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Abstract

Style classification (e.g., architectural, music, fashion) at-
tracts an increasing attention in both research and industrial
fields. Most existing works focused on low-level visual fea-
tures composition for style representation. However, little ef-
fort has been devoted to automatic mid-level or high-level
style features learning by reorganizing low-level descriptors.
Moreover, styles are usually spread out and not easy to dif-
ferentiate from one to another. In this paper, we call these
less representative images as weak style images. To address
these issues, we propose a consensus style centralizing auto-
encoder (CSCAE) to extract robust style features to facili-
tate weak style classification. CSCAE is the ensemble of sev-
eral style centralizing auto-encoders (SCAEs) with consen-
sus constraint. Each SCAE centralizes each feature of cer-
tain category in a progressive way. We apply our method
in fashion style classification and manga style classification
as two example applications. In addition, we collect a new
dataset, Online Shopping, for fashion style classification eval-
uation, which will be publicly available for vision based fash-
ion style research. Experiments demonstrate the effectiveness
of SCAE and CSCAE on both public and newly collected
datasets when compared with the most recent state-of-the-art
works.

Introduction

Recently, researchers have shown great interest in style
classification, such as architectural style (Goel, Juneja, and
Jawahar 2012; Xu et al. 2014), music style (Herlands et al.
2014), photographic style (Van Gemert 2011), manga style
(Chu and Chao 2014) and fashion style (Kiapour et al. 2014;
Bossard et al. 2013; Yamaguchi, Kiapour, and Berg 2013;
Chao et al. 2009). For example, in vision community, fash-
ion style, which serves as the expressions of individual’s
characters and aesthetics, is related to clothing parsing (Ya-
maguchi et al. 2012), recommendation (Wang et al. 2015;
Czapiewski et al. 2015; Liu et al. 2012a) and classifica-
tion (Liu et al. 2012b; Song et al. 2011; Shao, Li, and Fu
2013; Di et al. 2013), but essentially different. A particular
clothing type is generally made up of a diverse set of fashion
styles. For example, “suit” can be considered as both elegant
and renascent fashion styles. In addition, in online shopping
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Figure 1: Illustration of “weak style” phenomenon. Style im-
ages are usually “spread out”. Images in the center are rep-
resentatives style images and defined as “strong style”. They
are easy to distinguished from other styles. We rate them at
higher style level 3 (e.g., l3). Images far from the center are
less similar to strong style images. Images in red frames on
the boundary are from two different classes, but they seem
visually similar, and easily get misclassified. For example, in
manga style illustration, it is hard for human to distinguish
two upper mangas in the red frames into the Shojo (girl)
style and Shonen (boy) style. Therefore, they are defined as
“weak style” and rated at lower style level 1 (e.g., l1).

systems, customers could choose a special category of cloth-
ing according to personal preference or occasion, namely,
fashion style. Understanding fashion styles and clothing cat-
egories are equally important. Therefore, learning robust
style representation for style classification becomes an in-
teresting research topic.

Most existing style classification methods focused on ex-
tracting discriminative local patches or patterns. Goel et al.
mined characteristic features with semantic utility from low-
level features for different architectural styles (Goel, Juneja,
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and Jawahar 2012). These characteristic features were of
various scales, and provided an insight into what makes a
particular architectural style category distinct. Chu et al. de-
signed six computational features such as line orientation
and angle between lines for manga style classification (Chu
and Chao 2014). These features could discriminate mangas
which target at young boys and young girls, and discrimi-
nated artworks produced by different artists. Recently, Ki-
apour et al. (Kiapour et al. 2014) released an online game to
collect a fashion dataset and then proposed a style descrip-
tor by concatenating low-level features to represent fashion
styles.

However, style classification usually rely on high-level
abstract concepts, and therefore style images from the same
category are usually spread out. As shown in Figure 1, repre-
sentative images in the center are assigned strong style level
l3, while less representative images distant to the center are
assigned lower style level. The latter easily gets misclassi-
fied with other categories. We name them as weak style im-
ages and rate them to weak style level l1. Furthermore, ex-
isting methods usually concatenated all the features together,
meaning all the features are treated equally important. Actu-
ally, those features should be treated differently as they are
considered in different fashion styles. However, to the best
of our knowledge, no algorithm has been proposed to weight
multiple weak style features in an automatic way.

