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Abstract

Image-set classification is the assignment of a label to a given
image set. In real-life scenarios such as surveillance videos,
each image set often contains much redundancy in terms of
features and samples. This paper introduces a joint learning
method for image-set classification that simultaneously learns
compact binary codes and removes redundant samples. The
joint objective function of our model mainly includes two
parts. The first part seeks a hashing function to generate bi-
nary codes that have larger inter-class and smaller intra-class
distances. The second one reduces redundant samples with
discrete constraints in a low-rank way. A kernel method based
on anchor points is further used to reduce sample variations.
The proposed discrete objective function is simplified to a
series of sub-problems that admit an analytical solution, re-
sulting in a high-quality discrete solution with a low compu-
tational cost. Experiments on three commonly used image-set
datasets show that the proposed method for the tasks of face
recognition from image sets is efficient and effective.

1 Introduction

Image-set classification generally aims to recognize an ob-
ject from a set of related images that form an image set
(Kim, Arandjelovic, and Cipolla 2007). It is the assignment
of a classification label to a given image set. With the devel-
opment of imaging technology, it has been widely applied
in various real-world scenarios such as recognition from
surveillance videos, camera networks and personal albums.
Compared with single image based classification, image-set
classification often offers more promises because it can ef-
fectively represent image appearance variations incurred by
pose, illumination, expression, and etc (Hayat, Bennamoun,
and An 2015).

In the last decade, image-set classification has drawn sig-
nificant attention from the research community and many
methods have been developed. Most of these methods can
be categorized into two groups: finding a representation of
an image set and defining a distance metric between two im-
age sets. In these methods, an image set has been modeled
by a subspace (Kim, Arandjelovic, and Cipolla 2007)(He
et al. 2015), a combination of subspaces (Nishiyama et al.
2007), a combination of dictionaries (Chen et al. b)(Lu
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et al. 2014)(Zhang, He, and Davis 2014), sparse represen-
tation (Ortiz, Wright, and Shah 2013), Grassmann Mani-
fold (Harandi et al. 2010)(Huang et al. 2015b), Riemannian
manifold (Wang et al. 2015)(Huang et al. 2015a). Recently,
(Hayat, Bennamoun, and An 2015) proposed a deep learn-
ing based representation model whose parameters are initial-
ized via Gaussian Restricted Boltzmann Machines. In addi-
tion, nearest points (Hu, Mian, and Owens 2012)(Yang et al.
2013) were introduced to calculate the between-set distance.

The existing image-set classification methods often per-
form classification tasks based on hundreds of floating point
features, and store almost every sample from each image
set. When image-set classification is applied to surveillance
videos or camera networks, dense features and large-scale
registered samples result in tremendously large time and
space complexity because there can be (many) thousands
of image samples in a video clip. Dense features and large-
scale samples have become a computational bottleneck of
real-life applications, resulting in two open issues. The first
issue is to learn compact binary codes to represent an image
set. The second one is to reduce the number of large-scale
and similar samples in an image set.

To address the two issues simultaneously, we present a
novel method to jointly learn compact binary codes and re-
duce the number of different samples in each image set.
Firstly, we formulate the proposed method as a joint learn-
ing problem that includes two parts. The first part seeks a
hashing function to generate binary codes that have larger
inter-class distances and smaller intra-class distances. The
second reduces redundant samples with discrete constraints
in a low-rank way; similar samples from the same image set
are forced to have the same binary codes. Secondly, we re-
lax the proposed discrete objective function to a series of
sub-problems to admit an analytical solution. Then we can
obtain a high-quality discrete solution with a very low com-
putational cost. A kernel method based on anchor points is
further used to handle complex and nonlinear variations of
images, which allows implicit and nonlinear feature map-
pings. Finally, given a hashing function and a new image set
(not in the training set), we formulate the binarization of an
image set as a structured learning problem with discrete con-
straints. Experimental results on two standard datasets and
one large-scale dataset (the number of comparisons is more
than 900 million) show that this structured formulation can
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significantly reduce the number of different samples and also
demonstrate the efficiency and effectiveness of the proposed
method for the tasks of face recognition from image sets.

The major contributions of this work lie in three-folds:
• In our work, a joint learning framework is proposed for

image-set classification that reduces the redundancy of
both features and samples at the same time. To the best
of our knowledge, the proposed method is the first one to
address the issue of learning hashing function for image
sets.

