification ability
to achieve better annotation performance. Moreover, the
trained SVM is also used to guide the subspace learning
to make the learned subspace more suitable for annotation
task and yields accurate prediction.

Related Work

Image annotation is to assign unlabelled images with seman-
tically related tags. Some annotation methods (Makadia,
Pavlovic, and Kumar 2008; Guillaumin et al. 2009; Kalayeh,
Idrees, and Shah 2014) adopt nearest neighbour mechanism
to propagate tags to unlabeled images. TagProp (Guillaumin
et al. 2009) learns a discriminative metric which combines a
collection of image similarities and then predict tags using a
nearest-neighbor model. In addition, matrix completion are
applied to image annotation in (Wu, Jin, and Jain 2013;

Feng et al. 2014). Tag matrix is considered to be incom-
plete and containing noise. The visual similarities of im-
ages and the low-rank property of the tag matrix are com-
monly utilized to recover the missing tags. To infer high-
level semantic information from low-level visual features,
an important issue is the description ability of visual fea-
tures. Instead of using single feature (Wu, Jin, and Jain
2013; Wang et al. 2014), some methods (Lin et al. 2013;
Chen, Zheng, and Weinberger 2013; Kalayeh, Idrees, and
Shah 2014; Gao et al. 2014) exploit multiple features for
image tagging, which obtains competitive tagging perfor-
mance due to multiple features can generate more complete
descriptions. However, most of them use task-independent
techniques such as PCA (Belhumeur, Hespanha, and Krieg-
man 1997) to represent multi-view data, which may fail to
obtain the optimal representation for the annotation task.

To obtain proper representation from original features,
many subspace learning methods have been proposed. Some
linear methods are developed such as PCA, LDA (Bel-
humeur, Hespanha, and Kriegman 1997) and NMF (Lee
and Seung 2001). Besides, some methods utilize the local
and manifold property to obtain the representation such as
ISOMAP (Tenenbaum, De Silva, and Langford 2000), LE
(Belkin and Niyogi 2001), LLE (Roweis and Saul 2000).
To cope with the multi-view data, several multi-view learn-
ing methods are proposed (Long, Philip, and Zhang 2008;
Xia et al. 2010; Lin, Liu, and Fuh 2011). A general spectral
embedding framework is proposed for multi-view dimen-
sionality reduction in (Long, Philip, and Zhang 2008). In
addition, multiple kernel learning is used for multi-view di-
mensionality reduction in (Lin, Liu, and Fuh 2011), which
provides convenience of using multiple types of image fea-
tures. The obtained multi-view representation can encode
the information of each view and provide a more complete
and accurate description for learning tasks.

The Proposed Method

Preliminary

For an arbitrary matrix A, its (i, j)-th entry and i-th row are
denoted by Aij and Ai· respectively. Tr[A] is the trace of A.
For A ∈ R

n×m, the Frobenius norm is ||A||F , and �2,1-norm
is defined as

‖A‖2,1 =

n∑
i=1

√√√√
m∑
j=1

A2
ij (1)

Given multi-view data consisting of n samples with H
views, they can be denoted by a set of matrices X =
{X(i) ∈ R

n×di}Hi=1, where di is the dimensionality of the
i-th view. For image data, each view represents a kind of
visual feature. Every training image is assigned with m-
dimensional binary-valued tag vector {ti}ni=1, ti ∈ {0, 1}m.
Let T = [t1, ..., tn]

T be the tag matrix of size n × m. We
aim to learn the subspace Z ∈ R

n×r from multi-view data
matrices, where r is the dimensionality of the learned sub-
space.

Many works have shown that data are more likely to
reside on a low-dimensional submanifold of the ambient
space (Roweis and Saul 2000; Seung and Lee 2000; Belkin,

1367



Niyogi, and Sindhwani 2006), and exploiting the intrinsic
manifold structure of data can enhance the discriminating
power of the learned subspace. The geometric structure can
be effectively modeled through a nearest neighbor graph.
Given image data {xi}ni=1 with H views, we construct k-
nearest neighbor graph Gh for each view h = 1, ..., H with
affinity matrix Wh ∈ R

n×n. Then each graph encodes the
local geometric structure information of the corresponding
view and can be used for subspace learning tasks. The graph
is constructed as follows,

Wh
ij =

{
exp

(
− ||xi−xj ||2

σ2

)
xi ∈ Nk(xj) or xj ∈ Nk(xi)

0 otherwise,
(2)

where σ is the bandwidth parameter and can be determined
by self-tuning method (Zelnik-Manor and Perona 2004).

