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Abstract

Large-scale Nuclear Norm penalized Least Square
problem (NNLS) is frequently encountered in estima-
tion of low rank structures. In this paper we acceler-
ate the solution procedure by combining non-smooth
convex optimization with smooth Riemannian method.
Our methods comprise of two phases. In the first phase,
we use Alternating Direction Method of Multipliers
(ADMM) both to identify the fix rank manifold where
an optimum resides and to provide an initializer for the
subsequent refinement. In the second phase, two super-
linearly convergent Riemannian methods: Riemannian
NewTon (NT) and Riemannian Conjugate Gradient de-
scent (CG) are adopted to improve the approximation
over a fix rank manifold. We prove that our Hybrid
method of ADMM and NT (HADMNT) converges to
an optimum of NNLS at least quadratically. The ex-
periments on large-scale collaborative filtering datasets
demonstrate very competitive performance of these fast
hybrid methods compared to the state-of-the-arts.

Introduction

Low Rank Matrix Recovery (LRMR) aims to estimate a low
rank structure by its noisy observations. There are many im-
portant applications in which the problem under study can
naturally be modeled as a LRMR, such as collaborative fil-
tering (Jaggi and Sulovsk 2010), multitask learning (Pong et
al. 2010), multivariate regression (Mishra 2014), and image
inpainting (Lu et al. 2015). Commonly, LRMR can be cast
as Nuclear Norm penalized Least Square problem (NNLS):

min
X

1

2
‖A(X)− b‖2 + λ‖X‖∗ � F (X) (1)

where A : R
m×n → R

p is a linear operator, b ∈ R
p

stores noisy linear measurements of an unknown low rank
matrix XG, λ > 0 is regularizer parameter, and ‖X‖∗ =∑min{m,n}

i=1 σi(X) is the nuclear norm (in which σi(X) is
the i-th singular value of matrix X).

Theoretically XG can be recovered by solving NNLS
under mild conditions (Negahban and Wainwright 2012).

∗Corresponding author
Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Many algorithms, such as (Mazumder, Hastie, and Tibshi-
rani 2010; Toh and Yun 2010; Lin et al. 2009; Yang and Yuan
2013; Jaggi and Sulovsk 2010; Avron et al. 2012) , have been
devised to solve NNLS. However, scalability issue always
exists (especially when we want to solve large-scale NNLS
with high accuracy), since these algorithms have to perform
top-ρ SVD of an m × n matrix in each iteration, which is
computationally prohibitive when m and n are large. In ad-
dition, most of them suffer sublinear convergence rates.

Besides the convex formulation (1), LRMR can also be
cast as nonconvex fix rank optimization problem (when rank
is known):

min
X

1

2
‖A(X)− b‖2 subject to X ∈ Mr (2)

where the feasible set Mr = {X|rank(X) = r} is the fix
rank manifold. Since fix rank manifold is smooth, (2) is a
smooth optimization problem and can be solved by Rieman-
nian optimization methods such as Riemannian conjugate
gradient descent (Vandereycken 2013; Mishra and Sepul-
chre 2014a), Riemannian trust region (Mishra et al. 2014),
and Riemannian Newton (Absil, Amodei, and Meyer 2014).
Theoretically, for NNLS these fix rank solvers are more scal-
able than convex solvers, because large-scale top-ρ SVD is
avoided in each iteration. According to (Absil, Mahony, and
Sepulchre 2009), they converge superlinearly in general.