• We treat the high correlation between samples (espe-
cially for videos) as an output structure of binary codes,
and formulate this kind of correlation as a matrix trace
term (low-rank) with discrete constraints. This formu-
lation makes the proposed framework more flexible for
image-set based problems and results in high quality dis-
crete codes.

• Different from other single image based hashing methods
that employ the sign function to binarize each sample in-
dependently, we treat the samples in an image set as a
whole one and propose a structured method to binarize
this set of images. The binarization depends on not only
the hashing function but also the binary values of similar
samples.

2 Simultaneous Feature and Sample

Reduction

2.1 Motivation

In image-set classification, each image set often consists of
a large number of images and each image is represented by
a high-dimensional and dense feature. To reduce time and
space complexity, we aim to learn compact binary codes for
image-set classification. At the same time, since the images
(especially video images) from the same image set are of-
ten similar, we expect that similar images have the same (or
similar) binary codes.

Consider a training set X from C classes, which consists
of n image samples xi (1 ≤ i ≤ n) in a high dimen-
sional Euclidean space Rd. We want to seek a binary rep-
resentation for all images in X , which forms a binary matrix
B = [B1, . . . , Bn] ∈ Rm×n. Then the problem of learn-
ing binary codes can be formulated as the following linear
regression problems with discrete constraints,

min
W,B

∥∥WTX −B
∥∥2
F
+ λ1 ‖W‖2F ,

s.t. Bij ∈ {−1, 1}
(1)

where λ1 is constant and ‖.‖F indicates matrix Frobenius
norm. In hashing (Wang et al. 2014), projection matrix W ∈
Rm×d defines a linear hashing function for data X .

Since the image appearance variations in an image set are
often large, a linear hashing function may not handle all vari-
ations very well. Inspired by the supervised hashing methods
with kernels(Liu et al. 2012)(Shen et al. 2015), we can map
data X into a kernel space spanned by k randomly selected
anchor points {aj}kj=1. Then (1) becomes,

min
W,B

∥∥WTK −B
∥∥2
F
+ λ1 ‖W‖2F ,

s.t. Bij ∈ {−1, 1}
(2)

where K = [K1, . . . ,Kn] ∈ Rk×n. Each Ki is obtained by
the RBF kernel mapping:

Ki = [exp(‖xi − a1‖22 /σ), . . . , exp(‖xi − ak‖22 /σ)],
where σ is the kernel width. Since the binary samples in B
are from C classes, we expect that these samples have larger
inter-class and smaller intra-class distances, resulting in the
following criteria,

Ω(B) = 1
2

∑
m,n∈c

h(Bm, Bn)− 1
2

∑
m∈c

∑
n∈c′

h(Bm, Bn) (3)

where c ∈ {1 : C}, c �= c′ and h is a distance in the ham-
ming space.

Considering that the samples from an image set can be
correlated, we further introduce a low-rank constraint to
(2) to encourage Bc from the c-th class to be correlated.
This constraint reduces the redundancy of samples and po-
tentially corrects some binary codes whose corresponding
values (WTK) are close to the separating hyperplane (i.e.,
zero). Combining all points together, we have the following
hashing problem for image-set classification,

min
W,B

∥∥∥WTK −B
∥∥∥
2

F
+Ω(B) +

∑
c

‖Bc‖∗ + λ1 ‖W‖2 ,

s.t. Bij ∈ {−1, 1}
(4)

where ‖.‖∗ denotes the matrix trace norm (i.e., the sum
of its singular values) and Bc contains the columns in B
that belong to the c-th class. When we apply the values
{−1, 1} to indicate binary values {0, 1}, the low-rank con-
straint in (4) might lead to a special case. That is, let codes
B1 = (1, 1, 1, 1)T , B2 = (−1,−1,−1,−1)T , and then ma-
trix B = [B1, B2] is of rank 1. The matrix B has the lowest
rank, but the distance between B1 and B2 is the largest. For-
tunately, we have another constraint in (3) to avoid this ex-
treme case. Since (4) involves a non-convex trace norm and
discrete constraints, it is a difficult optimization problem.

