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Abstract
Multi-view data is highly common nowadays, since vari-
ous view-points and different sensors tend to facilitate bet-
ter data representation. However, data from different views
show a large divergence. Specifically, one sample lies in
two kinds of structures, one is class structure and the other
is view structure, which are intertwined with one another
in the original feature space. To address this, we develop
a Robust Multi-view Subspace Learning algorithm (RMSL)
through dual low-rank decompositions, which desires to seek
a low-dimensional view-invariant subspace for multi-view
data. Through dual low-rank decompositions, RMSL aims
to disassemble two intertwined structures from each other in
the low-dimensional subspace. Furthermore, we develop two
novel graph regularizers to guide dual low-rank decomposi-
tions in a supervised fashion. In this way, the semantic gap
across different views would be mitigated so that RMSL can
preserve more within-class information and reduce the influ-
ence of view variance to seek a more robust low-dimensional
subspace. Extensive experiments on two multi-view bench-
marks, e.g., face and object images, have witnessed the supe-
riority of our proposed algorithm, by comparing it with the
state-of-the-art algorithms.

Introduction
Multi-view data analysis has caught an increasing atten-
tion in the recent years (Kan et al. 2012; Liu et al. 2012;
Wu and Jia 2012; Cai et al. 2013; Shekhar et al. 2014;
Zhao and Fu 2015), since multi-view data (e.g., multi-pose
images and multi-modal data) is frequently seen in reality
(Ding and Tao 2015) when data is taken from various view-
points (Cai et al. 2013) or captured with different types of
sensors (Liu et al. 2012; Shekhar et al. 2014). Multi-view
data brings in the challenge that the data with the same label
tend to be multiple different samples, even heterogeneous.
This results in a difficult learning problem, where within-
class data across multiple views show a lower similarity than
that within the same view but from different classes. In other
words, one sample lies in two kinds of structures, one is class
structure and the other is view structure, which are inter-
twined in the original high-dimensional space.

Generally, there are three categories of techniques to
handle multi-view data analysis problems, including fea-
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Figure 1: Framework Illustration. Note that the same color
denotes same class, while same shape means same view. (a)
represents the two intertwined structures of multi-view data
X at one data point (blue ◦). (b) Dual low-rank decomposi-
tions tend to separate view structure Zv and class structure
Zc from each other through X = X(Zc + Zv) + E. (c) de-
notes the desired results with the guidance of two supervised
graph regularizers, and therefore, the same class data points
are pulled close, while different class data points lying in the
same view are pushed far away.

ture adaptation (Kan et al. 2012; Zheng and Jiang 2013;
Zhang et al. 2013), classifiers adaptation (Hestenes 1969;
Wu and Jia 2012) and deep learning (Zhu et al. 2014).
Specifically, feature adaptation algorithms aim to seek a
common space where features across different views could
be aligned well. Classifier adaptation algorithms are de-
signed to adapt classifier trained on one view to another
view. Whilst deep learning algorithms focus on building a
hierarchical structure to capture more discriminative fea-
tures to mitigate the view divergence.

Recently, low-rank constraint is widely adopted in data
representation, which originally helps uncover the multiple
structures of the data by finding the lowest rank represen-
tation and detecting noise or outliers. Along this line, re-
cent works (Bao et al. 2013; Zhang et al. 2015) adopt dual
low-rank decompositions to handle largely corrupted data
situations. However, they usually apply low-rank decompo-
sition in the original high-dimensional space and none of
these works consider two intertwined structures for multi-
view data. Most recently, robust subspace learning smoothly
integrates subspace learning and low-rank decomposition in
a unified framework to deal with high-dimensional data (Li
and Fu 2014; Ding et al. 2015; Ding, Shao, and Fu 2014).

