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Abstract

Linear submodular bandits has been proven to be effec-
tive in solving the diversification and feature-based ex-
ploration problems in retrieval systems. Concurrently,
many web-based applications, such as news article rec-
ommendation and online ad placement, can be modeled
as budget-limited problems. However, the diversifica-
tion problem under a budget constraint has not been
considered. In this paper, we first introduce the budget
constraint to linear submodular bandits as a new prob-
lem called the linear submodular bandits with a knap-
sack constraint. We then define an α-approximation
unit-cost regret considering that submodular function
maximization is NP-hard. To solve this problem, we
propose two greedy algorithms based on a modified
UCB rule. We then prove these two algorithms with dif-
ferent regret bounds and computational costs. We also
conduct a number of experiments and the experimental
results confirm our theoretical analyses.

Introduction

Multi-armed bandit (MAB) problem is the simplest instance
of the exploration versus exploitation dilemma (Auer, Cesa-
Bianchi, and Fischer 2002), which is a trade-off between ex-
ploring the environment to find a better action (exploration)
and adopting the current best action as often as possible (ex-
ploitation). The classical multi-armed bandit problem is for-
mulated as a system of m arms. At each time step, we choose
an arm to pull and obtain a reward from an unknown distri-
bution. The goal is to maximize cumulative rewards by op-
timally balancing exploration and exploitation in finite time
steps T . The most popular measure of an algorithm’s suc-
cess is the regret, which is the cumulative loss of failing to
pull the optimal arm. A variant of the classical multi-armed
bandit problem, which is usually called the combinatorial
multi-armed bandit problem (Chen, Wang, and Yuan 2013;
Gai, Krishnamachari, and Jain 2012), allows multiple arms
chosen at each time step. With the rapid development of the
Internet, many web-based applications can be modeled as
a combinatorial multi-armed bandit problem, for example,
the personalized recommendation of news articles (Li et al.
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2010; Fang and Tao 2014), in which multiple news articles
are recommended to a user.

Diversification is a key problem for information retrieval
systems such as diverse rankings of documents (Radlinski,
Kleinberg, and Joachims 2008), products recommendation
(Ziegler et al. 2005) and news article recommendation (Li et
al. 2010). Implications affecting user satisfaction have been
observed in practice: recommendation requires the proposal
of a diverse set of items and redundant items are helpless
(Ziegler et al. 2005). Submodularity is an intuitive notion of
diminishing returns, which states that adding a new item to
a larger environment help less than adding the same item to
a smaller environment. It has turned out that diversification
can be well captured by a submodular function (Krause and
Golovin 2012) and the linear submdoular bandits (Yue and
Guestrin 2011) has thus been proposed to handle the diver-
sification problem in bandit setting.

There is nevertheless always a budget constraint in real-
world scenarios, where limited resources are consumed dur-
ing whole process of actions. For example, in dynamic
procurement (Badanidiyuru, Kleinberg, and Slivkins 2013),
budget is limited for buying items. In clinical trials, exper-
iments on alternative medical treatments are limited by the
cost of materials. However, it is more reasonable for other
applications to put the budget constraint on each time step,
not the whole process. For example, in online advertising
(Chakrabarti et al. 2009), the size of a webpage is limited
while the ads are changing each time the user visits the
webpage. In news article recommendation, several articles
are recommended to a user and feedback is obtained each
time, but users will only have limited time to read those ar-
ticles (if we recommend three short news articles, the user
may read all of them, but if we recommend three long ar-
ticles, the user might be not patient enough to read all of
them). In order to improve user satisfaction, we formulate
this per-round budget constraint imposed on each time step,
as follows: ∀i ∈ E, let ci denote the cost of pulling arm
i, where E is the set of all arms. The total costs of arm-
pulling are limited by a budget B. At each time step t, we
choose a subset of arms At ⊆ E under the budget constraint
C(At) =

∑
i∈At

ci ≤ B, which is known as a knapsack
constraint (Sviridenko 2004).