Image annotation methods commonly adopt classifiers
to predict tags for unlabeled images. Support vector ma-
chines (SVM) have emerged as a powerful tool for classi-
fication tasks and achieved satisfied learning performance
(Schölkopf and Smola 2002). In the case of a binary classifi-
cation problem with n training examples, let K be the kernel
matrix and let y ∈ {−1,+1}n be the vector of labels, with
Y = diag(y). The dual SVM solves the following optimiza-
tion problem:

max
{0≤α≤C,αT y=0}

αT1− 0.5Tr
(
K(Y α)(Y α)T

)
, (3)

where α ∈ R
n are Lagrange multipliers, 1 = [1, ..., 1]T ∈

R
n and C is the misclassification penalty. This is also the

classic 1-norm soft margin SVM problem.

Semantic Information Guided Multi-View
Structure Preserving

To guarantee that the learned subspace achieves good pre-
dictive ability for image tagging, we expect it to satisfy
the following two properties. First, the subspace should be
locally smooth, i.e., the local geometric structure of im-
ages in the original visual space should be preserved in the
learned subspace. Second, different views generate differ-
ent descriptions about the same sample, and the difference
between multiple views make them complement with each
other. We expect to learn a universal subspace from multiple
views which minimizes the disagreement between them, so
that the multi-view complementary information can be suf-
ficiently encoded in the learned subspace. Third, the seman-
tic information of images should be exploited for subspace
learning and the learned subspace should be discriminative
to well predict image tags.

Geometric structures of multiple views are modeled by
several k-nearest neighbour graphs {Wh}Hh=1. We use
W s = TTT to model the semantic structure of images. The
more tags that the two images share, the more similar are the
two images. Inspired by the success of self-representation
which has been widely used in subspace learning (Elham-
ifar and Vidal 2013; Cao et al. 2015), we encode the visual
and semantic structures into subspace Z by the following

formulation,

min
Z

∑H
h=1 ||Z − (Wh �W s)Z||2F + η||T − ZZTT ||2F

s.t. ZTZ = I
(4)

where � denotes Hadamard product. We utilize semantic
structure to enhance the visual structure, and the visual near-
est neighbours who share the similar tags are treated as the
true neighbours. Semantic correlations are used to filter out
inaccurate visual descriptions so that the visual structure are
made to be more accurate and reliable. The second term is
to encode semantic information into the learned subspace,
where we can see that the images possessing similar tags are
also made to be similar in the learned subspace Z. η is the
weight parameter to control the strength of semantic infor-
mation embedding. The orthogonal constraint is to avoid the
trivial solution.

Nevertheless, all the views are simply assigned with equal
weights during multi-view structure preserving in problem
(4), which may not be the optimal setting. The differences
of multi-view data make some views generate larger dis-
agreements and higher costs. We expect to find a universal
subspace that accommodates each view well and captures
the complementary information of multi-view data. To ad-
dress this problem, we consider to minimize the difference
between the learned subspace and the most disagreement
view (the one generates the highest embedding cost). Thus,
the overall disagreements between the learned subspace and
each view can be effectively reduced and the complemen-
tary information of multi-view data can be fully preserved
in the subspace. We adopt the softmax activation function
to approximately find the most disagreement view, and the
formulation is revised as follows,

min
Z

f(Z), s.t. ZTZ = I (5)

and

f(Z) =
1

γ
log

{ H∑
h=1

exp
[
γ||Z − (Wh �W s)Z||2F

]}

+ η||T − ZZTT ||2F ,
(6)

where γ is the smooth parameter to control the precision of
approximation.

Tag Predictors Learning

After obtaining the subspace Z, we predict the tags in the
learned subspace. We introduce SVM to annotate images
for its powerful classification ability. To make the subspace
more discriminative, we also use the trained SVM to guide
the subspace learning. In the dual SVM formulation, we
adopt linear kernel K = ZZT for its simplicity and effec-
tiveness. Then the objective function of predictors learning
can be formulated as follows,

min
Z

max
αt

g(Z, αt),

s.t. αT
t yt = 0, 0 ≤ αt ≤ C, t = 1, ...,m

(7)
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and

g(Z, αt) =

m∑
t=1

[
αT
t 1− 0.5Tr

(
ZZTYtαt(Ytαt)

T
)]

.

(8)
It should be noted that each tag is trained with a SVM pre-
dictor to separate it from the other tags and totally m SVM
predictors are trained. yt ∈ {−1,+1}n and Yt = diag(yt)
are the label vector and matrix for training SVM of tag t
respectively, and αt are the learned Lagrange multipliers.
Given the subspace Z, SVM is trained based on this repre-
sentation and the learning results αt can be obtained. In turn,
the trained SVM is also used to guide the subspace learning
to make it appropriate for tag prediction and be more dis-
criminative.