To address above issues, we propose a consensus style
centralizing auto-encoder (CSCAE) to extract robust style
features, especially for weak style images. As shown in Fig-
ure 2, CSCAE is the ensemble of several style centraliz-
ing auto-encoders (SCAEs) with consensus constraint. Each
SCAE centralizes the images from the same category in a
progressive way using one feature. Although conventional
auto-encoder (AE) could learn mid- or high-level features
for style classification, the nature of weak style of style im-
ages (spread out and not easy to differentiate from others)
makes style centralization necessary. To that end, we pro-
gressively transform the original input to images with higher
style level using an improved AE. Conventional AE takes
identical input and output, while in SCAE, for each AE
building block, the corresponding output data distinction de-
gree is one level higher than the input data. We only “pull”
neighbor samples together towards the center of this cate-
gory. This progressive evolution of the input data allows to
slowly mitigate the weak style distinction, and ensures the
smoothness of the model. For each step, our CSCAE jointly
trains all the columns together with consensus constraints
that keep patch weights over different feature channels con-
sistent.

We evaluate our methods on two applications: fashion
style classification and manga style classification. We also
collect another new Online Shopping dataset and compare
our method with the most recent state-of-the-art works on it.
On both our newly collected and public datasets, our meth-
ods achieve appealing results.

The novelties of our paper could be concluded as follows:
• To the best of our knowledge, this is the first time that

weak style classification problem has been identified in
AI and vision community as a feature learning problem.

• We propose a new deep learning framework towards au-
tomatic mid- and high-level style feature extraction.

• We propose a consensus style centralizing auto-encoder
(CSCAE) with patch weights consensus constraints on
different feature channels to learn robust style features.

Methods

In this section, we first briefly introduce the auto-encoder
(AE) and denoising auto-encoder (DAE). Then we present
our style centralizing auto-encoder (SCAE) and extend it to
consensus style centralizing auto-encoder (CSCAE).

Preliminary

Deep structures have been exploited to learn discriminative
feature representation (Bengio 2009; Ding, Shao, and Fu
2015). Suppose X ∈ R

D×N are N images from the style
dataset, where D is the feature dimension, and xi ∈ R

D de-
notes the feature of the i-th image in X . Conventional AE
auto-encoder (AE) (Bengio 2009) includes two parts: en-
coder and decoder. An encoder attempts to map the input to
the hidden layer by a linear transform and a successive non-
linear activation function. Denoting the mapping as f(·), for
each xi, we can explicitly formulate this process as:

zi = f(xi) = σ(W1 × xi + b1), (1)

where zi ∈ R
d is the hidden layer representation, W1 ∈

R
d×D is the linear transform, b1 ∈ R

d is the bias, and
σ is the non-linear activation function. In our formula-
tion, we use the sigmoid function with the form: σ(xi) =

1
1+exp{−xi} .

On the other hand, the decoder g(·) manages to map the
hidden representation zi back to the input signal xi, namely,

xi = g(zi) = σ(W2 × zi + b2), (2)

where the linear transform W2 ∈ R
d×D and basis b2 ∈ R

D.
To optimize the model parameters W1, b1, W2 and b2, we

employ the typical least square error as the cost function:

min
W1,b1
W2,b2

1

2N

N∑
i=1

∥∥xi − g(f(xi))
∥∥2 + λR(W1,W2), (3)

where R(W1,W2) = (‖W1‖2 + ‖W2‖2) works as a regu-
larizer and λ is the weight decay parameter to suppress arbi-
trary large weights. Such problem has been widely discussed
in neural networks, and can be solved by back propagation
algorithms (Rumelhart, Hinton, and Williams 1988).