However, in most LRMR applications, the rank of the data
under study is unknown, which often precludes the use and
potential advantage of the fix rank manifold based methods.
For such a regime, we propose two hybrid methods which
combine convex optimization framework with scalable Rie-
mannian optimization techniques to solve large-scale NNLS
with high accuracy. Our hybrid methods comprise of two
phases. In the first phase we use ADMM both to iden-
tify the active fix rank manifold Mr∗ where an optimum
X∗ resides and to provide an initializer for the subsequent
refinement. In the second phase, we optimize F (X) over
Mr∗ by Riemannian optimization techniques. We prove that
ADMM will identify the active fix rank manifold Mr∗ in fi-
nite steps, which means the amount of computation in first
phase is small. In the second phase two superlinearly con-
vergent Riemannian optimization approaches, Riemannian
NewTon (NT) and Riemannian Conjugate Gradient decent
(CG), are adopted to minimize F (X) over Mr∗ . Further-
more, we prove that our hybrid method of ADMM and NT
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converges to one of the global optima at quadratic conver-
gence rate. Our methods are more scalable and faster than
state-of-the-art convex solvers because ours only need to
compute finite number large-scale top-ρ SVDs in the first
phase (less than 50 times in our experiments), and in the
second phase no large SVD is performed.

Preliminaries

Fix Rank Manifold

Let Mr = {X|rank(X) = r} be the fix rank manifold. In
practice, storing X ∈ Mr as an m × n matrix has O(mn)
memory complexity, which is much more memory demand-
ing than saving it by its polar factorization (Mishra et al.
2014). That is, we can represent X as (U,B,V) ∈ Mr

such that X = UBVT , where

Mr := St(r,m)× S++(r)× St(r, n). (3)

Above, St(r,m) is the Stiefel manifold of m × r matrices
with orthogonal columns and S++(r) is the cone of r × r
positive definite matrices. We term such representation of
low rank matrix as polar representation. And we say two po-
lar representations are equivalent if they represent the same
matrix. Define mapping

π : Mr → Mr : (U,B,V) �→ UBVT . (4)

Then the equivalence class of polar representation is

π−1(π(U,B,V)) = {(UO,OTBO,VO)|O ∈ O(r)}
(5)

where O(r) is the set of r × r orthogonal matrices. Since
mapping π is submersion, Mr can be viewed as quotient
manifold of Mr over equivalence class (5):

Mr � Mr/O(r). (6)

In following sections we also call Mr total space.
For brevity, we denote any polar representation of matrix

X by X where X = (U,B,V) ∈ Mr. To lighten the nota-
tion we also denote a point of Mr by X. The distinction is
clear from context. The tangent vector of Mr at point X is
denoted like this: ζX, ηX, ξX. Similarly, we denote the tan-
gent vector of Mr at point X like this: ζ̄X, η̄X, ξ̄X. As Mr

is a product manifold, its tangent space is the product of tan-
gent space of its components:

TXM = TUSt(r,m)× TBS++(r)× TVSt(r, n) (7)

where TUSt(r,m) = {ζ̄U ∈ R
m×r|UT ζ̄U + ζ̄TUU = 0}

and TBS++(p) = {ζ̄B ∈ R
r×r|ζ̄B is a symmetric matrix}.

Nuclear Norm is Smooth on Fix Rank Manifold

Suppose X ∈ Mr has polar factorization X = UBVT .
Then

‖X‖∗ = ‖B‖∗ = tr(B) (8)

where tr(·) means the trace of a matrix. Therefore, nuclear
norm can be expressed as a smooth function tr(B) on to-
tal space Mr. By Proposition 3.4.5 of (Absil, Mahony, and
Sepulchre 2009), we can infer that nuclear norm is smooth

on fix rank manifold. Thus, the objective function F (X) is
smooth on such manifold, and minimizing F (X) over the fix
rank manifold Mr can be solved by Riemannian optimiza-
tion methods (Absil, Mahony, and Sepulchre 2009). There-
fore, if the rank r∗ of some solution to problem (1) is known,
it can be reduced to the following smooth optimization prob-
lem:

min
X∈Mr∗

1

2
‖A(X)− b‖2 + λ‖X‖∗ (9)

which can be solved by Riemannian optimization.

Assumptions

Suppose X∗ is an optimum of problem (1) and let r∗ =
rank(X∗). To design efficient solver, we make the following
assumptions.

A.1 X∗ is low rank: r∗ � min{m,n}.