In this paper, we develop a novel multi-view learning al-
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gorithm, named as Robust Multi-view Subspace Learning
(RMSL), to seek a view-invariant subspace(Figure 1). Since
there are two kinds of intertwined structures within multi-
view data, it is essential to preserve more within-class infor-
mation while removing the influence of view-variance from
the same class. As far as we know, we are the first to consider
dual low-rank decompositions in multi-view data analysis.
To sum up, the major contributions are highlighted as:

• Dual low-rank decompositions are proposed to disassem-
ble two intertwined structures within multi-view data.
Therefore, a more robust view-invariant subspace is
learned to capture more label information while reducing
the influence from view-variance. It is of great importance
for such case in reality, where we cannot have the view
knowledge of the testing data at hand, since we only seek
a common view-invariant subspace, which is applicable
for different views.

• Two novel graph regularizers are designed to guide the
dual low-rank decompositions in a supervised manner.
Specifically, within-class feature tends to be compact
while within-view feature among different classes will be
discriminative. This practice would further boost the clas-
sification performance by better handling view-variance
influence within each class.

Related Work
In this section, we first present two lines of the most related
work, then highlight the differences of our work.

Low-rank representation (Candès et al. 2011; Liu, Lin,
and Yu 2010; Liu et al. 2013) becomes very popular and
widely applied in many fields. Among them, Robust PCA
(RPCA) (Candès et al. 2011) is a well-known algorithm,
which assumes the data is drawn from one single subspace.
However, real-world data is generally lying in multiple sub-
spaces. Therefore, Low-Rank Representation (LRR) (Liu,
Lin, and Yu 2010; Liu et al. 2013) is developed to uncover
the global class structures within the data meanwhile de-
tect sparse noise or outliers. LRR employs low-rank con-
straint on the original space of data, therefore, it is very time-
consuming when the data is very high-dimensional. Besides,
for multi-view data, there exist two kinds of global structures
(i.e., class structure and view structure) mixed together so
that LRR cannot well handle such cases. To this end, we pro-
pose dual low-rank decompositions to learn a view-invariant
subspace for multi-view data.

Low-rank subspace learning attempts to seek a robust
low-dimensional subspace by integrating low-rank con-
straint with subspace learning (Li and Fu 2014; Ding et al.
2015; Ding, Shao, and Fu 2014; Shao, Kit, and Fu 2014).
Specifically, subspace learning aims to seek a relatively
low-dimensional subspace, which can preserve the intrin-
sic structure within the data. Conventional subspace learn-
ing algorithms are generally separated into unsupervised and
supervised fashion. Those conventional subspace learning
algorithms, however, are heavily sensitive to noisy or cor-
rupted data, which leads to a very poor classification perfor-
mance in dealing with real-world data. Two most represen-
tative low-rank subspace learning methods are DLML (Ding

et al. 2015) and SRRS (Li and Fu 2014), which tend to take
the advantages of both subspace learning and low-rank rep-
resentation to generate a robust subspace. Our proposed one
also adopts this idea to analyze multi-view data, however,
RMSL aims to learn a view-invariant subspace through dual
low-rank decompositions with the guidance of supervised
graph regularizers, which aims to preserve more within-class
information while reducing the influence of view-variance.

Robust Multi-view Subspace Learning
In this section, we propose our novel Robust Multi-view
Subspace Learning. Then, we develop an efficient solution
with its complexity analysis.

Dual Low-Rank Decompositions
Assume there is multi-view data X = [X1, · · · , Xk] with
k views, and each view Xi ∈ R

d×mi contains the same c
classes, where d is the dimensionality of the original feature
and mi is the sample-size of each view data (m =

∑
i mi).

Conventional low-rank representation methods (Liu, Lin,
and Yu 2010; Liu et al. 2013) aim to seek a robust repre-
sentation Z to seek the global multiple subspaces structure
within the data as follows:

min
Z,E

rank(Z) + λ‖E‖1, s.t. X = XZ + E, (1)

where rank(·) is the rank operator of a matrix. Z ∈ R
m×m

is the low-rank coefficient matrix and E ∈ R
d×m is the

sparse error part constrained with l1-norm in order to handle
noisy data. λ is the trade-off parameter. Generally, Z uncov-
ers class structure of the data X . However, for multi-class
multi-view images, it is difficult for Z to uncover the class
structure due to the large divergence across different views
within one class. Therefore, the assumption that Z is low-
rank cannot hold. Besides, the data within the same view but
from different classes would gather very close.