2.2 Solution

Directly minimizing the non-convex problem in (4) is quite
hard. Hence we first introduce an auxiliary variable S ∈
Rm×n to relax (4), resulting in the following minimization
problem,

min
W,B,S

∥∥∥WTK −B
∥∥∥
2

F
+Ω(S) +

∑
c

‖Bc‖∗ + λ1 ‖W‖2 ,

s.t. S = B, Bij ∈ {−1, 1}
(5)

To go down the objective function in (5), we employ an
iterative block coordinate descent method. Then we have the
following sub-problems,
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min
W

∥∥WTK −Bt−1
∥∥2
F
+ λ1 ‖W‖2 , (6)

min
S

Ω(S|Bt−1), (7)

min
Bc

∥∥Act −Bc
∥∥2
F
+ ‖Bc‖∗ , (8)

s.t. B = St, Bij ∈ {−1, 1}
where At = (W t)TK, Act contains the columns in At that
belong to the c-th class, and Ω(S|Bt−1) indicates that we
seek the solution of Ω(S) when Bt−1 is given. That is, we
only solve one sub-problem at a time by fixing other vari-
ables.

By setting the derivative of (6) equal to zero, we have the
analytic solution of (6) as follows,

W t = (KKT + λ1I)
−1K{B(t−1)}T , (9)

where I is an identity matrix. Given Bt−1, we can apply
sub-gradient descent method to solve the sub-problem in (7).
Since S and Bt−1 are all binary codes, (7) can be minimized
very efficiently. Here, we adopt the implementation provided
by (Rastegari, Farhadi, and Forsyth 2012) to obtain a local
solution of S.

By substituting the first equality constraint into sub-
problem (8), we can reformulate (8) as follows,

min
Bc

‖Act −Bc‖2F + λ2 ‖Bc − Sct‖2F + ‖Bc‖∗ , (10)

s.t. Bij ∈ {−1, 1}
To minimize the low-rank problem in (10), we first need
to introduce a variational formulation for the trace norm
(Grave, Obozinski, and Bach 2011),

Lemma 1 Let B ∈ Rm×n. The trace norm of B is equal to:

‖B‖∗ = 1
2
inf
L≥0

tr
(
BTL−1B

)
+ tr(L) (11)

and the infimum is attained for L = (BBT )1/2.

Using this lemma, we can reformulate (10) as,

min
Bc

min
L≥0

‖Act −Bc‖2F + tr(BcTL−1Bc) (12)

+λ2 ‖Bc − Sct‖2F + tr(L) s.t. Bc
ij ∈ {−1, 1}

The problem in (12) can be alternately minimized (Grave,
Obozinski, and Bach 2011)(Wang et al. 2013)(He, Tan, and
Wang 2014). Fixing L, we can employ the discrete cyclic
coordinate descent method to obtain Bc. For simplicity, we
make use of a simple way to compute Bc. That is, disregard-
ing the integer constraint and setting the derivative of (12)
equal to zero, the solution of Bc has the following form,

Bc = ((1 + λ2)I + L−1)\(Act + λ2S
ct). (13)

Given a floating point Bc in one iteration, we can use the

sign function sgn(.) to obtain binary value sgn(Bc). Exper-
imental results show that the learned binary codes are good
enough for image-set classification.

Algorithm 1: Simultaneous Feature and Sample Reduc-
tion (SFSR)

Input: Data matrix X ∈ Rd×n

Output: Hashing function W ∈ Rd×m

1: Normalize each xi to unit �2-norm
2: Compute kernel matrix K by randomly selecting k

samples from X and centralize K to have zero mean
3: Initialize B0 by PCA+ITQ
4: repeat
5: Compute W t via (6)
6: Compute St via (7)
7: Compute Bt via (8)
8: t ← t+1
9: until The variation of B is smaller than a threshold

Algorithm 1 summarizes the procedure to simultaneously
reduce features and samples for image-set classification. In
Algorithm 1, we have to give an initial value of B0. Fortu-
nately, error correcting code (Kittler et al. 2001) and infor-
mation theoretic rules (Chen et al. a) provide an efficient way
to initialize B0. In error correcting code methods, the binary
codes for one class are often unique. Here, we employ unsu-
pervised version of iterative quantization (PCA+ITQ) (Gong
and Lazebnik 2011) to obtain the binary code of the mean
image of one class. Then, these binary codes are used as B0.
Experimental results in Section 3.2 show that Algorithm 1 is
not very sensitive to the setting of B0. The threshold of the
variation of B can be determined by cross-validation on the
training set. When the number of iterations is large enough,
Algorithm 1 is not sensitive to the setting of this thresh-
old. Throughout this paper, λ1 and λ2, training and selected
based on the datasets, are empirically set to 1 and 0.1, re-
spectively.