Projection Function Learning

To cope with the out-of-sample problem, we learn the
projection function to project the unlabeled multi-view
data to the subspace and then conduct image annotation
by the trained SVM. We first construct matrix X =
[X1, X2, ..., XH ], X ∈ R

n×d and d = d1+ ...+dH , which
concatenates the feature matrix of each view. Then we use
matrix P ∈ R

d×r to project multi-view data into the sub-
space Z. Taking account for the noise and redundant features
contained in the multi-view data, we adopt �2,1-norm to reg-
ularize the the projection function, which can shrink some
rows to zeros to select effective dimensions. The projection
function learning is defined as

min
Z,P

h(Z,P ), (9)

and
h(Z,P ) = ||XP − Z||2F + β||P ||2,1, (10)

where β is the parameter to control the strength of the regu-
larization term.

Unified Objective Function

The ultimate optimization objective is formulated by inte-
grating multi-view subspace learning and image annotation
into a unified framework, which aims to make the two tasks
promote each other and achieve the overall optimal perfor-
mance. So the problem is formulated as follows,

O(Z,P, αt) = min
Z,P

max
αt

(
f(Z) + μ1g(Z,αt) + μ2h(Z,P )

)
,

s.t. ZTZ = I, αT
t yt = 0, 0 ≤ αt ≤ C, t = 1, ...,m

(11)
where μ1 and μ2 are two parameters to control the weights
of the corresponding subproblems.

Optimization Algorithm

Apparently, problem (11) is not convex over all variables
Z, P and αt simultaneously, so we derive an iteration op-
timization algorithm to solve it. In each iteration, only one
variable is updated while the others remain unchanged. The
optimization process is summarized in Algorithm 1.

Update for P

In order to solve P , we keep the parts which are related to P
from O(Z,P, αt) and define

L(P ) = ||XP − Z||2F + β||P ||2,1. (12)

Setting the gradient ∇PL(P ) = 0, we have

∇PL(P ) = 2XT (XP − Z) + 2βDP = 0

⇒ P =
(
XTX + βD

)−1
XTZ,

(13)

where D is a diagonal matrix with elements Dii =
1

2||Pi·||2

Update for Z

There is an orthogonal constraint for learning Z and it is dif-
ficult to solve this problem exactly. So we adopt an approxi-
mation procedure and convert the original constrained opti-
mization problem into an unconstrained optimization prob-
lem by using a penalty method. Keep the parts which are
related to Z from O(Z,P, αt) and we obtain

L(Z) = 1
γ log

{ H∑
h=1

exp
[
γ||Z − (Wh �W s)Z||2F

]}

+η||T − ZZTT ||2F − 0.5μ1

m∑
t=1

Tr
(
ZZTYtαt(Ytαt)

T)

+μ2||XP − Z||2F + λ||ZTZ − I||2F ,
(14)

where λ > 0 is a parameter to control the orthogonality
condition. It should be large to ensure the orthogonality is
satisfied. Then the gradient is computed as

∇ZL(Z) = 1
H∑

i=1
Δi

[ H∑
j=1

Δj

(
2Z − 4AjZ + 2AjTAjZ

)]

+4η(TTTZZTZ − TTTZ) + 4λ(ZZTZ − Z)

−μ1

m∑
t=1

Ytαt(Ytαt)
T
Z + 2μ2 (Z −XP )

(15)
where Δj = exp

[
γ||Z − (W j �W s)Z||2F

]
and Aj =

W j � W s. After obtaining the gradient, we adopt gradient
descent method to solve Z. The step size δ is determined by
Armijo linesearch (Bertsekas 1999).

Update for αt

By fixing Z and P , learning αt is the classic SVM opti-
mization problem which can be effectively solved by sev-
eral methods such as SMO (Platt and others 1999). SMO
can break this quadratic programming (QP) problem into a
series of smallest possible QP problems and obtain the solu-
tion effectively and quickly.

Experiments

Datasets

We adopt three publicly available image tagging datasets
that have been widely used in previous works.