An effective variation of AE described above is the de-
noising auto-encoder (DAE) (Vincent et al. 2008). The in-
put of DAE is the corrupted version X̃ by corruption pro-
cess q(X̃|X) of the clean data X . The output of DAE is the
clean data X . During the training processing, DAE learns
a stochastic mapping p(X|X̃) (Vincent et al. 2010), which
reconstructs the corrupted X̃ back to the uncorrupted ones.
Mathematically, the cost function can be written as:

min
W1,b1
W2,b2

1

2N

N∑
i=1

∥∥xi − g(f(x̃i))
∥∥2 + λR(W1,W2). (4)
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Figure 2: Consensus style centralizing auto-encoder (CSCAE) framework. Each column (red, blue, green) represents a style
centralizing auto-encoder (SCAE). Example images of each level l are presented with colored frames. In step k, samples in lk
are replaced by the nearest neighbors in lk+1 (red). Samples in higher level than lk are not changed (blue). In CSCAE, different
feature channels (columns) are trained jointly by adding column consensus constraint on each patch.

Style Centralizing Auto-Encoder (SCAE)

In this section, we introduce style centralizing auto-encoder
(SCAE) in detail, and explain how SCAE centralizes weak
style to strong style from the manifold learning perspective.

Conventional AE takes identical input and output, while
in SCAE, the corresponding output data’s style level is one
level higher than the input data. This progressive evolution
of the input data allows to slowly mitigate the weak style
distinction, and ensures the smoothness of the model. This
progressive thought is somehow similar to the design of
DAE (Vincent et al. 2008); however SCAE explicitly car-
ries the semantics of weak style, by which the weak style
features could be projected back to the strong style features.

Illustration of full pipeline of CSCAE can be found in
Figure 2, in which each column is a SCAE for a feature
channel. In each step k, the input Xk can be seen as the
“corrupted” version of Xk+1 by the nearest neighbor rule
found from samples in lk. Samples in higher level than lk
are not changed (blue). To clarify this, we take the first layer
of SCAE for example. The inputs of the 1st layer of SCAE
are the features of images in ascent order w.r.t style level,
namely, X1, X2, X3 and X4. The corresponding output of
X1 is X2, which is one level higher. We use the identical
input and output for images in l2, l3 and l4 in the 1st layer
of SCAE. For the inputs of the 2nd layer, as images in l1 are
already transformed to l2, we treat them as l2 images in the
second layer. Mathematically, SCAE can be formulated as:
suppose we have L style levels, the k-th layer of SCAE for
category c can be written as:

min
W

(c)
1,k

,b
(c)
1,k

W
(c)
2,k

,b
(c)
2,k

∑
i,j

x
(c)
j,k

∈u(x
(c)
i,k+1

)

∥∥x(c)
i,k+1 − g(f(x

(c)
j,k))

∥∥2+

L∑
ξ=k+1

∑
i

∥∥x(c)
i,ξ − g(f(x

(c)
i,ξ ))

∥∥2 + λR(W
(c)
1,k ,W

(c)
2,k)

(5)

where x
(c)
j,k ∈ u(x

(c)
i,k+1) means x(c)

j,k is the nearest neighbor

Figure 3: Manifold learning perspective of SCAE with man-
gas in “shonen” style. Suppose the higher level (lk+1) man-
gas (or blue points) lie close to a low dimensional manifold,
then samples Xk in lower level (lk) obtained by corruption
process q(Xk|Xk+1) will lie far from the manifold. An ex-
ample of a manga xj,k in lk is shown in the bottom right cor-
ner. The mapping operator p(Xk+1|Xk) manages to project
xj,k back to onto the manifold through encoder f(·) and de-
coder g(·) processing.

of x(c)
i,k+1. The problem above can be solved in the same way

as problem in Eq. (3). Similarly, the deep structure can be
built in a layer-wise way, which is outlined in Algorithm 1.

Geometric Interpretation of SCAE: The process of cen-
tralizing which maps a weak style sample back to a strong
style can be interpreted from the geometric perspective un-
der the manifold assumption (Chapelle et al. 2006). Vincent
et al. provided the manifold learning perspective regarded to
the insight behind the DAE (Vincent et al. 2010). Suppose
the uncorrupted data lie close to a non-linear manifold. Usu-
ally, the non-linear manifold is with lower dimension. The
corrupted version x̃ of x is obtained by a stochastic mapping
q(X̃|X). During the training, DAE learns a stochastic op-
erator p(X|X̃) which maps the corrupted data x̃ back to x
which is on or close to the manifold.
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Figure 3 illustrates the manifold learning perspective of
SCAE where images of shonen style mangas are shown as
the examples. Suppose the higher level (lk+1) mangas lie
close to a low dimensional manifold. The weak style exam-
ples are more likely being far away from the manifold than
the higher level ones. Note xj,k is the corrupted version of
xi,k+1 by the operator q(Xk|Xk+1), and therefore lies far
away from the manifold. In SCAE, q(Xk|Xk+1) manages to
find the nearest neighbor of x(c)