In order to improve user satisfaction by considering both
diversification and budget constraint, we introduce the per-
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round budget constraint to linear submodular bandits as a
new problem called the linear submodular bandits with a
knapsack constraint. To solve this new problem, we use a
modified upper confidence bounds (UCB) under the bud-
get constraint, which is called the unit-cost upper confidence
bounds, to control the trade-off between exploration and ex-
ploitation. Inspired by other knapsack solutions, we try to
obtain the maximum rewards for each budget unit. Specif-
ically, we greedily choose the arms, which give the maxi-
mum modified upper confidence bounds on utility gain, to
construct a subset of arms in our algorithms.

In this paper, we first briefly review the related works.
We then describe the new problem called linear submodu-
lar bandits with a knapsack constraint and the definition of
regret. After that, we propose two greedy algorithms based
on modified UCB rule and prove that both two algorithms
have theoretical regret bounds. Lastly, we use news article
recommendation as a case study, which requires us to rec-
ommend multiple news articles under a per-round budget
constraint. Experimental results demonstrate that our two al-
gorithms outperform the baselines for the linear submodular
bandits, such as LSBGreedy (Yue and Guestrin 2011) and
Epsilon-Greedy.

Related Work

Diversification problem has been addressed in recommen-
dation systems (Ziegler et al. 2005; Yue and Guestrin 2011)
and information retrieval systems (Küçüktunç et al. 2013;
Clarke et al. 2008). In recommendation systems, multi-
armed bandits has been widely used to identify user in-
terests (Li et al. 2010; Kohli, Salek, and Stoddard 2013;
Fang and Tao 2014). Linear submodular bandits has been
proposed by Yue and Guestrin (2011) as a typical combi-
natorial bandit model to solve the diversification problem
in recommendation systems. However, it ignores the budget
constraint, which nevertheless exists in real-world applica-
tions.

Budget constraint has been well studied in classical multi-
armed bandit setting (Tran-Thanh et al. 2010; Badanidiyuru,
Kleinberg, and Slivkins 2013). In budget-limited multi-
armed bandit problem proposed by Tran-Thanh et al. (2010),
the goal is to obtain the maximum cumulative rewards un-
der a limited budget. The budget-limited multi-armed ban-
dit problem was firstly solved by a simple budgeted ε-first
algorithm (Tran-Thanh et al. 2010) and subsequently by
an improved algorithm called KUBE (Tran-Thanh et al.
2012). The budget-limited multi-armed bandit problem is
also known as the multi-armed bandit problem with budget
constraint and fixed costs (MAB-BF). There is also a more
complex problem called the multi-armed bandit problem
with budget constraint and variable costs (Ding et al. 2013),
where the cost of arm is not fixed. A more general budget-
limited bandit model has been proposed by Badanidiyuru,
Kleinberg, and Slivkins (2013) and is known as bandits with
knapsacks (BwK). However, most of previous works focus
on the budget constraint for the whole process. Unlike pre-
vious works, we impose a per-round budget constraint on
each time step separately. Our work is based on the linear

submodular bandits, to which we introduce the budget con-
straint as a new problem called the linear submodular ban-
dits with a knapsack constraint.

Problem Definition

We formulate the linear submodular bandits with a knapsack
constraint as follows: let E = {1, 2, . . . ,m} be a set of m
arms and C = {c1, c2, . . . , cm} (ci > 0, ∀i = 1, 2, . . . ,m)
be a set of costs for m arms. At each time step t, we se-
quentially choose each arm for At ⊆ E under the budget
constraint C(At) =

∑
i∈At

ci ≤ B, then obtain the rewards
rt(At), which is a random variable with the martingale as-
sumption (Abbasi-Yadkori, Pál, and Szepesvári 2011b). The
expected rewards of At is measured by a monotone submod-
ular utility function Fw(At) (i.e., E [rt(At)] = Fw(At)),
where w is a parameter vector. For all time steps t =
1, 2, . . . , T, we choose a subset of arms At with respect to
budget B and the goal is to obtain the maximum cumulative
rewards.