A.2 0 belongs to the relative interior of the subdifferential
∂F (X∗).

A.3 There exists γ > 0 such that for any matrix X ∈ Mr∗

we have ‖A(X−X∗)‖2 ≥ γ‖X−X∗‖2F .

A.1 is natural, since the goal of using nuclear norm penalty
is to obtain a low rank solution. For A.2, it is actually quite
mild, since X∗ is an optimum, we have 0 ∈ ∂F (X∗). Note
that A.2 is commonly used in literatures such as (Hare and
Lewis 2004; Liang, Fadili, and Peyré 2014; Lee and Wright
2012; Liang et al. 2015).

The next two lemmas say that A.3 holds with high prob-
ability for matrix sensing (Recht, Fazel, and Parrilo 2010)
and matrix completion, if at least O(r∗(m+n) log(m+n))
linear measurements are made.

Lemma 1 Suppose A : Rm×n → R
p is formed by Gaussian en-

semble (Recht, Fazel, and Parrilo 2010). If the sample size p >
cr∗(m + n) log(m + n) then A.3 holds with probability at least
1− 2 exp(−p/32) where c > 0 is a global constant.

Lemma 2 Suppose A : R
m×n → R

p samples p elements uni-
formly from a matrix. Denote the spikiness (Negahban and Wain-
wright 2012) of a matrix X by αsp(X). For any matrix X satisfy-
ing αsp(X−X∗) ≤ α, as long as p > cα2r∗(m+n) log(m+n),
A.3 holds with probability greater than 1 − c1 exp(−c2(m +
n) log(m+ n)) where c, c1, c2 > 0 are global constants.

ADMM for NNLS

One of the classical methods for solving NNLS is ADMM.
Both its technical and implementation details have been dis-
cussed in (Lin et al. 2009; Yang and Yuan 2013). Here we
briefly review the sketch of the solver. The novel result for
solving NNLS by ADMM is that we prove that ADMM
identifies the active manifold Mr∗ in finite steps.

NNLS can be rewritten as the following constrained opti-
mization problem:

min
X,Y

1

2
‖A(Y)− b‖2 + λ‖X‖∗ subject to Y −X = 0.

(10)
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One can compose the augmented Lagrangian function as fol-
low:

L(X,Y,Λ) =
1

2
‖A(Y)− b‖2 + λ‖X‖∗

− tr(ΛT (Y −X)) +
β

2
‖Y −X‖2F

where Λ is the Lagrangian multiplier matrix and β > 0.
So iterations of ADMM can be generated by minimizing X
(and Y alternately) and updating the multiplier Λ:

X(k+1) = argmin
X

L(X,Y(k),Λ(k)),

Y(k+1) = argmin
Y

L(X(k+1),Y,Λ(k)),

Λ(k+1) = Λ(k) − β(Y(k+1) −Xk+1).

(11)

Theorem 3 Suppose {X(k)} is the sequences generated by
ADMM iterations (11). Then {X(k)} converges to X∗ which is an
optimum of problem (1). Moreover if A.1 and A.2 hold, then there
exists K > 0 such that rank(X(k)) = rank(X∗), ∀k > K.

The above theorem shows that ADMM identifies the active
manifold Mr∗ in finite steps. Note that Theorem 3 differs
from the finite identification property in (Liang et al. 2015)
in that they are under different assumptions.

Hybrid Methods

According to Theorem 3, ADMM iterations for NNLS can
be naturally divided into two phases. The first phase con-
sists of the first K iterations. In this phase ADMM identifies
the fix rank manifold Mr∗ where the optimum X∗ resides.
Specifically it implies that for any k > K the rank of X(k)

is equal to r∗. The second phase consists of the remain-
ing iterations of ADMM. In this phase, ADMM generates
sequence {X(k)}k>K which converges to X∗. As X(k) re-
sides in Mr∗∀k > K, ADMM here actually minimizes the
fix rank constrained optimization problem (9) in the second
phase.