i,k+1 in level lk to obtain the

corrupted the vision of x(c)
i,k+1 as x(c)

j,k+1. During the central-
izing training, similar to DAE, SCAE learns the stochastic
operator p(Xk+1|Xk) that maps the lower style level sam-
ples Xk back to a higher level. Successful centralization im-
plies that the operator p is able to map spread-out weak level
style data back to the high level style data which are close to
the manifold.

Consensus Style Centralizing Auto-Encoder

(CSCAE)

Consensus style centralizing auto-encoder (CSCAE) is the
ensemble of several SCAEs with column consensus con-
straint. As shown in Figure 2, each column (red, blue or
green) is a SCAE centralizing one kind of low-level feature.
As it is difficult to manually assign the weights of differ-
ent low-level features (e.g., HOG, RGB), we propose to use
CSCAE for automatic features weighting.

To that end, we propose to add patch weight consensus
constraint through minimizing the differences of weights of
the same patch from different feature channels. Each patch
presents one semantic region of the image. For example, in
fashion style images, a patch could be the region of arm
or waist, and in mangas, it could be the region of eye or
mouth. Intuitively, the weights of the patch from different
feature channels should be similar, as they encode the ex-
act same matter but in different ways. Taking face recogni-
tion as an example, the eye patch should be more important
than cheek patch, as demonstrated by many face recognition
works. Back to our consensus model, taking manga as an
example, although the input features are different, the eye
patches in different columns should be equally important.

We also illustrate the principle of column consensus in
the right part of Figure 2. Each cell represents one patch and
different colors are used to distinguish the patch weights.
Weights from low to high are presented by colors from light
to dark. Take column 2 and column 3 in step k = 1 as an
example. ‖W (1,2) − W (1,3)‖ is the difference between the
weights of these two columns, where W (k,μ) indicates the
weight matrices in the μ-th column in step k, and w

(k,μ)
i

presents the i-th patch in W (k,μ). If these two columns fol-
low our consensus assumption, meaning either both columns
assign high weights to patch i, or both columns set low
weights to patch i, in either case,

∥∥w(1,2)
i − w

(1,3)
i

∥∥ should
be very small and close to zero, which is presented in a white
color. Otherwise,

∥∥w(1,2)
i −w

(1,3)
i

∥∥ should be large and pre-
sented in a dark color.

To fulfill the assumptions above, we add the KL diver-

Algorithm 1 Style Centralizing Auto-Encoder
INPUT: Style feature X including weak style feature.
OUTPUT: Style centralizing feature Zk, model parameters:
W

(c)
1,k , W (c)

2,k , b(c)1,k, b(c)2,k, k ∈ [1, L− 1], and c ∈ {1, ..., Nc}.

1: Initial Z(0) = X .
2: for k=1,2,...,L-1 do
3: X(k)=Z(k−1).
4: for c = 1,..., Nc do

5: Calculate W
(c)
1,k , W (c)

2,k , b(c)1,k, b(c)2,k by Eq. (5).

6: Calculate Z
(c)
k by Eq. (1).