Definition 1. (submodularity). Let E be a nonempty finite
set and 2E be a collection of all subsets of E. Let f : 2E →
R be a submodular function, i.e.,

∀X ⊆ Y ∈ 2E and ∀a ∈ E \ Y, f(a|X) ≥ f(a|Y ), (1)

where f(a|X) = f(X ∪ {a})− f(X).

Definition 2. (monotonity). Let E be a nonempty finite set
and 2E be a collection of all subsets of E. Let f : 2E → R
be a monotone function, i.e.,

∀X ⊆ Y ∈ 2E , f(Y ) ≥ f(X). (2)

However, in bandit setting, the parameter vector w is un-
known to us, we use w∗ to represent the real value of the
parameter vector and assume that ‖w∗‖ ≤ S, where S is a
positive constant. The linear submodular bandits is a feature-
based bandit model known as the contextual bandits (Li et al.
2010), in which we can acquire the side information before
making a decision. The utility function of linear submodular
bandits is a linear combination of d submodular functions,
i.e.,

Fw∗(At) = w�
∗ ∗ [F1(At), F2(At), . . . , Fd(At)] , (3)

where w∗ ∈ Rd
+ and Fi(At) is a submodular function with

Fi(∅) = 0 (for all i = 1, 2, . . . , d). The submodular func-
tion Fi(At) can be constructed by the probabilistic coverage
model in news article recommendation (Yue and Guestrin
2011; El-Arini et al. 2009).

The goal of linear submodular bandits with a knapsack
constraint is to obtain the maximum expected cumulative re-
wards under a per-round budget constraint, i.e.,

max
At:At∈2E ,C(At)≤B

T∑
t=1

E [rt(At)] , (4)

where T is the total number of time steps.
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α-Regret

Regret, which is the loss of not always pulling the optimal
arm, has been widely used in bandit problem as a measure of
an algorithm’s success. Considering that submodular func-
tion maximization is NP-hard, we can only find approxi-
mated solutions (α ∈ (0, 1)) in polynomial time (Sviridenko
2004; Leskovec et al. 2007). As a result, we can only guar-
antee an α-approximation solution for the linear submodular
bandits with a knapsack constraint, even if we know the pa-
rameter w∗. However, w∗ is unknown in bandit setting. We
use wt (an estimate of w∗, which is constructed according to
the last t−1 time steps’ feedback), to help us make decision.

For linear submodular bandits with a knapsack constraint,
we therefore define an α-approximation unit-cost regret (for
simplicity, called α-Regret) as follows: let A∗ denote the op-
timal subset of arms, i.e.,

A∗ ∈ argmax
A:A⊆E,C(A)≤B

Fw∗(A). (5)

Let At denote our chosen subset at time step t, then the
α-approximation unit-cost regret or α-Regret is

RegαB(T ) = α ∗
T∑

t=1

E

[
rt(A

∗)
B

]
−

T∑
t=1

E

[
rt(At)

B

]
. (6)

Algorithms

In this section, we first introduce the evaluation of wt and
the modified upper confidence bounds. We then propose two
greedy algorithms based on the modified UCB rule to solve
the linear submodular bandits with a knapsack constraint.
Both of these algorithms can be seen as extensions of the
greedy algorithms (Sviridenko 2004; Leskovec et al. 2007)
to bandit setting. There is a regret vs computational cost
trade-off between our two algorithms.