2.3 Image-set Classification

Given a learnt hashing function fH
W (.) and a new probe

dataset Kp, one still needs to quantize floating-point
fH
W (Kp) to discrete values (Kong and Li 2012). The exist-

ing hashing methods often assume that the samples in Kp

are independent and resort to the sign function sgn(.) to ob-
tain binary value as follows,

Bij = sgn(fH
W (Kp

ij)) (14)

For single-image based hashing methods, we can further for-
mulate the quantization as a discrete optimization problem
as follows,

min
Bi

{
‖Ei‖22 + ‖Bi‖

}
, (15)

s.t. Bi = fH
W (Kp

i ) + Ei, Bi ∈ {−1, 1}
where ‖.‖ is a potential norm from the prior knowledge of
data.

Having considered that the samples in the image set Kp

are often correlated, we introduce the following low-rank
problem with discrete constraints for image-set classifica-
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(a) the Honda/UCSD dataset (b) the CMU Mobo dataset (c) the YouTube Celebrities dataset

Figure 1: Image samples of three different classes in the three image-set databases respectively. There are large appearance
variations incurred by pose, illumination and expression.

tion,

min
B

{
‖E‖2F + ‖B‖∗

}
(16)

s.t. B = fH
W (Kp) + E, Bij ∈ {−1, 1}

Since the low-rank constraint in (16) tends to make the col-
umn samples in B correlated, it also tends to reduce the
number of different samples in B. By substituting the first
constraint into (16), (16) becomes,

min
B

{∥∥B − fH
W (Kp)

∥∥2
F
+ ‖B‖∗

}
(17)

s.t. Bij ∈ {−1, 1}
Comparing (17) with (8), we can employ the same mini-
mization method for (8) to minimize (17). Experimental re-
sults in Section 3.2 demonstrate that the usage of (16) to
quantize floating-point features can significantly reduce the
number of different samples.

Since B is a binary value matrix and has a small number
of different samples, we can make use of a simple yet effi-
cient voting method for image-set classification. That is, a
simple nearest neighbor classifier for each unique code in B
with voting is used as classifier to report recognition rates.
The class label of the majority class in an image set is taken
as the final class label of this set.

3 Experiments

We evaluate the performance of the proposed method
for the tasks of face recognition from image sets. Since
there seem no existing hashing methods that are partic-
ularly designed for image-set classification, we compare
the proposed method in several different settings with
state-of-the-art hashing methods. Meanwhile, we also com-
pare our method with state-of-the-art image-set classifica-
tion techniques. Experiments are performed on two stan-
dard image-set classification datasets, i.e., the Honda/UCSD
dataset (Lee et al. 2003), the CMU Mobo Dataset (Gross
and Shi 2001), and one large-scale dataset (the number of
comparisons is larger than 900 million), i.e., the YouTube
Celebrities Dataset (Kim et al. 2008).

3.1 Evaluation Protocols

To systematically evaluate different methods, we make use
of recognition rates and compressed rates as two evalua-
tion protocols, which measure the performance of SFSR in
terms of feature and sample reduction, respectively. Recog-
nition rate is defined as the ratio between the number of
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Figure 2: Performance of the proposed SFSR in several
different settings. (a) Recognition rates with different ini-
tializations on the Youtube dataset. (b) Compressed rates
with/without using (16) on the training set and testing set
of the Honda dataset.

correctly classified image set and the total number of im-
age sets. A higher recognition rate of an algorithm indi-
cates that the algorithm correctly classifies more image sets.
Compressed rate is the compressed ratio of samples during
image-set classification, i.e., compressed rate = the num-
ber of unique samples/the total number of samples. A lower
compressed ratio of an algorithm indicates that the algorithm
needs less storage space (and as a consequence less compu-
tational time).
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Figure 3: Recognition rates of different binary code learning methods on the three image-set classification databases. A higher
recognition rate of an algorithm indicates that the algorithm correctly classifies more image sets.
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Figure 4: Compressed rates of different binary code learning methods on the three image-set classification databases. A lower
compressed ratio of an algorithm indicates that the algorithm needs smaller storage space and computational time.

