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Abstract

Social networks often provide group features to help users
with similar interests associate and consume content together.
Recommending groups to users poses challenges due to their
complex relationship: user-group affinity is typically mea-
sured implicitly and varies with time; similarly, group char-
acteristics change as users join and leave. To tackle these
challenges, we adapt existing matrix factorization techniques
to learn user-group affinity based on two different implicit
engagement metrics: (i) which group-provided content users
consume; and (ii) which content users provide to groups. To
capture the temporally extended nature of group engagement
we implement a time-varying factorization. We test the asser-
tion that latent preferences for groups and users are sparse in
investigating elastic-net regularization. Our experiments indi-
cate that the time-varying implicit engagement-based model
provides the best top-K group recommendations, illustrating
the benefit of the added model complexity.

Introduction

Online web services recommend content items such as mu-
sic, movies, or books etc. to users via algorithmic recom-
mendations. Many of these recommenders are based on
the principle of collaborative filtering, suggesting items that
similar users have consumed. On the other hand, more and
more social media and consumer websites are providing
mechanisms by which users can self-organize into groups
with other users having similar opinions or interests.

The problem of recommending groups to users has been
investigated in the literature. In particular, methods for fac-
torizing the user-group membership matrix have been pro-
posed, using group features, user-item ratings and user-user
networks to improve the performance. However, the existing
methods fail to capture the dynamics of user group relation-
ships: while the properties of content items typically do not
change in the course of time, groups tend to evolve as users
join or leave. Moreover, the preferences of users themselves
tend to change over time. Thus, the existing methods are not
completely adequate for recommending groups to users.

In this paper we focus on the problem of recommending
groups to users using implicit measures of user-group affin-
ity, and model the time-varying nature of such measures.
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To quantify user-group affinity, we define a user-group
engagement matrix that is constructed from more data than
simple Boolean user-group membership information. Rather
than relying on explicit surveys of user ratings of groups
which are not always available, a user’s affinity for a group
is measured implicitly through observing how often and
in what manner the user engages with that group. Follow-
ing (Hu, Koren, and Volinsky 2008), our confidence in a
user’s affinity for a group increases with the number of in-
teractions between the user and the group.

Unlike many types of content where user-item engage-
ment occurs within a relatively brief consumption period,
user-group interaction occurs over extended time scales. For
example, a user may engage with a particular group 10 times
in one month, 20 times the next, but only 2 times in the third
month, and not at all in the fourth. This kind of extended in-
teraction offers an opportunity to explicitly model changes
in both user preferences and group dynamics when produc-
ing recommendations. Our intuition is that doing so will lead
to improved recommendations.

We capture the time-varying nature of the group recom-
mendation problem in two ways. First, we propose a time-
varying matrix factorization in order to capture preference
changes. Second, we introduce two time-varying user bi-
ases and one time-varying group bias in order to capture
changes in activity levels. We incorporate time series anal-
ysis to model the temporal evolution of these factors and
biases. Thus, our work makes three main contributions:

• When recommending groups to users, we consider not
only group membership, but also different kinds of en-
gagement between users and groups.

• We model evolution of the preferences and activity levels
of both users and groups in order to better predict future
preferences.

• We evaluate our methods using three real-world datasets
from DeviantArt (DeviantArt ), a large social network
for artists and art enthusiasts. Our experiments show
that using implicit engagement measures instead of
Boolean membership improves recommendation perfor-
mance. Taking the temporal nature of the engagement into
account produces further improvements, and we also see a
moderate improvement from the use of non-negative fac-
torization with elastic-net regularization.
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Related Work

Temporal recommendation There has been some work on
temporal recommendation of items to users. Koren (Koren
2010) combines collaborative filtering and temporal dynam-
ics together by proposing a model tracking the temporal
evolution of user behaviour throughout the life span of the
items. Other authors have examined time-dependent meth-
ods such as tensor factorization, session-based temporal
graph model and dynamic matrix factorization etc. (Xiong
et al. 2010; Xiang et al. 2010; Koenigstein, Dror, and Ko-
ren 2011; Lathia, Hailes, and Capra 2009; Chua, Oen-
taryo, and Lim 2013). This work captures past tempo-
ral patterns, but does not extrapolate future temporal dy-
namics to estimate future changes in users’ preferences.
Zhang et al. (Zhang et al. 2014) incorporate a transition ma-
trix into conventional (Salakhutdinov and Mnih 2008b) and
Bayesian (Salakhutdinov and Mnih 2008a) probabilistic ma-
trix factorization methods, modelling the evolution of user
preferences under the assumption that future preferences de-
pend only on the immediately preceding state. Our work re-
laxes this assumption, instead assuming that both user and
group characteristics change smoothly over time and pre-
dicting future preferences based on the complete interaction
history. We note that conceptually Zhang’s method is a spe-
cial case of our method when we remove biases from our
method, assume future user preferences depend only on one
instead of p preceding states, and assume group characteris-
tics remain unchanged in the course of time.