7: end for
8: Combine all Z(c)

k , c ∈ {1, ..., Nc} into Zk.
9: end for

gence KL(ρ̂‖ρ) to multi-column SCAE model as a new reg-
ularizer to minimize the differences of patch weights in dif-
ferent columns, and obtain the new cost function J

′
k of the

k-th step:

J
′
k =

∑Nf

μ=1
Jμ,k + βKL(ρ̂‖ρ), (6)

where Nf is number of feature channels, and β is the param-
eter to adjust the weight of the KL(ρ̂‖ρ). The left part is the
sum of reconstruction cost of all the columns, where Jμ,k is
the cost function of the μ-th column in the k-th step, which
can be calculated in the similar way as Eq. (5). The right part
is the regularizer for column consensus as discussed above,
where KL(ρ̂‖ρ) can be computed as:

KL(ρ̂‖ρ) = ρ log
ρ

ρ̂
+ (1− ρ) log

1− ρ

1− ρ̂
, (7)

where ρ is a model parameter, and ρ̂ is the average patch
weight differences over different columns, calculated as:

ρ̂ =
1

Nf × (Nf − 1)

∑
μ>ν

∥∥W (k,μ) −W (k,ν)
∥∥2, (8)

where W (k,μ) and W (k,ν) are the weight matrices in the μ-th
column and ν-th column in step k. The regularizer detailed
in Eq. (7) essentially minimizes the difference of pre-defined
ρ and ρ̂. By setting ρ at a very small value, we could get
a sparse structure of ρ̂, which fulfills our assumption that
the differences of weights of the same patch from different
columns should be very small.

Solutions

Here we describe how to solve the objective function pro-
posed in Eq. (6). Although we still use stochastic gradient
descent + back propagation for solutions, we have to jointly
consider multiple columns updating corresponding to differ-
ent features, which is linked by Eq. (8). In brief, the basic
gradient updating rules for model parameters W (k,μ), b(k,μ)
of the μ column, k-th layer of auto-encoder will be:

W
(k,μ)
i,j := W

(k,μ)
i,j − ∂

∂W
(k,μ)
i,j

J
′
k(W, b), (9)
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b
(k,μ)
i := b

(k,μ)
i − ∂

∂b
(k,μ)
i

J
′
k(W, b), (10)

where i and j are the index of input and output nodes of k-th
layer, respectively. W (k,μ)

i,j and b
(k,μ)
i are the weight matrix

and weight bias of mapping the i-th node of the input of the
k-th layer to the j-th node of the output of this layer.

The key procedure is finding partial derivative
∂

∂W
(k,μ)
i,j

J
′
k(W, b) and ∂

∂b
(k,μ)
i

J
′
k(W, b) by the back prop-

agation algorithm. For node i in the output layer L, we
measure the error which caused by node through calculating
the difference between the true target value and the output
activation of the network, and denote the error term as
δ
(L,μ)
i . For the objective function in general AE as Eq. (3),

for the hidden layer (k < L), the error term δ
(k,μ)
i can be

computed by:

δ
(k,μ)
i =

(∑
j

W
(k,u)
ji δ

(k+1,μ)
j

)
f ′(z(k,μ)i ). (11)

In CSCAE, since the consensus constraint KL(ρ̂‖ρ) is
added into Eq. (7), the δ

(k,μ)
i can be calculated as:(∑

j

W
(k,μ)
ji δ

(k+1,μ)
j + β

(
− ρ

ρ̂
+

1− ρ

1− ρ̂

))
f ′(z(k,μ)

i ). (12)

Finally, we obtain partial derivatives as:

∂

∂W
(k,μ)
i,j

J
′
k(W, b) = a

(k,μ)
j δ

(k+1,μ)
i , (13)

∂

∂b
(k,μ)
i

J
′
k(W, b) = δ

(k+1,μ)
i , (14)

where a
(k,μ)
j = z

(k−1,μ)
j is the j-th input node of μ-th col-

umn of the k-th layer.
We solve the problem above using L-BFGS optimizer

(Nocedal 1980; Ngiam et al. 2011) since it can solve large-
scale problems only using limited memory. As the weights
of different columns are adaptively learned after minimiz-
ing the cost function, we do not manually assign weights of
columns any more. Afterwards, we use hidden layer zi as
the learned representation for style feature. To train the deep
model in a more efficient way, we employ layer-wise train-
ing procedure. All hidden layers from the deep model are
stacked to form the final style representation.

Experiment

We evaluate our methods on two applications, fashion style
classification and manga style classification. Firstly we in-
troduce dataset processing and the state-of-art methods of
these two applications. Then classification performances of
our methods and the state-of-art methods are reported.

Dataset Processing

Hipster Wars (Kiapour et al. 2014). It contains 5 cat-
egories and 1893 images of fashion style (Kiapour et al.
2014). It provides reliable human judgments of style level.