3.2 Algorithmic Analysis

In this subsection, we give a deep analysis of the proposed
method in several different settings. In Algorithm 1, we
should give an initial value to B0. We further study of the
robustness of Algorithm 1 to B0 by using different initializa-
tions. Unsupervised version (PCA+ITQ) and supervised ver-
sion (CCA+ITQ) of ITQ (Gong and Lazebnik 2011) are em-
ployed to initialize B0. Fig. 2 (a) shows the recognition rates
of SFSR by using these two initializations on the YouTube
celebrities dataset. From the results, we observe that there
are only small variations between two initializations. That
is, Algorithm 1 is not very sensitive to the initialized value
of B0.

Low-rank constraints play an important role in the pro-
posed methods during both training and testing. Hence we
further study the performance of SFSR with/without using
low-rank constraints. A simple way to testify performance
by whether using (16) to obtain binary codes or not. If
(16) is not used, one can directly obtain binary codes via
sgn(fH

W (Kp)). Fig. 2 (b) shows the compressed rates of
SFSR with/without using (16) on the Honda dataset. We ob-
serve that compressed rates are significantly reduced when
(16) is used to obtain binary codes. This indicates that the
low-rank constraints in SFSR can effectively and efficiently
model the correlation relationship between the images in
an image set and are applicable for image-set classification
problems. Moreover, Ω(B) reduces intra-class variation so
that some extreme cases (e.g., B1 = (1, 1, 1, 1)T , B2 =

(−1,−1,−1,−1)T ) do not occur. We aim to find binary
codes (0,1) and can impose low-rank constraint on 0-1 val-
ues to avoid the extreme cases.

3.3 Numerical Results

The Honda/UCSD Dataset consists of 59 video se-
quences for 20 persons. Each person has at least 2 videos
that contain large pose and expression variations. The num-
bers of the images in these sequences vary from 12 to 645.
Fig. 1 (a) shows some cropped images from this dataset. We
make use of the standard training/testing protocol in (Wang
et al. 2008)(Zhang, He, and Davis 2014): 20 sequences are
used for training and the remaining 39 sequences for testing.
All the video frames are used to report classification results.

Fig. 3 (a) and Fig. 4 (a) show recognition rates and com-
press rates on the Honda database, respectively. We compare
the proposed SFSR with several other state-of-the-art hash-
ing methods. SFSR can reach the best recognition result in
different numbers of bits in Fig. 3 (a). Meanwhile, the com-
pressed rate of SFSR is better than most of the compared
algorithms, similar to FastHash and lower than SDH. Since
the binary codes of SDH are constrained to form a basis of
sparse label matrix, SDH potentially reduces the number of
different samples in an image set. However, this constraint
in SDH may make the binary codes of SDH overfit on the
training set so that SDH can not achieve a higher recogni-
tion rate.
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Methods RNP(2013) MSSRC(2013) SGM(2015a) PML(2015b) DARG(2015) DRM(2015) SFSR

Accuracy 78.9% 80.75% 75.16% 70.32% 77.09% 72.55 % 85.74%

Table 1: Recognition rates of state-of-the-art image-set classification methods from the YouTube Dataset.

The CMU Mobo Dataset was originally published for hu-
man pose identification. It contains 96 sequences of 24 dif-
ferent subjects, which are captured in four different walking
patterns (slow, fast, inclined, and carrying a ball) by using
multiple cameras. Fig. 1 (b) shows some cropped images
from three subjects. We follow the standard training/testing
configuration in (Wang et al. 2008)(Zhang, He, and Davis
2014). One video was randomly chosen as training and the
remaining three for testing.

Fig. 3 (b) and Fig. 4 (b) illustrate the experimental results
on the Mobo database. SFSR is robust to appearance varia-
tions in videos and extract discriminative binary codes, thus
SFSR also achieve the highest recognition rate in this data
set. When the number of bits is small, the compressed rate of
SFSR is higher than that of SDH. However, the compressed
rate of SFSR is the lowest when the number of bits grows.
The proposed method can remove redundancy and represent
the useful image information effectively and efficiently.