In fact, there are two kinds of structures behind multi-
view data (Su et al. 2014), one is class structure while
the other is view-variance structure. These two independent
structures are mixed together, that is, each data would lie
in two structures. Both structures should be low-rank, since
class structure aims to uncover global structure for class in-
formation, while view-variance structure preserves the view
information across different classes. Therefore, Z can be de-
composed into two low-rank parts as follows:

min
Zc,Zv,E

rank(Zc) + rank(Zv) + λ‖E‖1,
s.t. X = X(Zc + Zv) + E,

(2)

where Zc ∈ R
m×m and Zv ∈ R

m×m are the low-rank rep-
resentations for class structure and view-variance structure,
respectively. In this way, two structures can be dug out from
each other. Therefore, the redundant part from view structure
can be removed from class structure so that we can achieve a
better global class structure. However, such an unsupervised
manner cannot separate the two structures in the way we
expect. Therefore, it is essential to guide the dual low-rank
decompositions with supervised information.
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Robust Multi-view Subspace Learning
To better guide the dual low-rank decompositions in our pre-
vious model (2), we develop two supervised graph regulariz-
ers in order to disassemble those two intertwined structures
in an expected way. Moreover, our goal is to seek a robust
view-invariant subspace for multi-view data. Following re-
cent low-rank subspace learning methods (Li and Fu 2014;
Ding et al. 2015), we develop our view-invariant robust sub-
space learning framework as:

min
P,Zc,Zv,E

‖Zc‖∗ + ‖Zv‖∗ + λ‖E‖1 + αG(P,Zc, Zv)

s.t. PTX = PTX(Zc + Zv) + E, PTP = Ip, (3)
where α is the balanced parameter for the supervised graph
regularizer G(P,Zc, Zv). P ∈ R

d×p is the learned subspace
(p is reduced dimensionality). The previous rank minimiza-
tion problem is solved by the nuclear norm ‖ · ‖∗ as a good
surrogate (Liu, Lin, and Yu 2010; Liu et al. 2013). Note that
the orthogonal constraint PTP = Ip (Ip ∈ R

p×p) is im-
posed to avoid some trivial solutions to P .

Next, we present how to define the graph regular-
izer. Specifically, we incorporate supervised information,
e.g., class information, view information, to guide the
dual low-rank decompositions. To this end, we design
two graphs for class manifold structure and view man-
ifold structure. Since we aim to preserve more within-
class information while moving out the influence of view-
variance, we propose to minimize within-class similarity
on the new low-dimensional within-class feature Yc =
PTXZc (Yc ∈ R

p×m) while maximizing between-view
dissimilarity on the new low-dimensional within-view fea-
ture Yv = PTXZv (Yv ∈ R

p×m). Therefore, we develop
the following two graph terms:

Gc =
∑

i,j(Yc,i − Yc,j)
2W c

i,j

Gv =
∑

i,j(Yv,i − Yv,j)
2W v

i,j

(4)

where Yc,i, Yc,j are the i-th and j-th column of Yc, while
Yv,i, Yv,j are the i-th and j-th column of Yv . W c and W v

are two weight matrices of two graphs, whose elements are
defined as follows:

W c
i,j =

{
1, if xi ∈ Nk1

(xj), and li = lj ,

0, othervise
(5)

W v
i,j =

{
1, if xi ∈ Nk2

(xj), but li �= lj ,

0, othervise
(6)

where li, lj are the labels of sample xi, xj , respectively. xi ∈
Nk1(xj) means xi is the k1 nearest neighbor of the same
class data xj , while xi ∈ Nk2(xj) denotes xi belongs to the
k2 nearest neighbor of the same view data xj . In this way,
we can preserve the local manifold structure within the same
class and dig out the influence of view manifold.