Online Shopping. It is collected by us from online shop-
ping websites (e.g., “Nordstrom.com”, “barneys.com”) con-
taining more than 30,000 images. We invited 7 professionals
to manually label each image to one of 12 classes according
to the category definition by fashion magazine (Chang et al.
2003). For image i, we calculated how many people labeled
this image to category j, j ∈ {1, ..., 12}, denoted by φ

(j)
i .

We chose the j∗-th category, where j∗ = argmaxj φ
(j)
i , as

the groundtruth and φ
(j∗)
i is regarded as style level for image

i. Due to the space limitation, more descriptions of Online
Shopping dataset will be provided in the future release.

For fashion images in both Hipster Wars dataset and On-
line Shopping dataset, first, pose estimation is applied to ex-
tract key boxes of human body (Yang and Ramanan 2011).
Note that for Hipster Wars, we use full body bounding box,
while for Online Shopping, we only use upper body bound-
ing box since Online Shopping images are upper body cen-
tered. The bounding box of external dataset is extracted ac-
cordingly. We then extract 7 dense features for each box:
RGB color value, LAB color value, HSI color value, Gabor,
MR8 texture response (Varma and Zisserman 2005), HOG
descriptor (Dalal and Triggs 2005), and probability of pix-
els which belongs to skin categories 1. Finally, we split each
box into 4 patches (2×2) and extract features with mean-std
pooling.

Manga (Chu and Chao 2014). Chu et al. collected a
shonen and shojo mangas databased including 240 panels.
Six computational features: including angle between lines,
line orientation, density of line segments, orientation of
nearby lines, number of nearby lines with similar orientation
and line strength, are calculated from each panel. We apply
K-means to cluster the images based on low-level features
and split them to different style levels according to their dis-
tances from the centroids.

In all the classification tasks of fashion and manga, a 9:1
training to test ratio is used for training-test process, and
we repeat it for 50 times. Then SVM classifier is applied
in Hipster Wars and Manga dataset by following the settings
in (Kiapour et al. 2014; Chu and Chao 2014), while nearest
neighbor classifier is applied on Online Shopping dataset.

Competitive Methods

As our method focuses on fashion and manga style fea-
ture extraction, in the following part, we mainly compare
with the state-of-the-art fashion/clothing style/(first three)
and manga style (the fourth) feature extraction methods.

[ECCV, 2014] (Kiapour et al. 2014): This method con-
catenated all the low-level features after mean-std pooling as
the input of the classifier and named as style descriptor.

[ICCV, 2013] (Yamaguchi, Kiapour, and Berg 2013):
This work applied PCA after concatenating all the pooled
features to reduce the dimension. Then the compressed fea-
tures were taken as the input of the classifier.

[ACCV, 2012] (Bossard et al. 2013): This method
learned a codebook through K-means after low-level feature

1http://kr.mathworks.com/matlabcentral/fileexchange/28565-
skin-detection
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Table 1: Performances of fashion style classification of 6
methods on Hipster Wars dataset.

Performance p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
[ECCV, 2014] 77.73 62.86 53.34 37.74 34.61
[ICCV, 2013] 75.75 62.42 50.53 35.36 33.36
[ACCV, 2012] 76.36 62.43 52.68 34.64 33.42
SCAE (Ours1) 84.37 72.15 59.47 48.32 38.41
MC-SCAE (Ours2) 87.42 77.00 62.42 51.68 41.54
CSCAE (Ours3) 89.21 75.32 64.55 52.88 43.77

extraction. Then the bag-of-words features were further pro-
cessed by spatial pyramids and max-pooling.

[MM, 2014] (Chu and Chao 2014): This method con-
catenated six low-level manga features as the input of SVM
to classify the mangas to either shonen or shojo style.

SCAE (Ours1): This method encodes the style descriptor
in (Kiapour et al. 2014) into style centralizing auto-encoder
(SCAE), meaning the early fusion is applied to all the low-
level features before SCAE.