Evaluation of wt

Let At = {a1, a2, . . . , ak}1 denote the subset of arms cho-
sen at time step t. For simplicity, we define At(1 : j) =
{a1, a2, . . . , aj}, then the feature vector of the arm aj (for
all j = 1, 2, . . . , k) is

Δ(aj |At) = [F1(aj |At), . . . , Fd(aj |At)] , (7)

where

Fi(aj |At) = Fi(At(1 : j))− Fi(At(1 : j − 1)) (8)

and Fi(∅) = 0. Let rt(aj) denote the rewards of aj (for all
j = 1, 2, . . . , k) and the expected rewards of aj are

E [rt(aj)] = Fw∗(aj |At) = w�
∗ ∗Δ(aj |At). (9)

At each time step t, we greedily choose each arm to con-
struct a subset of arms At and then acquire all rewards
rt(a1), rt(a2), . . . , rt(ak). However, the parameter vector
w∗ is unknown in bandit setting, we first need to estimate
w∗.

The l2-regularized least-squares estimation has been
widely used in the linear bandit problem (Abbasi-Yadkori,

1k may be different for different t.

Pál, and Szepesvári 2011b; Filippi et al. 2010; Dani, Hayes,
and Kakade 2008). Considering the utility function Fw∗(At)
is a linear function, let wt be the l2-regularized least-squares
estimate of w∗ with regularization parameter λ > 0, i.e.,

wt =
(
X�

t Xt + λId
)−1

X�
t Yt. (10)

where Xt indicates the features of all chosen arms through
last t−1 time steps and Yt forms all corresponding rewards.
The row of matrix Xt is the arm feature, i.e.,

∀t, j,Xt(·, :) = Δ(aj |At) ∈ Rd. (11)

Modified UCB Rule

The confidence bounds can be used elegantly for the trade-
off between exploration and exploitation in the multi-armed
bandit problem (Auer 2003), especially in the linear ban-
dit problem (Yue and Guestrin 2011; Filippi et al. 2010).
Inspired by this, we use the confidence bounds in our algo-
rithms. Let x = Δ(aj |At) and Vt = X�

t Xt + λ ∗ Id. From
the martingale assumption and results of the linear bandits
(Abbasi-Yadkori, Pál, and Szepesvári 2011b) we have, with
probability 1− δ,

|w�
∗ x− w�

t x| ≤ βt ∗ ‖x‖V −1
t

, (12)

where

βt = R

√
2 log

(
det(Vt)−1/2 det(λI)1/2

δ

)
+ λ−1/2S, (13)

‖x‖V −1
t

=
√
x�V −1

t x (14)

and R is a positive constant. The confidence interval is

μ(aj) = βt ∗ ‖x‖V −1
t

. (15)

Considering the budget constraint, we denote the unit-cost
confidence interval by the confidence interval for each bud-
get unit, i.e.,

μ(aj)

caj

=
βt ∗ ‖x‖V −1

t

caj

. (16)

Following the optimism in the face of uncertainty princi-
ple (Abbasi-Yadkori, Pál, and Szepesvári 2011a), we con-
struct the unit-cost upper confidence bounds as

w�
t x+ μ(aj)

caj

=
w�

t x+ βt ∗ ‖x‖V −1
t

caj

. (17)

We use this modified UCB rule to deal with the trade-off
between exploration and exploitation in linear submodular
bandits with a knapsack constraint.

Algorithm I: MCSGreedy

In our first algorithm, we greedily choose each arm a with
the maximum unit-cost upper confidence bounds, i.e.,

a ∈ argmax
a:a∈E\At,C(At∪{a})≤B

w�
t ∗Δ(a|At) + μ(a)

ca
. (18)

However, we also need a partial enumeration (|At| ≥ 3) to
achieve the (1 − 1/e)-approximation guarantee and it has
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been proven in submodular function maximization problem
(Sviridenko 2004). As a result, at each time step t, we first
choose the initial best set of arms for cardinality equal to
three through a partial enumeration, i.e.,

At ∈ argmax
A:A⊆E,|A|=3,C(A)≤B

{Fwt(A) + μ(A)} . (19)

Then we greedily choose each arm as described in Eq. (18)
until the budget is exhausted. Considering the partial enu-
meration, this algorithm is called Modified Cost-Sensitive
UCB-based Greedy Algorithm or MCSGreedy, and we give
details of MCSGreedy in Algorithm 1.