To this end, we design the graph regularizer G(P,Zc, Zv)
to minimize the within-class variance while maximizing the
margin for different classes but within the same view. We
formulate G(P,Zc, Zv) in LDA fashion as:

G(P,Zc, Zv) =
Gc

Gv
=

tr(PTXZcLc(P
TXZc)

T)

tr(PTXZvLv(PTXZv)T)
,

(7)

where Lc and Lv are the graph Laplacian of W c and W v ,
respectively (He and Niyogi 2003). To make our solution to
Eq. (3) simple, we convert the trace ratio to trace difference
(Li and Fu 2014) and achieve:

G(P,Zc, Zv) = tr(PTXZcLc(P
TXZc)

T)

− βtr(PTXZvLv(P
TXZv)

T),
(8)

where we directly set the trade-off β between Gc and Gv as
1 for simplicity throughout this work.
Discussion: Our dual low-rank decompositions are designed
to separate the intertwined two structures in multi-view data,
one is class structure, and the other is view structure. With
the supervision of two novel graph regularizers, our new
learned subspace would keep the within-class data more
compact while maximizing the margin between two differ-
ent data within the same view. In this way, two intertwined
structures could be disassembled so that the view-variance
influence can be minimized. Furthermore, a more robust
view-invariant subspace is learned to facilitate multi-view
data learning task with the merits of subspace learning and
low-rank representation.

Solving Objective Function
Problem (3) could be addressed by Augmented Lagrange
Methods (ALM) (Liu, Lin, and Yu 2010; Liu and Yan 2011).
However, ALM would introduce extra relax variables, which
results in complex matrix operations during optimization,
e.g., matrix inverse and multiplications. We adopt the first
order Taylor expansion like approximation in order to save
computational cost of the original quadratic term. In this
way, we can achieve a simpler solution, similar to ALM
for the original problem (3). To clarify it, we first formulate
problem (3) in the augmented Lagrangian function as:

min
P,E,Zc,Zv,Q

‖Zc‖∗ + ‖Zv‖∗ + λ‖E‖1 + αG(P,Zc, Zv)

+〈Q,PTX − PTX(Zc + Zv)− E〉
+μ

2 ‖PTX − PTX(Zc + Zv)− E‖2F,
(9)

where Q is lagrange multiplier while μ > 0 is the positive
penalty. 〈, 〉 denotes the matrix inner product operator, i.e.,
〈U, V 〉 = tr(UTV ). ‖ · ‖2F means Frobenius norm of a ma-
trix.

Then we reformulate Eq. (9) by merging the last three
terms into a quadratic term as follows:

min
P,E,Zc,Zv,Q

‖Zc‖∗ + ‖Zv‖∗ + λ‖E‖1
+h(P,Zc, Zv, E,Q, μ)− 1

μ‖Q‖2F,
(10)

where h(P,Zc, Zv, E,Q, μ) = αG(P,Zc, Zv)+
μ
2 ‖PTX−

PTX(Zc + Zv) − E + Q
μ ‖2F. Similar to the conventional

ALM, variables Zc, Zv, P and E in Eq. (10) cannot be
solved jointly, but they are solvable one by one when fix-
ing others. To this end, we address each subproblem sep-
arately by approximating the quadratic term h to first or-
der Taylor expansion, while treating others variables as con-
stant. We define the t-th iteration optimized variables as
Zc,t, Zv,t, Et, Pt and Qt. Superficially, we can achieve each
sub-solution at the t+ 1 (t ≥ 0)-th iteration as:
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Updating Zc:

Zc,t+1 = argmin
Zc

‖Zc‖∗ + h(Zc, Zv,t, Et, Pt, Qt, μ)