Corel5k. It (Duygulu et al. 2002) contains 5, 000 man-
ually annotated images collected from the larger Corel CD
set and each image is annotated with 3.5 tags on average.
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Algorithm 1: The algorithm of OPSL

Input: Multi-view matrices X = {X(i)}Hi=1, visual and
semantic structure graphs {Wh}Hh=1 and W s,
tag matrix T , SVM label matrices {Yt}mt=1 and
parameters: μ1, μ2, γ, η, β, λ, r, C

1 Initialize Z, P and {αt}mt=1
2 for iter = 1 to MaxIter do
3 Update Z by Z ← Z − δ∇ZL(Z);
4 Update SVM by SMO method;
5 Update P by equation (13);

6 Update D by D ←
⎡
⎣

1
2||P1·||2

...
1

2||Pd·||2

⎤
⎦;

7 end
Output: Projection function P and SVM Lagrange

multipliers {αt}mt=1.

ESP Game. It (Von Ahn and Dabbish 2004) contains
about 20, 000 images from several varieties such as logos
and personal photos and each image contains 4.6 tags on
average.

NUS-WIDE. It (Chua et al. 2009) is a web image dataset
which includes 55, 615 images and 5, 018 tags from Flickr.
To reduce noisy tags and data, we removed tags whose oc-
currence numbers are below 100 and images that contain
less than 3 tags. Then we obtained around 13, 000 images,
where 10, 000 of them are randomly sampled as training set
and the rest are used as testing set.

Compared Methods and Evaluation Metrics

To demonstrate the effectiveness of OPSL, we compare it
with several representative image tagging methods, such as
FastTag (Chen, Zheng, and Weinberger 2013), LSR (Lin
et al. 2013), TMC (Wu, Jin, and Jain 2013), NMF-KNN
(Kalayeh, Idrees, and Shah 2014) and OGL (Gao et al.
2014). To indicate the predictive ability of the learned multi-
view subspace, we also compare our method with two multi-
view learning methods lrMVL (Liu et al. 2015) and MVLR
(Zheng et al. 2015). The two methods also learn new sub-
spaces from original multi-view data and then predict labels
based on the new learned representation. Furthermore, we
conduct OPSL with equal weight learning manner which
adopts function (4) instead of f(Z) in objective function
(11) and denote it by OPSL-V. This setting is to validate
wether the adopted softmax activation function can help bet-
ter capturing the multi-view information.

During image tagging, each image is annotated with the
five most relevant keywords as in (Chen, Zheng, and Wein-
berger 2013). Then we evaluate our method with standard
performance measures. Average precision (P), average re-
call (R) and F1-score (F1) (Singhal 2001) are computed for
each test image by comparing annotation results with ground
truth. The reported results are averaged across all test im-
ages. In addition, we adopt Mean Average Precision (MAP)
as in (Wu, Jin, and Jain 2013; Gao et al. 2014), which can be

calculated by checking the correctness of retrieved images.

Experimental Setting

In our experiments, different kinds of visual features are
used to construct different views of image data. For Corel5k
and ESP Game datasets, we adopt seven kinds of visual fea-
tures: Gist, HarrisSift, HarrisHue, HarrisHueV3H1, Dens-
eSift, DenseHue and DenseHueV3H1 which are provided
by (Guillaumin et al. 2009). For NUS dataset, six kinds
of features are adopted: color histogram, color correlation,
color moments, edge direction histogram, wavelet texture
and BoW based on SIFT. As some of the compared meth-
ods cannot directly utilize multi-view data, we adopt PCA to
separately perform dimensionality reduction for each view
and then concatenate them into a new merged feature ma-
trix.

Around 1/10 of the training set are taken as the validate
set for parameter tuning. Parameters in the compared meth-
ods are set as suggested in their works. For our method, we
construct a 10-NN graph for each view to model the visual
local structure, and Euclidean distance is used for finding
the neighbors. To guarantee the orthogonality is satisfied,
we fix λ = 105 in our experiments. The other parameters
in our method are tuned on the validation set to determine
their values. We will present the detailed parameter sensi-
tivity analysis on Corel5k dataset in the following part. To
obtain effective initial value, we first initialize Z by conduct-
ing PCA on X , then initialize P and αt by solving problem
(9) and (7) respectively. In experiments, we find the opti-
mization variables generally remain unchanged after 20 iter-
ations, so MaxIter is set to 20.

Results and Analysis

Image annotation performance on three datasets are shown
in Table 1. It is obvious that the proposed method OPSL
achieves promising image tagging performance compared
with the other methods, which demonstrates the effective-
ness of our method. OPSL achieves improvement of 2.3%
in F1 and 2.1% in MAP for Corel5k dataset and 1.9% in F1
and 0.9% in MAP for NUS dataset. Although our method
does not obtain the best MAP score in ESP Game dataset, it
achieves the highest F1 score by improving 1.4% compared
with the other methods.