MC-SCAE (Ours2): Multi-column SCAE. This is dif-
ferent from the proposed consensus style centralizing auto-
encoder as it did not consider the consensus constraint in the
training. Instead, it trains multiple SCAEs independently,
one column at a time. Then a late fusion is applied to the
encoded features according to the work in (Agostinelli, An-
derson, and Lee 2013).

CSCAE (Ours3): This method contains the full pipeline
of the proposed consensus style centralizing auto-encoder.

Results on Hipster Wars Dataset (Public)

Table 1 shows the accuracy (%) of competitive methods and
our methods under p = 0.1, ..., 0.5 where p determines
the percentage of top ranked data according to their style
level which was used the in classification task (Kiapour et
al. 2014). The default settings of SCAE, MC-SCAE and
CSCAE are L = 4, and the layer size is 400. In addition
we set ρ=0.05, λ = 10−5 and β = 10−2.

First, from Table 1 we can see that results of the pro-
posed SCAE, MC-SCAE and CSCAE are superior com-
pared to the existing works [ECCV,2014], [ICCV, 2013] and
[ACCV, 2012]. Notably, SCAE with deep structure to cen-
tralize weak style features is already better than [ECCV,
2014] by 6.64%, 9.09%, 6.13%, 10.58% and 3.80% under p
from 0.1 to 0.5. MC-SCAE and CSCAE outperform SCAE
under all the conditions, which means multi-column strategy
is able to achieve exert positive effect. CSCAE outperforms
MC-SCAE under most of the conditions, which demon-
strates the importance of column consensus constraints.

Results on Online Shopping Dataset (Collected)

Table 2 shows the accuracy (%) of 6 methods under φ =
7, 6, 5, 4, 3. We use nearest neighbor as the classifier and em-
pirically set the number of neighbors as 5. Other settings are
the same as those used in Table 1. From these results, we
can observe that performance on the newly collected On-
line Shopping dataset is similar to that shown in Table 1.
Note that our method CSCAE containing the whole pipeline

Table 2: Performances of fashion style classification of 6
methods on Online Shopping dataset.

Performance φ=7 φ=6 φ=5 φ=4 φ=3
[ECCV, 2014] 60.92 58.52 54.57 48.63 42.40
[ICCV, 2013] 55.00 53.96 51.73 45.38 37.91
[ACCV, 2012] 54.58 59.43 52.47 41.39 35.42
SCAE (Ours1) 74.33 61.93 60.72 50.13 48.89
MC-SCAE (Ours2) 66.15 62.53 62.54 53.28 49.52
CSCAE (Ours3) 70.41 68.42 63.84 51.18 50.31

Table 3: Performances of manga style classification of 4
methods on Manga dataset.

Performance p=0.1 p=0.2 p=0.3 p=0.4 p=0.5
[MM, 2014] 83.21 71.35 68.62 64.79 60.07
SCAE (Ours1) 83.75 73.43 69.32 65.42 63.60
MC-SCAE (Ours2) 85.38 72.93 71.48 69.58 65.48
CSCAE (Ours3) 86.23 76.93 73.28 68.63 67.35

of consensus style centralizing auto-encoder performs best.
Specifically, our performance is higher than [ECCV, 2014]
by 9.49%, 10.10%, 8.74%, 2.55% and 7.19% under φ from
7 to 3.

Results on Manga Dataset (Public)

Table 3 shows the accuracy (%) of 3 proposed methods and
the state-of-art method [MM,2014] under p = 0.1, ..., 0.5.
p has the same definition as experiments on Hipster Wars.
From these results, we can observe that performances of our
methods are better than the state-of-the-art. Specifically, our
method with consensus constraint outperforms [MM,2014]
by 3.02%, 5.58%, 4.26%, 3.84% and 7.28% under p from
0.1 to 0.5.

Conclusions

In this paper, we proposed a consensus style centralizing
auto-encoder (CSCAE) to extract robust style feature pre-
sentation for style classification. First, SCAE progressively
drew weak style images to the class center. Second, column
consensus constraints automatically allocated the weights
for different style features. We applied our methods on fash-
ion style classification and manga style classification. Exten-
sive experimental results on fashion and manga style clas-
sification demonstrated that both SCAE and CSCAE were
effective for these tasks, and outperformed recent state-of-
the-art works.
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