= argmin
Zc

‖Zc‖∗ + ημ
2 ‖Zc − Z

(t)
c ‖2F

+ 〈∇Zc
h, Zc − Z

(t)
c 〉

= argmin
Zc

1
ημ‖Zc‖∗ + 1

2‖Zc − Zc,t +∇Zc
h‖2F,

(11)
where ∇Zc

h = ∇Zc
h(Zc,t, Zv,t, Et, Pt, Qt, μ) =

2αXTPtP
T
t XZc,tLc − QT

t P
T
t X − μXTPt(P

T
t X −

PT
t X(Zc,t + Zv,t)− Et) and η = ‖Pt

TX‖22. Problem (11)
can be solved with singular value thresholding effectively
(Cai, Candès, and Shen 2010).
Updating Zv:

Zv,t+1 = argmin
Zv

‖Zv‖∗ + h(Zc,t+1, Zv, Et, Pt, Qt, μ)

= argmin
Zv

‖Zv‖∗ + ημ
2 ‖Zv − Z

(t)
v ‖2F

+ 〈∇Zv
h, Zv − Z

(t)
v 〉

= argmin
Zv

1
ημ‖Zv‖∗ + 1

2‖Zv − Zv,t +∇Zv
h‖2F,

(12)
where ∇Zv

h = ∇Zv
h(Zc,t+1, Zv,t, Et, Pt, Qt, μ) =

−2αXTPtP
T
t XZv,tLv − QT

t P
T
t X − μXTPt(P

T
t X −

PT
t X(Zc,t+1 + Zv,t) − Et). Problem (12) can be solved

in the same way to problem (11).
Updating E:

Et+1 = argmin
E

λ
μ‖E‖1

+ 1
2‖E − (PT

t (X̃t+1 +
Qt

μ )‖2F,
(13)

where we define X̃t+1 = X −X(Zc,t+1 +Zv,t+1) for sim-
plicity. Problem (13) can be solved by using the shrinkage
operator (Lin, Chen, and Ma 2010).
Updating P :

Pt+1 =
(
2αXZ̃t+1X

T + μX̃t+1X̃
T
t+1

)−1(
X̃t+1(Et+1 − Qt

μ )T
)
,

(14)

where we define Z̃t+1 = Zc,t+1LcZ
T
c,t+1−Zv,t+1LvZ

T
v,t+1

for simplicity.
Algorithm 1 lists the detailed solutions to problem (10),

where we set those parameters μ0, ρ, ε, tmax and μmax

empirically, while tuning the two trade-offs, i.e., λ and α
throughout the experiment, which is further discussed in
experimental part. Moreover, P gets initialized with ran-
dom matrixes. We have adopted traditional subspace learn-
ing methods to initialize P in different types, and found that
the final evaluation performance tends to be almost the same.

Complexity Analysis
For simplicity, we mainly analyze the complexity of opti-
mization parts listed in Algorithm 1. Note that X ∈ R

d×m,
P ∈ R

d×p and Zc ∈ R
m×m, Zv ∈ R

m×m. In Algorithm 1,
we can observe that the most time-consuming components
are the trace norm computation in Step 1& 2, and matrix
multiplications & inverse in Step 4.

Algorithm 1 Solution to Problem (3)
Input: data X , variables λ, α, Lc, Lv

Initialize: E0 = Y0 = 0, ε = 10−6, ρ = 1.3, μ = 10−6,
μmax = 106, tmax = 103, t = 0.

while not converged or t ≤ tmax do
1. Optimize Zc,t+1 according to (11) by fixing others;
2. Optimize Zv,t+1 according to (12) by fixing others;
3. Optimize Et+1 according to (13) by fixing others;
4. Optimize Pt+1 according to (14) by fixing others,

then Pt+1 ← orthogonal(Pt+1)

5. Optimize the multiplier Qt+1

Qt+1 = Qt+

μ
(
PT
t+1(X −X(Zc,t+1 + Zv,t+1)) + Et+1

)
;

6. Update the parameter μ by μ = min(ρμ, μmax);
7. Check the convergence conditions

‖PT
t+1(X −X(Zc,t+1 + Zv,t+1))− Et+1‖∞ < ε.