The YouTube Celebrities Dataset is composed of 1910
video clips of 47 human persons (actors, actresses, and
politicians) from the YouTube website. Roughly 41 clips
were segmented from 3 unique videos for each person, and
are low resolution and highly compressed. Fig. 1 (c) shows
some cropped facial images whose sizes are 30 × 30. This
dataset is challenging because it contains many tracking er-
rors in cropped faces and large appearance variations (e.g.,
pose, illumination and expressions). Following the standard
protocol, the testing dataset is composed of 6 test clips, 2
from each unique video, per person. The remaining clips
were used as the input to the CNN to learn a 1152-D fea-
ture representation. One frame of video (one single image)
is fed into the CNN at a time. We randomly selected 3 train-
ing clips, 1 from each unique video. The number of images
in the testing set is 44,172. The average number of training
images for hashing algorithm is larger than 20,000. Hence,
the average number of image comparisons is more than 900
million.

The experimental results on the Youtube database are
shown in Fig. 3 (c) and Fig. 4 (c). Although CNN fea-
tures are used, the recognition rates of all methods on this
dataset are significantly lower than those on the previous
two datasets. This is because there are many tracking and
detection errors (as shown in Fig. 1 (c)) so that cropped face
images are not well alignment. Face alignment is a key step
for face recognition. We observe that SFSR obtains the best
recognition rates and the lowest compressed rates in each
number of bits, and further improve the recognition perfor-
mance of CNN features. SFSR with discrete constraints is
flexible for image-set classification and results in high com-
pressed and discriminative codes. Thus, a small number of
bits can be selected to decrease computation complexity and
time consuming without decreasing the recognition perfor-

mance in the database.

Compared with Image-set Classification Methods In
this subsection, we compare the proposed method with
state-of-the-art image-set classification methods, includ-
ing, regularized nearest points (RNP) (Yang et al. 2013),
mean sequence sparse representation-based classification
(MSSRC) (Ortiz, Wright, and Shah 2013), single Gaussian
model (SGM) (Huang et al. 2015a), projection metric learn-
ing (PML) (Huang et al. 2015b), discriminant analysis on
Riemannian Manifold (DARG) (2015), and Deep Recon-
struction Model (DRM) (2015). As in (Yang et al. 2013)(Or-
tiz, Wright, and Shah 2013)(Zhang, He, and Davis 2014) ,
we directly cited the best recognition rates of these methods
from the literature.

Table 1 tabulates the classification accuracy of each im-
age set method. It is shown that on the large-scale dataset
the proposed method significantly outperforms all other ap-
proaches. With 128 bits, SFSR achieves the accuracy of
85.74%, which is higher than the second one (MSSRC) by
almost 5%. Compared with the mostly recent deep learn-
ing method (i.e., DRM), the accuracy improvement of our
method is more than 10%. Our results are also consistent
with the results in face recognition (Schroff, Kalenichenko,
and Philbin 2015). That is, one can make use of compact bi-
nary codes to achieve good recognition performance for face
recognition problems although the main challenging prob-
lem in the YouTube Celebrities Dataset is incurred by track-
ing and detection errors. Compared with state-of-the-art im-
age set classification methods with floating features, the pro-
posed method can not only reduce the number of samples
and features but also generate discriminative binary codes.

4 Conclusion

This paper has introduced a joint learning method for image-
set classification that simultaneously learns compact binary
codes and removes redundant samples. We seek a hashing
function to generate binary codes containing large inter-
class and small intra-class distances and then reduce redun-
dant samples with discrete constraints in a low-rank way in
two steps. Furthermore, to admit an analytical solution, the
discrete objective function to a series of sub-problems is re-
laxed to obtain a high-quality discrete solution with a very
low computational cost. A kernel method based on anchor
points is further used to handle complex and nonlinear varia-
tions of images, which allows implicit and nonlinear feature
mappings. At last, we formulate the binarization of an test-
ing image set as a structured learning problem with discrete
constraints by using the hashing function. The experimental
results verified the efficiency and effectiveness of the pro-
posed method in depressing and coding in large-scale face
image sets. In the future, we will continue researching on
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hashing based sample reduction and representation method.
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