Group recommendation The problem of recommend-
ing groups to users has been studied elsewhere (Chen et al.
2009; Chen, Zhang, and Chang 2008; Vasuki et al. 2010;
Wang et al. 2012; Zeng and Chen 2013) through exploring a
variety of probabilistic and combinatorial recommendation
methods applied to Boolean user-group membership matri-
ces, with increasing success as more side information is in-
corporated into the model. Specifically, Chen (2008) pro-
poses incorporating a probabilistic model which also con-
siders the group-word matrix derived from the textual de-
scription of the group, and Vasuki (2010) takes an additional
user-user linkage matrix derived from social network rela-
tionships into consideration. Zeng (2013) incorporates both
user-item ratings and user-user social relationships (called
“heterogeneous resources”) into the user-group membership
matrix. However, none of these authors model the temporal
dynamics of user-group engagement. For completeness, in
literature group recommendation also refers to the problem
of recommending items to a group of users, which is not our
focus in this paper and we refer readers to (Ali and Kim
2015; Baltrunas, Makcinskas, and Ricci 2010) for more de-
tailed information if interested.

User-Group Engagement

In this section, we introduce the group features on our model
data source, DeviantArt, as well as our proposed user-group
engagement measures.

DeviantArt (DeviantArt ) is the world’s largest online
arts community, with more than 60 million unique monthly
visitors and 30 million registered users. Approximately

10,000 new users register daily. DeviantArt users submit
over 150,000 new artworks every day, and the site has re-
ceived over 300 million submissions in total. Art apprecia-
tors can engage with art by favouriting artwork (2 million
events/day), or by commenting on artwork (also 2 million
events/day). Groups on DeviantArt are self-organized asso-
ciations of users who have the ability collectively curate art.
This collective curation provides value to artists, who ben-
efit from the endorsement provided by well-known groups,
and to individual art collectors, who can use these curated
collections to discover new art.

Measuring User-Group Engagement

We consider two variants of the user-group recommendation
problem: recommending groups to artists, and recommend-
ing groups to collectors. Since DeviantArt users do not ex-
plicitly identify themselves as either artists or collectors, and
since DeviantArt provides no mechanism for explicit rating
of groups, we instead measure artist-group and collector-
group affinity implicitly, via user-group engagement. On De-
viantArt, artists provide new artwork to their groups, and
collectors consume artwork provided by their groups. There-
fore, we define two types of user-group engagement:

production engagement: the number of art submissions by
user u that were accepted by group g

consumption engagement: the number of art submissions
accepted by group g that user u subsequently favourited

We might use production engagement when recommending
groups to artists, and consumption engagement when rec-
ommending groups to collectors.

Although the details of the definitions of production and
consumption engagement above are specific to DeviantArt,
we argue that the high level concepts of these definitions
transfer to other scenarios of user groups. For example,
Douban (Douban ), a Chinese online social network, allows
its users to create content related to films, books, music, and
recent events and activities in their self-organized groups
(called Douban Group). Users engage with their groups
through creating new content such as articles or polls (pro-
duction engagement) and through reading articles or partic-
ipating in a poll (consumption engagement). Generally, the
production engagement measures which content users pro-
vide to groups and the consumption engagement measures
which group-provided content users consume.

Compared to Boolean membership or explicit item ratings
data, the user-group engagement exhibits three interesting
properties:

1. User-group engagement is nonnegative but otherwise un-
bounded; explicit ratings are usually restricted to a closed
interval (e.g., integers from 1 to 5).

2. Users engage with groups gradually over extended time
periods; user-item ratings are typically collected at a sin-
gle time point.

3. Group characteristics change over time (for example, as
users join and leave and activity levels increase or de-
crease); item characteristics typically do not.
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The proposed recommendation method is designed to ex-
ploit each of these three properties.