8. t = t+ 1.
end while
output: Zc, Zv, E, P

Next we present the computational cost of each part in
detail.Since conventional SVD operator in Step 1&2 would
cost O(m3) for low-rank matrices Zc, Zv , repetitively. For-
tunately, step 1& 2 can be accelerated to O(rm2), where r
is the rank of the low-rank matrix, by the recent fast low-
rank method(Liu et al. 2013). Generally, the rank of Zv is
less than that of Zc for multi-view multi-class data analysis
tasks. On the other hand, each matrix multiplication costs
close to O(d3) and the matrix inverse takes O(d3) for d× d
matrixes. Therefore, step 4 costs nearly (k + 1)O(d3) in to-
tal, when there are k multiplication operations.

Experiments
In this part, we will describe the used datasets and experi-
mental setting first. Then we will show the comparison re-
sults of our algorithm and others algorithms, followed by the
evaluation on some properties of our algorithm.

Datasets & Experimental Setting
CMU-PIE Face database is consisted of 68 subjects in to-
tal, which is a multi-view face dataset 1 and show large vari-
ances within the same subject but in different poses. Each
pose per subject has 21 different illumination variations. We
adopt face images from 9 different poses, e.g., C02, C05,
C22, C27, C07, C14, C29, C31, C34. We select different
numbers of poses to construct various evaluation subsets.
The face images are cropped to 64 × 64 size and only the
pixel value features are adopted as the input.

COIL-100 object database2 contains 100 categories
with 7200 images. Each object has 72 images and each
was captured with 5-degree rotation. We further partition the

1http://vasc.ri.cmu.edu/idb/html/face/
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-

100.php
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Table 1: Comparison Results (%) of 8 algorithms on the original CMU-PIE multi-pose face database. Bold denotes the best
performance.

Algorithms Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
PCA 69.03±0.08 69.21±0.08 68.52±0.12 71.58±0.14 52.65±0.04 34.94±0.08 29.09±0.01
LDA 70.46±0.05 71.32±0.02 63.51±0.75 72.12±0.09 56.53±0.02 24.07±0.25 7.06±0.01
LPP 57.25±0.06 58.83±0.07 59.25±0.56 65.58±0.13 43.56±0.08 19.67±0.05 13.11±0.01

RPCA+PCA 74.39±0.08 75.55±0.12 75.29±0.09 78.27 ±0.09 61.17±0.12 38.66±0.08 31.94±0.12
LatLRR 77.92±0.03 76.24±0.12 75.29±0.07 83.68±0.07 69.74±0.05 42.54±0.12 35.33±0.04
SRRS 78.27±0.04 78.74±0.23 77.45±0.02 86.28±0.09 71.44±0.03 38.86±0.02 30.16±0.02
LRCS 87.78±0.02 86.67±0.01 87.38±0.19 89.12±0.12 74.84±0.04 44.48±0.03 36.17±0.01
Ours 89.15±0.06 88.05±0.07 88.40±0.17 93.95±0.11 75.16±0.12 44.93±0.11 37.14±0.08

Table 2: Comparison Results (%) of 8 algorithms on corrupted CMU-PIE multi-pose face database. Bold denotes the best
performance.

Algorithms Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
PCA 64.87±0.32 66.04±0.08 65.21±0.04 69.32±0.09 50.16±0.04 31.74±0.08 27.21±0.01
LDA 26.71±0.20 23.19±0.35 20.34±0.75 35.12±0.08 46.72±0.02 6.67±0.25 4.06±0.01
LPP 31.26±0.26 30.98±0.18 32.21±0.36 40.34±0.14 27.66±0.05 14.34±0.04 12.02±0.01