Since empirical result given in Figure 1 (a) shows that
ADMM identifies the active manifold Mr∗ in few iterations,
it has therefore been conjectured that the sublinear conver-
gence of ADMM (He and Yuan 2012) is mainly caused by
slow convergent speed of the second phase. Thus, if we
use superlinearly convergent methods instead in this phase,
more efficient algorithms can be devised. Based on this intu-
ition we design two hybrid methods for NNLS. The outline
of our hybrid method is as follows. It carries out a two-phase
procedure: identifying the active fix rank manifold Mr∗ by
ADMM, and using Riemannian optimization methods to re-
fine the approximation over Mr∗ .

Riemannian Optimization Phase

Among various Riemannian optimization methods, Rieman-
inan NT and CG have been proved to converge superlinearly.
In this section we derive both NT and CG algorithms to
solve the smooth optimization problem (9). Before describ-
ing NT and CG, we must give the fix rank manifold M a
structure of Riemannian quotient manifold (we remove the
subscript of fix rank manifold Mr∗ and total space Mr∗ to

simplify notations in the following section). To accomplish
this purpose, we choose the second order derivative of func-
tion g(U,B,V) = ‖UBVT − I‖2F , namely D2g(X)[ζ̄ , η̄],
as the Riemannian metric for total space M, because such
metric has preconditioning effect which can handle the ill-
condition issue for real-word datasets (Mishra and Sepulchre
2014b; 2014a). The Riemannian quotient manifold structure
of M is listed in Table 1, and the mathematical derivations
are given in the supplement.

Algorithm 1 NT: Riemannian Newton method for prob-
lem (9)

Input: Rank r, the polar representation X(0) of matrix X0.
Output: Polar representation of local optimum.
1: k = 0
2: repeat

3: Solve the following linear equations of ζ(k) by tCG{
Π

X(k)

(
∇

ζ(k)gradF (X(k))
)
= −gradF (X(k))

ζ(k) ∈ H
X(k)

(12)
4: Set X(k+1) = R

X(k)(ζ
(k))

5: k=k+1
6: until convergence
7: return X(k)

NT Method In Riemannian NT, the search direction ζX ∈
TXM is decided by Riemannian Newton equation

Hess(X)(ζX) = −gradF (X) (13)

where Hess(·) is the Riemannian Hessian of F and gradF (·)
is the Riemannian gradient of F . In Riemannian optimiza-
tion, the Hessian is a linear operator defined by Riemannian
connection ∇ (Absil, Mahony, and Sepulchre 2009):

Hess(X)(ζX) = ∇ζXgradF (X). (14)

For Riemannian quotient manifold M, the Newton equa-
tion (13) is horizontally lifted to horizontal space HX (Absil,
Mahony, and Sepulchre 2009):

Hess(X)(ζX) = −gradF (X). (15)

Plug (14) into (15) and refer Table 1 for the expression of
horizontal lift of Riemannian gradient and Riemannian con-
nection, the Newton equation (15) can be rewritten as:

ΠX(∇ζ̄X
gradF (X)) = −gradF (X) (16)

where ζ̄X is the horizontal lift of the search direction ζX, and
expression of ∇ζ̄X

gradF (X) is listed in Table 1. The above
linear system of ζ̄X can be solved by truncated CG method.
After ζ̄X is computed, NT performs updating by retraction
along ζ̄X, the expression of retraction is given in Table 1.
We summarize NT in Algorithm 1.