Algorithm 1 MCSGreedy Algorithm

Input: E = {1, 2, . . . ,m}, C,B.
1: wt = 0, Vt = λ ∗ Id, Xt = [ ], Yt = [ ].
2: for t = 1, 2, . . . , T do
3: At ∈ argmax

A:A⊆E,|A|=3,C(A)≤B

{Fwt(A) + μ(A)} .
4: St = {a | a ∈ E \At, C(At ∪ {a}) ≤ B}.
5: while St �= ∅ do

6: a ∈ argmax
a∈St

(
w�

t ∗Δ(a|At)+μ(a)
ca

)
.

7: Xt = [Xt; Δ(a|At)].
8: At = At ∪ {a}.
9: St = {a | a ∈ St, C(At ∪ {a}) ≤ B}.

10: end while
11: Recommend At and obtain rewards rt(aj) for all j =

1, 2, . . . , k.
12: Yt = [Yt; rt(aj)] for all j = 1, 2, . . . , k.
13: Vt = X�

t Xt + λ ∗ Id.
14: wt = V −1

t X�
t Yt. //obtain wt.

15: end for

What’s more, if |A| ≤ 3, then we can find the estimated
optimal set A∗

t through a enumeration process.

Algorithm II: CGreedy

Algorithm 1 needs a partial enumeration, which is a time-
consuming procedure (the partial enumeration needs to com-
pute the utility function Fwt

for O(N3) times at each time
step, where N = |E| is the total number of arms). We
therefore propose another greedy algorithm, which is able to
provide 1−1/e

2 -approximation guarantee without the partial
enumeration. We construct our second algorithm as an ex-
tension of the Cost-Effective Forward Selection Algorithm
(Leskovec et al. 2007) to bandit setting.

In our second algorithm, we first choose two subsets of
arms at each time step: A1 is greedily selected according to
UCB rule, i.e.,

a ∈ argmax
a:a∈E\At,C(At∪{a})≤B

(
w�

t ∗Δ(a|At) + μ(a)
)
.

(20)
The other one A2 is greedily selected by the modified UCB
rule (see Eq. (18)) without the partial enumeration. We
then choose the best subset from those two subsets as our
final choice. This algorithm is called Competitive UCB-
based Greedy Algorithm or CGreedy, and we give details
of CGreedy in Algorithm 2.

Algorithm 2 CGreedy Algorithm

Input: E = {1, 2, . . . ,m}, C,B
1: wt = 0, Vt = λ ∗ Id, Xt = [ ], Yt = [ ].
2: for t = 1, 2, . . . , T do
3: [A1, X1] = Greedy-Choose(wt, Vt, Option = 1).
4: [A2, X2] = Greedy-Choose(wt, Vt, Option = 2).
5: if Fwt

(A1) ≥ Fwt
(A2) then

6: At = A1, Xt = X1.
7: else
8: At = A2, Xt = X2.
9: end if

10: Recommend At and obtain rewards rt(aj) for all j =
1, 2, . . . , k.

11: Yt = [Yt; rt(aj)] for all j = 1, 2, . . . , k.
12: Vt = X�

t Xt + λ ∗ Id.
13: wt = V −1

t X�
t Yt. //obtain wt.

14: end for

Theoretical Analysis

In this section, we use α-Regret for the analysis of the linear
submodular bandits with a knapsack constraint. We prove
Algorithm 1 and Algorithm 2 with different regret bounds
and computational costs.

α-Regret Bounds

α-Regret is the difference between the reward derived from
our algorithm and the α-approximation of the optimal re-
ward. In Algorithm 1, we have α = 1−1/e ≈ 0.632, which
means that Algorithm 1 is at least a (1−1/e)-approximation
of the optimal solution. We prove the regret bound for Algo-
rithm 1 in Theorem 1.