Recommending Groups to Users

To the best of our knowledge, all the existing online social
websites offering group features provide no formal mecha-
nism for users to rate groups, which motivates our use of the
matrix factorization based on an implicit feedback scheme
as our starting point. Our implicit scheme incorporates the
strength of user-group interactions, which we measure as
production and consumption engagement. As group mem-
bers’ tastes change, user preferences and group properties
tend to subsequently change over time. Hence, after intro-
ducing a static model, we propose a temporal model in-
tended to capture this time-dependence.

Static Model

Hu et al. (Hu, Koren, and Volinsky 2008) predict users’ pref-
erences for TV programs through an implicit scoring model
whose factors are computed by the matrix factorization

minimize
Xu,Yi

1

2

∑
u,i

(1 + γrui)
(
pui −XT

uYi

)2
+ λ

(∑
u

‖Xu‖22 +
∑
i

‖Yi‖22
)
. (1)

Vectors Xu, Yi ∈ R
k are latent factors for user u and item i.

User u’s preference for i is determined by binarizing rating
rui ≥ 0

pui =

{
1, rui > 0,

0, rui = 0.
(2)

In this model, the lowest rating assigned to an item a user
has observed is 1, so rui = 0 and pui = 0 if u has never
observed item i. This model, accounts for all user-item pairs.
Parameters γ, which scales the strength of user-item ratings,
λ, which regularizes matrix factors, and k, the dimension of
the latent space, are chosen by experiment. We extend this
factorization to fit user-group engagement, solving

minimize
w,Xu,Yg

1

2

∑
u,g

(1 + γrug)
(
pug − qT

ugw −XT
uYg

)2
+ αu

∑
u

‖Xu‖1 + 1

2
βu

∑
u

‖Xu‖22

+ αg

∑
g

‖Yg‖1 + 1

2
βg

∑
g

‖Yg‖22

+ αw‖w‖1 + 1

2
βw‖w‖22

subject to Xu,Yg ≥ 0. (3)

Consistent with (1), Xu,Yg ∈ R
k are user and group latent

factors. We use either producing engagement or consuming
engagement defined in Section as the implicit user-group
rating rug , binarizing rug to user-group affinity pug . Param-
eters γ and k are rating sensitivity and latent factor dimen-
sion, and α{u,g,w}, β{u,g,w} are regularization parameters,
all chosen by experimentation.

Variables w ∈ R
3 provide an optional bias for qug =

[f̄u, c̄u, m̄g]
T , measuring

• user properties:
fu: number of favorites user u has made
cu: number of comments user u has made

• group property:
mg: number of members in group g

These properties reflect overall levels of user and group ac-
tivity. Note that we use normalized quantities

f̄u =
fu∑
u fu

, c̄u =
cu∑
u cu

, m̄g =
mg∑
g mg

, (4)

to ensure that qug will be bounded in (0, 1), reflecting the
relative levels of user/group activity, and that elements of w
are on the same scale. We refer to the special case where
we fix w = 0 as the unbiased model. Note that when we
solve the unbiased model, we apply the optimizations re-
ported in Hu’s work (Hu, Koren, and Volinsky 2008), as well
as the use of a tall and skinny QR-factorization (Constan-
tine and Gleich 2011), to compute the matrix products of
the form Y TY which appear in the optimization procedure.

As our affinities pug ≥ 0, we are motivated by previous
work on non-negative matrix factorization (NMF) to com-
pute Xu,Yg that are non-negative and sparse. As noted in
the NMF literature – see (Lee and Seung 2001), for example
– avoiding cancellation of factors of different signs, particu-
larly if those factors are sparse, tends to produce a factoriza-
tion that is more easily interpreted. Regarding each dimen-
sion of the user and group vectors as a topic, the suggestion
that Xu,Yg should be non-zero in only a few coordinates
reflects the notion that each user and group description is
dominated by a few topical preferences.

As noted elsewhere (Hoyer 2004), the ratio between the
l1 and l2 norms provides a measurement for vector spar-
sity. Rather than specify the sparsity explicity, we manage
sparsity by regularizing against both the l1 and l2 norms,
employing elastic-net regularization (Zou and Hastie 2005).
This strategy reduces the model’s sensitivity to the dimen-
sion of the latent factor dimension.

Having solved (3), we compute

p̂ug = [f̄u, c̄u, m̄g]
Tw +XT

uYg, (5)

as our prediction of user-group affinity. The largest predic-
tions over user-group pairs for which rug = 0 are our rec-
ommendations.