CG Method In the k-th iteration, Riemannian CG com-
poses search direction ζ(k) ∈ TX(k)M, then updates by re-
traction: X(k+1) = RX(k)(α(k)ζ(k)) where α(k) > 0 is a
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Item Expression

Riemannian metric
〈η̄X, ζ̄X〉X

tr(B
2
η̄
T
Uζ̄U) + tr(η̄

T
Bζ̄B) + tr(B

2
η̄
T
V ζ̄V)

Horizontal space
HX

ζ̄X ∈ TXM : U
T
ζ̄UB

2
+ Bζ̄B − ζ̄BB

+V
T
ζ̄VB

2 ∈ Ssym(r)

Projection of a vector
in ambient space onto

tangent space
ΨX(ZU,ZB,ZV)

(ZU − UBUB
−2

, Sym(ZB),

ZV − VBVB
−2

)

where BU,BV are solutions of equations:
B

2
BU + BUB

2
= 2B

2
(Sym(Z

T
UU))B

2

B
2
BV + BVB

2
= 2B

2
(Sym(Z

T
VV))B

2

Projection of a vector
of tangent space

to Horizontal space
ΠX(ζ̄X)

(ζ̄U − UΩ, ζ̄B + ΩB − BΩ, ζ̄V − VΩ),

where Ω is the solution to equation:

ΩB
2
+ B

2
Ω − BΩB =

1

2
Skw(U

T
ζ̄UB

2
)

+Skw(Bζ̄B) +
1

2
Skw(V

T
ζ̄VB

2
)

Retraction on
total space
RX(ζ̄X)

(RU(ζ̄U), RB(ζ̄B), RV(ζ̄V))

where
RU(ζ̄U) = uf(U + ζ̄U)

RB(ζ̄B) = B
1
2 exp(B

− 1
2 ζ̄BB

− 1
2 )B

1
2

RV ζ̄V = uf(V + ζ̄V)

Horizontal lift of
vector transport defined

on fix rank manifold
TξX

(ζX)

ΠR
X

(ξ̄
X

)(ΨR
X

(ξ̄
X

)(ζ̄X))

Riemannian connection
on total space
∇ξ̄

X
η̄X

ΨX(Dζ̄U[ξ̄X] + AU, Dζ̄B[ξ̄X] + AB,

Dζ̄V[ξ̄X] + AV)

where
AU = ζ̄USym(ξ̄BB)B

−2
+

ξ̄USym(ζ̄BB)B
−2

AB = −
1

2
Sym(Bξ̄

T
Uζ̄U + ξ̄

T
Uζ̄UB)

−
1

2
Sym(Bξ̄

T
V ζ̄V + ξ̄

T
V ζ̄VB)

AV = ζ̄VSym(ξ̄BB)B
−2

+

ξ̄VSym(ζ̄BB)B
−2

Horizontal lift of
Riemannian connection

on fix rank manifold
∇ξX

ζX

ΠX(∇ξ̄
X
η̄X)

Horizontal lift of
Riemannian gradient

gradF (X)

ΨX(SVB
−1

,U
T
SV + λI,S

T
UB

−1
)

where S = A∗(A(UBVT ) − b)

Table 1: Differential structures for Riemannian optimiza-
tion. Here Ssym(r) means the set of r × r symmetric matri-
ces. The ambient space means vector space Rm×r×R

r×r×
R

n×r. Sym(X) = 1/2(X + XT ) , Skw(X) = 1/2(X −
XT ) . uf(·) extracts the orthogonal factor of a full rank ma-
trix. Dζ̄X[ξ̄X] = limt↓0(ζX+tξ̄X

− ζ̄X)/t. The definition
of horizontal space, retraction, vector transport, Riemannian
connection and horizontal lift can be found in (Absil, Ma-
hony, and Sepulchre 2009).

suitable stepsize. The search direction ζ(k) is composed by
the following recurrence{
ζ(0) = −gradF (X(0)),

ζ(k) = −gradF (X(k)) + βkTαk−1ζ(k−1)ζ(k−1), k > 1,
(17)

where βk is computed by Polak-Ribière formula (Ab-
sil, Mahony, and Sepulchre 2009), and vector transport
Tαk−1ζ(k−1)(·) maps previous search direction ζ(k−1) onto
the current tangent space TX(k)M. The vector transport is
required since ζ(k−1) ∈ TX(k−1)M and gradF (X(k)) ∈
TX(k)M belong to different linear spaces and we cannot lin-
early combine them directly. Like NT, the recurrence (17) is
horizontally lifted to the horizontal space:{
ζ(0) = −gradF (X(0)),

ζ(k) = −gradF (X(k)) + βkTαk−1ζ(k−1)ζ(k−1), k > 1,

(18)
where Tαk−1ζ(k−1)ζ(k−1) and gradF (X(k)) are horizontal
lift of the vector transport and the Riemannian gradient re-
spectively (see Table 1). We summarize CG in Algorithm 2.