Throughout the experiments, we reveal several interesting
points. First, multi-view based annotation methods (NMF-
KNN, OGL and OPSL) generally obtain better annotation
performance than the single view based methods. Multi-
view methods considers the difference and complementar-
ity between views, so they can obtain more accurate repre-
sentation for image tagging. Second, local structure of im-
ages can enhance the accuracy of visual descriptions, which
is very helpful for improving the annotation performance.
NMF-KNN, LSR, OGL and OPSL explore the local struc-
ture of multi-view data generally achieve better performance
than lrMVL and MVLR which do not consider the local in-
formation. Third, exploiting semantic information can make
the learned representation more discriminative. Both OGL
and OPSL utilize semantic correlations of images to guide
the representation learning, which makes them obtain more
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Table 1: Image Annotation Comparison on Different Datasets.

Method Corel5k ESP Game NUS
P R F1 MAP P R F1 MAP P R F1 MAP

FastTag 32.2 45.7 37.8 25.3 29.0 32.1 30.5 12.2 58.0 26.6 36.5 11.2
NMF-KNN 35.0 49.6 41.0 26.2 28.4 31.6 29.4 13.7 51.6 23.8 32.5 10.5

LSR 33.1 46.8 38.8 24.8 28.5 32.4 30.3 14.9 52.8 24.2 33.2 13.6
TMC 31.7 37.1 33.9 17.3 21.1 23.2 22.1 9.8 39.2 17.9 24.6 9.4
OGL 34.7 49.0 40.7 27.5 31.0 34.1 32.5 17.0 57.2 26.2 35.9 13.3

lrMVL 29.9 42.0 34.9 20.4 25.9 28.5 27.1 10.3 48.6 22.3 30.6 9.4
MVLR 25.9 37.2 30.5 16.9 24.5 27.2 25.8 9.5 37.7 17.3 23.7 7.9

OPSL-V 36.0 50.7 42.1 28.8 31.3 34.5 32.8 15.3 59.1 27.1 37.2 13.9
OPSL 37.0 52.1 43.3 29.6 32.3 35.6 33.9 16.1 60.9 28.0 38.4 14.5

Figure 1: The parameter sensitivity analysis on Corel5k dataset.

appropriate representation for image annotation and achieve
better performance. Furthermore, OPSL-V does not per-
form as good as OPSL, indicating that our softmax activa-
tion function can effectively minimize the disagreement be-
tween the learned subspace and each view and better capture
the multi-view complementary information. Finally, OPSL
achieves the best image tagging performance in most cases
mainly due to the following reasons. The local geometric
structure of multi-view data is effectively enhanced by using
the semantic structure constraints, and both visual structure
and semantic information are preserved in the learned sub-
space. This guarantees the obtained subspace to be compact
and discriminative. In addition, we use the learned SVM pre-
dictors to guide the subspace learning which makes the sub-
space to be more proper for tag prediction task. Moreover,
OPSL jointly conducts multi-view representation learning
and image tagging. The two tasks promote each other so that
the overall performance can be improved.

Next, we study the sensitiveness of three important pa-
rameters r, η and μ1 on Corel5k dataset. The performance
of different parameter settings are shown in Figure 1. We
can observe that when the dimensionality of the learned sub-
space r is small (r < 200), the subspace cannot fully en-
code the information of multi-view data so that the annota-
tion performance is seriously influenced. The proper dimen-
sionality of the subspace is from 200 to 350. η controls the
strength of semantic information preserving. As can be seen
from Figure 1, the larger η the more semantic information
can be preserved, and the performance is increasing. While

the strength becomes too strong for η ≥ 10 and the per-
formance is influenced. The best performance is achieved
for η = 1. μ1 is the weight of SVM predictors learning
term. The larger of μ1, the more strength that SVM pre-
dictors impose on the learned subspace. As shown in Fig-
ure 1, the annotation performance can be improved as the
value of μ1 increases, which utilizes more supervised infor-
mation from SVM to guide subspace learning. For μ1 > 1,
the performance varies very little. The best performance can
be achieved around μ1 = 1.

Conclusion

In this paper, we propose a novel image tagging method
that jointly conducts multi-view representation learning and
image tagging. The two tasks can promote each other to
achieve the better annotation performance. We learn an op-
timal predictive subspace from multi-view data to obtain
a proper representation for image tagging, which builds a
bridge between low-level features and high-level semantic
information. Both local geometric properties of multi-view
data and semantic information are exploited for subspace
learning which makes the learned representation more com-
pact and discriminative. Experimental results on three stan-
dard image annotation datasets demonstrate the effective-
ness of the proposed method.
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