Optimization Procedure
Problem (3) is convex in each of Xu,Yg and w separately,
and so we use pathwise coordinate descent (Friedman et al.
2007) to optimize for each of these collections of variables
iteratively. Recognizing that (3) is not jointly convex in all
variables, we apply relaxation at each iteration, combining
updated values with previous ones. This common strategy
can increase the number of iterations, but prevents the algo-
rithm from stalling at local minima.

Our algorithm follows a standard pattern for coordinate-
wise optimization:

1. Initialize Yg , w.

2. With Yg and w fixed, solve (3) for Xu.
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3. With Xu and w fixed, solve (3) for Yg .
4. With Xu and Yg fixed, solve (3) for w.
5. If not converged, go to step 2; otherwise, stop.

Initialization Set Yg = (1/k)[1, 1, . . . , 1]T and w =
[0.1, 0.1, 0.1]T .

Minimization with respect to Xu Let E(u) be the set of
groups for which rug > 0. With Yg,w fixed, for each u,
minimization (3) becomes

minimize
Xu

1

2
XT

u

(∑
g

YgY
T
g +

∑
g∈E(u)

γrugYgY
T
g

)
Xu

−
(∑

g

(1 + γrug)(pug − qT
ugw)Yg

)T

Xu

+ αu‖Xu‖1 + 1

2
βu‖Xu‖22

subject to Xu ≥ 0. (6)

The Xu can be computed in parallel, observing that (pug −
qT
ugw) and

∑
g YgY

T
g can be precomputed and re-used by

each Xu calculation. A tall and skinny QR-factorization
speeds up the

∑
g YgY

T
g calculation significantly.

The calculations for the Xu are sign-constrained elastic-
net problems of the form

minimize
x

1

2
xTAx− bTx+ α‖x‖1 + 1

2
β‖x‖22

subject to x ≥ 0, (7)

which can be solved by pathwise coordinate descent (Fried-
man et al. 2007).

Writing X
(k)
u as user latent factors at iteration k, and

X̃
(k+1)
u latent factors computed by (6), we relax the update,

setting our new latent factors as

X(k+1)
u = X(k)

u + θ
(
X̃(k+1)

u −X(k)
u

)
. (8)

Where θ is the learning rate which controls the step-size
in the parameter space. Choosing θ = 0.9 appears to be a
good compromise between fast convergence and local min-
ima avoidance in relaxing updates for all of Xu,Yg and w.

Minimization with respect to Yg With the symmetry be-
tween Xu and Yg , minimization with respect to Yg is the
same as that of Xu.

Minimization with respect to w With Xu,Yg fixed, op-
timization with respect to w becomes

minimize
w

1

2
wT

(∑
ug

(1 + γrug)qugq
T
ug

)
w

−
(∑

ug

(1 + γrug)(pug −XT
uYg)qug

)T

w

+ αw‖w‖1 + 1

2
βw‖w‖22

subject to w ≥ 0. (9)

This is also an elastic-net problem. Although the use of the
bias term improves predicted user-group affinities, this ex-
pression shows that it comes at the cost of summing over all
users and groups.

Temporal Model

To capture the time-varying nature of user preferences,
group properties, and global biases, we collect group in-
teraction data in discrete time intervals, forming time-
dependent user-group engagement matrices. To estimate
user-group affinity at time T , we solve problem (3) at times
T − 1, T − 2, . . . , T − p. We model the trajectories of
user, group, and bias vectors using auto-regression (AR) and
vector auto-regression (VAR) (Brockwell and Davis 2002;
Hamilton 1994), extrapolating parameters and solutions to
time T . Prediction (5) combines extrapolations to compute
p̂ug(T ) and hence provide recommendations.

In our application of AR and VAR to our temporal model,
we extend the user and group properties and factors to a
time-varying equivalents:
• time-varying user properties:
fu(t) is the number of favourites user u made in time in-
terval t
cu(t) is the number of comments user u made in time in-
terval t

• time-varying group property:
mg(t) is the number of new members in group g in time
interval t

• time-varying factors:
Xu(t) is user u’s latent factors in time interval t
Yg(t) is group g’s latent factors in time interval t

Our assumption is that both user preferences and group char-
acteristics change gradually as time goes by, and there are
trends for the changes in user-group engagement that we can
use to predict future user-group affinity.

We divide the whole time span of data into T discrete
time intervals (such as weeks, months or quarters). Users
and groups will have their own qualities and latent factors
in different time intervals. Note that the static model treats
the whole time span as one single time interval, and can be
regarded as a special case of the temporal model.