Theorem 1. For α = 1 − 1/e and λ ≥ K (K =
max |A|, s.t. A ∈ 2E , C(A) ≤ B), with probability at least
1− δ, the α-Regret of Algorithm 1 is bounded by

RegαB(T ) ≤
2e− 1

Be
βT

(
R

√
d log

(
1 + TK/λ

1− (1− δ)1/2

))
,

where βT =
√
2dTK log

(
K

(
1 + T

d

))
.

In Algorithm 2, the α-Regret is a 1−1/e
2 -approximation

regret. We prove the regret bound for Algorithm 2 in Theo-
rem 2.

Theorem 2. For α = 1−1/e
2 and λ ≥ K (K =

max |A|, s.t. A ∈ 2E , C(A) ≤ B), with probability at least
1− δ, the α-Regret of Algorithm 2 is bounded by

RegαB(T ) ≤
5e− 1

2Be
βT

(
R

√
d log

(
1 + TK/λ

1− (1− δ)1/3

))
,

where βT =
√
2dTK log

(
K

(
1 + T

d

))
.

The proof of Theorem 1 and Theorem 2 are based on the
results of linear bandits and submodular function maximiza-
tion (see proofs in long version of the paper).
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We simplify the regret bounds by ignoring the constants
and some trivial items as follows: let cmin = minci∈C ci
and At denote the subset of arms chosen at time step t, we
have

∀t,
∑
a∈At

cmin ≤
∑
a∈At

ca = C(At) ≤ B. (21)

That is, K = max
t

|At| ≤ B
cmin

. We then have

βT

B
≤

√
dT log

(
1 + T

d

)
cminB

. (22)

Finally, the regret bounds for both Algorithm 1 and Algo-
rithm 2 can be simplified as

RegαB(T ) ≤ O
(
d
√
T log T

)
, (23)

which means that the cumulative loss of rewards is increased
sublinearly with the total time steps T . That is, the average
loss of rewards for each time step is decreased at a rate of
O
(

d log T√
T

)
.

Regret vs Computational Cost

Both our two algorithms have sublinear regret bounds on
α-Regret. Algorithm 1 is a (1 − 1/e)-approximation algo-
rithm while Algorithm 2 is a 1−1/e

2 -approximation algo-
rithm. Therefore, Algorithm 1 has a better α-Regret bound.
For computational cost, Algorithm 1 needs a partial enu-
meration procedure of O(N3) time and the whole algorithm
needs O(TN5) time, where N is the number of arms. Con-
sidering Algorithm 2 only needs O(TN2) time, it is obvious
that Algorithm 2 is more computationally efficient.

Overall, Algorithm 1 achieves a better regret bound and
Algorithm 2 is more computationally efficient.

Experiment

In this section, following the previous work (Yue and
Guestrin 2011), we empirically evaluate our algorithms on
simulation dataset by using news article recommendation
(Li et al. 2010) as a case study. We first formulate news arti-
cle recommendation into the linear submodular bandits. We
then introduce a knapsack constraint to the news article rec-
ommendation by considering reading-time of news article to
be the cost of arm. Lastly, we compare the performance of
our algorithms with the baselines through simulation exper-
iments.

News Article Recommendation

Let E = {a1, a2, . . . , a|E|} be a set of news articles and a
news article a ∈ E is represented by a feature vector

[P1(a), P2(a), . . . , Pd(a)] ∈ Rd (24)

as the information coverage on d different topics. For a sub-
set of arms At, the information coverage on d different top-
ics is a feature vector

[F1(At), F2(At), . . . , Fd(At)] (25)

where
Fi(At) = 1−

∏
a∈At

(1− Pi(a)) (26)

and Pi(a) ∈ (0, 1) for all i = 1, 2, . . . , d.
In this simulation experiment, we randomly generate a

d-dimensional vector (x1, x2, . . . , xd) to represent a news
article a, where xi ∈ (0, 1)(for all i = 1, 2, . . . , d) repre-
sents the information coverage of a news article a on the
topic i. For each news article a, we assume that it only has a
limited number of main topics (xi > 0.5) and noisy topics
(xi ≤ 0.5). The number of main topics is Nmain = 2 and
the number of noise topics is Nnoise = 1. The topics’ cover-
age of each article are sampled from a uniform distribution.