RPCA+PCA 73.07±0.11 74.28±0.12 73.92±0.12 73.98±0.10 60.18±0.14 37.65±0.09 31.34±0.06
LatLRR 73.10±0.07 73.24±0.32 73.85±0.12 75.21±0.08 58.94±0.09 39.26±0.12 32.07±0.03
SRRS 72.27±0.05 72.74±0.18 71.45±0.08 74.19±0.13 54.32±0.03 32.34±0.02 29.03±0.02
LRCS 78.98±0.03 78.67±0.05 78.38±0.26 80.54±0.12 65.84±0.04 39.48±0.03 32.57±0.01
Ours 82.12±0.08 82.67±0.09 82.38±0.17 84.18±0.12 69.84±0.09 43.87±0.11 35.78±0.08

dataset into two subsets as “COIL1” and “COIL2”. Specif-
ically, COIL1 includes the images in View 1 [0o, 85o] and
View 2 [180o, 265o] while COIL2 contains those in View 3
[90o, 175o] and View 4 [270o, 355o]. The raw feature with
image size 64 × 64 with 20% corruption are adopted in the
experiments.

Comparison Experiments
We mainly compare with feature extraction algorithms,
which are: LDA (Belhumeur, Hespanha, and Kriegman
1997), LatLRR (Liu and Yan 2011), SRRS (Li and Fu 2014),
LPP (He and Niyogi 2003), PCA (Turk and Pentland 1991),
RPCA (Wright et al. 2009)+PCA and LRCS (Ding and Fu
2014). Among them, LDA, SRRS and our proposed method
belong to the supervised fashion; PCA, LPP, RPCA and
LatLRR are totally unsupervised; while LRCS can be treated
as weakly supervised, which needs to know the view infor-
mation of the data in the training stage. To all compared
algorithms, we evaluate the final performance in terms of
recognition accuracy by using the Nearest Neighbor Classi-
fier (NNC). For CMU-PIE faces, we randomly select 10 face
images from each subject per view to build the dataset for
training, while the rest face images are used for final evalu-
ation. In total, we conduct 5 random selections and achieve
the average performance. Table 1 &2 present the comparison
results of 8 algorithms on both clean and noisy face samples
with 10% corruptions, where Case 1: {C02, C14}, Case 2:
{C02, C27}, Case 3: {C14, C27}, Case 4: {C05, C29}, Case
5: {C05, C07, C29}, Case 6: {C05, C14, C29, C34}, Case
7: {C02, C05, C14, C29, C31}. For COIL-100 objects, we
select one from COIL1 and one from COIL2 as the training

Figure 2: Recognition results of seven algorithms on 4 Cases
of COIL-100 object dataset, where Case 1: View 1 & 3; Case
2: View 1 & 4; Case 3: View 2 & 3; Case 4: View 2 & 4.

with 2 views and the remaining samples are used for final
evaluation. In total, there are 4 cases to evaluate the perfor-
mance of the algorithms, which are shown in Figure 2.

From the recognition results (Table 1,2 and Figure 2),
we can observe that our proposed algorithm achieves bet-
ter recognition performance than other comparisons both in
face and object images. For CMU-PIE face dataset, the per-
formance of all the algorithms would decrease when there
are more views involving, since more within-class variance
are involved. Besides, we notice that LDA degrades much
quicker than others. This represents that the class informa-
tion may not do a favor sometimes, due to a large variance
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Figure 3: (a) Recognition curve (red ‘*’) and convergence curve (Blue ‘o’) of our proposed method in 2-view case (C02&C27),
where we set the dimensionality to 400 and the parameter values as λ = 10−2, α = 102, respectively. (b) The performance of
our algorithm is evaluated on the two parameters influence {α, λ} using 2-view case (C02&C27), where the value from 0 to 10
denotes [10−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105], respectively. (c) Dimensionality influence of our algorithm on four
cases, where the value from 1 to 20 represents 50 to 1000, respectively.

within each class. For the four two-view combinations, all
the algorithms obtain almost the same results in each combi-
nation, i.e., the divergence between two views is equivalent
to some extent. These four combinations can well demon-
strate the superiority of our proposed method, which repre-
sents our view-invariant subspace captures the most intrinsic
information from two-view face images. In three-view com-
bination, our proposed method could not achieve a large im-
provement, since there is a high similarity across the three
poses. With more view involved in the evaluation, our algo-
rithm can still outperform other algorithms, even with more
views. Besides, low-rank based methods perform better than
the non-low-rank others, especially in corrupted cases, as
they can detect noise with the sparse error terms.