In particular, we adopt p-order auto-regression (AR(p))
to extrapolate the future qualities and p-order vector auto-
regression (VAR(p)) to extrapolate the future latent factors.
For time-varying functions x(t), auto-regression assumes

x(T ) =

p∑
k=1

φ(k)x(T − k) + ε(T ), (10)

where φ(k), k = 1 . . . p are parameters we fit, and ε is the
error in our time T estimate. Where x(t) are scalar-valued,
that is, where we fit fu(t), cu(t) and mg(t) by AR(p), the
φ(k) are scalar-valued; where x(t) are vector-valued, that
is, where we fit Xu,Yg , and w by VAR(p), the φ(k) are
matrix-valued.

We solve for parameters φ(k) by a least-squares mini-
mization,

minimize
φ(k)

T∑
t=p+1

[
x(t)−

p∑
s=1

φ(s)x(t− s)

]2

. (11)

This cost function represents a window of length p that
passes forward over the time-varying data. We choose pa-
rameters φ(k) to best fit data at each time step t ∈ p . . . T−1
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based on the previous p time steps. Where (11) represents
VAR(p), the squared term in square brackets is understood
to represent the l2 vector norm.

Using data from T − 1 trial intervals, we predict the user-
group affinity at time T as

p̂ug(T ) = [fu(T ), cu(T ),mg(T )]
Tw(T )+Xu(T )

TYg(T )
(12)

In assuming that our parameter trajectories are smooth,
such that user, group and global properties do not change
abruptly, our future predictions directly leverage a long his-
tory of behaviour. This is in contrast to the Markovian as-
sumption employed elsewhere (Zhang et al. 2014).

Experiments

Our experiments consider DeviantArt users and groups from
5 May 2011 to 31 August 2014. Given that the majority of
DeviantArt users are young and still in school, we divide
this 40-month time span into 10 equal 4-month intervals,
each of which is roughly a school semester. The first 9 in-
tervals serve as training/validation data; we withhold the last
4 months for testing. The static model aggregates the first 9
intervals into a single training-validation set, on which a 5-
fold cross validation is used to select the optimal parameters,
while the temporal model performs the matrix factorization
on each of the first 9 intervals separately, making recommen-
dations on the 10th interval using our temporal scheme.

User-Group Matrices

We examine two sets of engagement matrices, those for con-
sumption engagement, geared towards art curators and view-
ers, and those for production engagement, geared towards
artists. Production and consumption engagements are com-
puted according to their definitions in the previous section.

Production engagement matrix: We filter the user-
group matrix such that each user has joined at least one
group and each group has at least one member by May 2011,
and every user has at least one production engagement with
some group in each 4-month interval. We omit groups that
do not receive at least two production engagements in each
interval. After performing this filtering, the production en-
gagement matrix contains 8423 users and 4579 groups.

Consumption engagement matrix: Just as in production
engagement, we filter the matrix to ensure that each user
has joined at least one group and each group has at least
one member by May 2011. We omit users having fewer than
five consumption engagements in every time interval, and
we omit groups having fewer than ten consumption engage-
ments in every time interval. After filtering, the consumption
engagement data contains 20328 users and 8772 groups.

Boolean membership matrix: For comparison, we also
produce Boolean matrices corresponding to each of the fil-
tered production and consumption matrices, setting

pug =

{
1 rug > 0,

0 otherwise.
(13)

We set the confidence scaling parameter γ = 0 for experi-
ments with Boolean membership matrices.

Table 1 summarizes the statistics of our data.

Table 1: Summary of production and consumption engage-
ment matrices

production consumption
number of users 8423 20328
number of groups 4579 8772
number of non-zeros 161767 670662
matrix density 0.0042 0.0038

Recommendation Methods

To examine the contribution of each aspect of our model
to the overall performance, we run several variants of our
method:

• Static

– Unbiased: Our static model with fixed w = 0 in (3).
– Biased: Our static model with variable bias w
– Biased (L2 Norm): Our static model with only l2-

regularization but with variable bias w

• Temporal

– Unbiased: Our temporal model with fixed w = 0 in (3)
– Biased: Our temporal model with variable bias w

We also include four baselines for comparison:

• Popularity: A baseline to indicate the problem’s diffi-
culty, recommending the K most popular groups; every
user gets the same recommendations.

• Boolean Membership: The same matrix factorization
method as Static Unbiased but applied to the Boolean
membership matrices derived from the production and
consumption engagement data.

• Hu: Uses implicit data according to Hu’s method (2008),
but in a static manner and without any of our improve-
ments. Compared to Static Unbiased, this method omits
the l1-regularization and the non-negativity constraint.