We randomly generate the w∗ ∈ [0, 1]d, which is un-
known to our algorithms, to represent a user’s interest level
in each topic. We also assume that a user will like some top-
ics very much (w∗(i) ≥ 0.8) and will dislike other topics
(w∗(i) ≤ 0.1). The costs set C = {c1, c2, . . . , cm} are sam-
pled from the uniform distribution and normal distribution.
We assume the cost of each news article to be the reading-
time and users will have limited time to read all the news
articles (El-Arini et al. 2009).

Competing Methods

We compare our two algorithms with the following base-
lines:
• The LSBGreedy Algorithm is proposed in (Yue and

Guestrin 2011) and solves the linear submodular bandits
without considering the different costs of arms.

• The Epsilon-Greedy Algorithm, randomly choose the
arm with maximum unit-cost rewards according to the
ε-greedy rule (Auer, Cesa-Bianchi, and Fischer 2002),
where ε ∈ (0, 1).

Results

In Figure 1a, we demonstrate what the learned wt look com-
pared with w∗ and find that wt achieved by MCSGreedy
has the smallest differences with w∗. Also, wt achieved by
CGreedy has smaller differences with w∗ than LSBGreedy
and Epsilon-Greedy. In Figure 1b, we find that MCSGreedy
and CGreedy obtain more average rewards than LSBGreedy
and Epsilon-Greedy. We compare the average rewards of dif-
ferent algorithms under different budget in Figure 1c, and we
find that MCSGreedy and CGreedy obtain more average re-
wards with limited budget, while all the algorithms acquire
the same average rewards with sufficient budget (which is
impossible in real-world applications). It means that our al-
gorithms work well with the budget constraint. We compare
the average rewards under different cost intervals in Figure
1d, which are the maximum differences in costs between two
arms. It is clear that MCSGreedy and CGreedy greatly out-
perform LSBGreedy and Epsilon-Greedy although the cost
intervals are large (we assume the larger cost intervals to be
the representative of more complex setting).

In other settings, a Gaussian distribution is more reason-
able for the costs of arms. For example, most of news articles
are in medium length while extremely long news articles and
extremely short news articles are rare. We also demonstrate
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Figure 1: Results comparing MCSGreedy(red), CGreedy(blue), LSBGreedy(green) and Epsilon-Greedy(black).
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Figure 2: Results comparing MCSGreedy(red), CGreedy(blue), LSBGreedy(green) and Epsilon-Greedy(black).

almost the same results under a Gaussian distribution in Fig-
ure 2.

Conclusion and Future Work

In this paper, we introduce a new problem called the linear
submodular bandits with a knapsack constraint. To solve this
problem, we define an unit-cost upper confidence bounds
to control the trade-off between exploration and exploita-
tion. We also propose two algorithms with different regret
bounds and computational costs to solve the new problem.
To analysis our algorithms, we define an α-Regret and prove
that both our algorithms have the sublinear regret bounds.
We also demonstrate that our two algorithms outperform the
baselines in simulation experiments.

Considering that there are still other constraints in real-
world applications, the linear submodular bandits with more
complex constraint, such as the multiple knapsack con-
straints or a matroid constraint, will be the subject of future
study.
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Parametric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, 586–594.
Gai, Y.; Krishnamachari, B.; and Jain, R. 2012. Com-
binatorial network optimization with unknown variables:
Multi-armed bandits with linear rewards and individual ob-
servations. IEEE/ACM Transactions on Networking (TON)
20(5):1466–1478.
Kohli, P.; Salek, M.; and Stoddard, G. 2013. A fast bandit
algorithm for recommendation to users with heterogenous
tastes. In AAAI.
Krause, A., and Golovin, D. 2012. Submodular function
maximization. Tractability: Practical Approaches to Hard
Problems 3:19.
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