Moreover, we observe that the images within each view
of CMU PIE have 21 different illuminations, some even in-
visible. This phenomenon leads to the similar performance
of PCA in clean and noisy situations. This also results in
traditional supervised methods cannot outperform unsuper-
vised ones. Furthermore, from the corrupted object database,
we can observe low-rank based methods outperform tradi-
tional subspace learning methods, as we manually introduce
random noise, which would definitely decrease the perfor-
mance of traditional subspace learning methods. However,
our algorithm incorporates dual low-rank decompositions to
dig out the view-variance structure within each class so that
our algorithm could better handle multi-view data. More-
over, with two supervised graph regularizers to guide the
decompositions, our algorithm can achieve even better per-
formance in a supervised fashion.

Property Analysis
In this section, we will evaluate some properties of our algo-
rithm, e.g., convergence, parameter analysis, dimensionality
influence, and training time cost.

First, we conduct some experiments on convergence curve
and recognition results of different iterations. We evaluate
on two-view case {C02,C27} and the results are shown as
Figure 3(a). From the results, we can observe our algorithm

Table 3: Training time (second) of three algorithms on
CMU-PIE face dataset.

Config 2 Views 3 Views 4 Views 5 Views
LatLRR 291.5 817.7 1635.4 2736.9
LRCS 184.0 547.3 1305.3 2311.1
Ours 72.3 162.6 311.3 510.4

converges very fast. Also we notice that the recognition re-
sults go up quickly and stay at a stable value.

Second, since there are two parameters λ, α in our algo-
rithm, we evaluate them simultaneously on case and the re-
sults are shown in Figure 3(b). From the results, we can ob-
serve the performance is not good when α is close to 0, that
is, two novel graph regularizers definitely help a lot. Gener-
ally, the performance would be best when α is around 102.
However, the error term influences very small. Therefore,
we set λ = 10−2 and α = 102 throughout the experiments.

Third, we testify the dimensionality influence of our al-
gorithm on several cases, whose recognition results are pre-
sented in Figure 3(c). From the results, we can see that
recognition rates increase when dimensionality goes up. It
would reach its highest performance around 400.

Finally, we also calculate the training time cost of our al-
gorithm by comparing several others. We apply on different
views of CMU-PIE dataset and run 10 iterations to calculate
the training time. Experiments are conducted with Matlab
2014b, CPU i7-3770 and 32 GB memory size. The com-
putational costs for training are shown in Table 3 (unit is
second). as we can see from the results, our proposed al-
gorithm is more efficiently than LRCS and LatLRR. The
reason mainly attribute to the efficient solution for the op-
timization, which avoids introducing relaxing variables with
their extra matrix multiplications. Also we deploy the dual
low-rank decompositions in the low-dimensional subspace.
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Conclusion
In this paper, we developed a Robust Multi-view Subspace
Learning to seek a view-invariant for multi-view data anal-
ysis. Specifically, we proposed a dual low-rank decompo-
sitions to separate two intertwined structures and therefore
preserved more within-class compactness by degrading the
influence of large view variance from the same class. Fur-
thermore, two supervised graph regularizers were incorpo-
rated into the low-rank decompositions so that it could guide
the decompositions to further preserve more within-class lo-
cal manifold information and within-view marginal struc-
ture. Experimental results on multi-view datasets, witnessed
the effectiveness and efficiency of our proposed algorithm,
compared to the existing feature extraction algorithms.
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