• TMF: We evaluate a version of Temporal Probabilistic
Matrix Factorization (Zhang et al. 2014). As discussed be-
fore, TMF can be considered as a special case of our pro-
posed method. Therefore, we implement the TMF con-
cepts in our framework as follows. As in the original,
we only model user factors’ temporal evolution in this
method, and restrict the calculation of a factor at T to take
into account only the factor at time T − 1. In contrast to
the original work, we employ single time step vector au-
toregression rather than first order Markov chains. Lastly,
we employ the method of Hu et al. (2008) to deal with
implicit feedback.

As discussed in related work, other existing time-dependent
methods only capture past temporal patterns rather than
extrapolate future temporal dynamics to estimate future
changes in users preferences, therefore we do not include
them in our comparison baselines. Also, we don’t compare
our methods with Zeng’s work (2013) because their work
makes use of extra side information such as user-item rating
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Figure 1: Recall across a range of K values for baselines
(Popular, Boolean Membership and Hu) and our full pro-
posed method (Temporal Biased)
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Figure 2: Recall for the static methods expressed as a per-
centage increase over the Popular baseline (a) and for the
temporal methods expressed as a percentage increase over
the Hu baseline (b)

and user-user friendship to improve recommendation accu-
racy. Our datasets don’t contain rating or friendship infor-
mation and their datasets don’t have user-group engagement
or user/group activity level. This being the case, their work
is orthogonal to ours, so we are not able to compare our pro-
posed methods with theirs either on our datasets or theirs.

Results

We use Recall@K and Precision@K in (Cremonesi,
Koren, and Turrin 2010) to compare the performance of our
methods with the baseline techniques. Grid search is used to
explore various values of p in [1, 8] and we present results
with p = 3 which achieve the best performance. Figure 1
highlights the general performance of our full Temporal Bi-
ased method relative to some of the baseline comparison
methods, demonstrating that the method drastically outper-
forms a simple Boolean Membership encoding, and also im-
proves substantially upon a standard static implicit approach
(Hu) run on our engagement data. Figure 2(a) displays the
results of all static methods as a percentage increase over
the popular baseline. Clearly, using the more sophisticated
implicit measurements of user engagement with groups pro-
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Figure 3: Results of precision versus recall for all methods,
showing improved performance as complexity is added to
the model

vides a substantial gain in recommendation performance.
The minor changes in the form of non-negative elastic net
regularization between Hu and our Static Unbiased method
yield a slight improvement on the production data. Adding
the biases leads to a substantial gain in recall performance,
especially together with l1-regularization in the production
case. While using a bias also improves performance on the
consumption engagement data, there is almost no gain com-
pared to using only l2 regularization with biases in this case.
This difference might be explained by the tendency of artists
to have focused areas of interest and ability, and hence be
well-modelled by sparse latent vectors. Conversely, art cu-
rators need not be so focused in their range of tastes, and
hence may be better modelled by a less sparse latent pref-
erence factorization. Figure 2(b) summarizes the results of
the temporal baselines and methods as percentage improve-
ments over the implicit engagement data based static Hu
baseline. While TMF shows an improvement from taking
the last time slice into account for user factors, modelling
all the past time slices through smooth functions lets our
temporal methods clearly outperform this baseline. Figure 3
presents the trade-off between recall and precision. Each line
in Figure 3 reports the precision of a method at a given re-
call. Recall will usually go up as K increases while precision
tends to go down, which confirms that a trade-off between
recall and precision is unavoidable in top-K recommenda-
tions. Additionally, Figure 3 demonstrates that the Temporal
Biased method also obtains the best performance in terms of
precision, followed by other variants of our method. We ob-
serve that the relative performances of all methods in terms
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of recall and precision are consistent on both datasets.

Conclusion

In this paper, we propose production engagement and con-
sumption engagement as measures that are more fine-
grained than Boolean user-group membership to quantify
user-group affinity more accurately. We present a time-
dependent matrix factorization model to recommend groups
of users, and perform experiments on real-world user-group
datasets from DeviantArt to demonstrate the improvement
of our proposed method. The experimental results show that
for the complex problem of recommending social network
groups to users taking into account detailed implicit engage-
ment data rather than simply Boolean group memberships
yields substantial improvements in recommendation perfor-
mance. We achieve another performance boost by modelling
the evolving nature of the relationships between users and
groups smoothly over time rather than assuming they are
static or can be predicted from the last time slice alone.
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