Algorithm 2 CG: Riemannian conjugate gradient descent
for problem (9)

Input: Rank r,polar representation X(0).
Output: Polar representation of local optimum.
1: k = 0
2: repeat

3: Compute the gradient gradF (X(k)) by Table 1.
4: Compute search direction ζ(k) by recurrence (18).
5: if

〈
ζ(k),−gradF (X(k))

〉
X(k) < 0 then

6: ζ(k) = −gradF (X(k)).
7: end if
8: Set X(k+1) = R

X(k)(α
(k)ζ(k)) where α(k) > 0 is a

suitable stepsize.
9: k = k + 1

10: until convergence
11: return X(k)

The Hybrid Algorithms

We provide two hybrid methods: the Hybrid of ADMM
and NT (HADMNT), and the Hybrid of ADMM and CG
(HADMCG) in Algorithm 3.

The next theorem says that HADMNT converges at least
quadratically to the solution of NNLS. We leave the conver-
gence analysis of HADMCG up for future work.

Theorem 4 Suppose {X(k)} is a sequence generated by ADMM
which converges to X∗. Suppose A.1-A.3 are satisfied. Then there
exists integral K such that (1) rank(X(k)) = rank(X∗), ∀k ≥
K; (2) when initialized by polar representation of X(K) NT
generates sequence (U(l),B(l),V(l)) ∈ Mrank(X∗) such that
U(l)B(l)V(l)T converges to X∗ at least quadratically.

Remark. Practically, instead of setting K in advance, we
stop the first phase of our hybrid methods when rank(X(k))
satisfies some convergent conditions, that is, rank(X(k)) =
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Figure 1: Experimental results on ML1M dataset.

rank(X(k−1)) = . . . = rank(X(k−c)) where c is a con-
stant. So K is not a parameter in our implementation code.
Suppose S is the step number after which the convergent
condition of the first phase is satisfied. Figure 1 (b) shows
that there is no need to compute more ADMM iterations to
ensure the superlinear convergence of HADMNT.

Algorithm 3 HADMNT (or HADMCG) for problem (1)
Input: A,λ,b,c,K
Output: optimum of NNLS
1: Phase 1: Finite Identification Phase:
2: Initialize X(0) = Y(0) = Λ(0) = 0
3: for k = 1, 2, 3, . . . ,K do

4: Generate X(k),Y(k),Λ(k) by iteration given in (11)
5: end for
6: Phase 2: Riemannian Optimization Phase:

7: X(K) = SVD
(
X(K)

)
8: X∗ = NT

(
rank(X(K)),X(K)

)
{CG can be used as an alter-

native to NT.}
9: return π

(
X∗)

Experiments

We validate the performance of our hybrid methods by
conducting empirical study on synthetic and real matrix
recovery tasks. The baselines include four state-of-the-
art NNLS solvers: ADMM (Yang and Yuan 2013), Active
ALT (Hsieh and Olsen 2014), APG (Toh and Yun 2010),
and MMBS (Mishra et al. 2013) and four recently pub-
lished non-convex solvers: LMaFit (Wen, Yin, and Zhang
2012),LRGeomCG (Vandereycken 2013), R3MC (Mishra
and Sepulchre 2014a), and RP (Tan et al. 2014). Note that
some related works such as Lifted CD (Dudik, Harchaoui,
and Malick 2012) and SSGD (Avron et al. 2012) are not
compared in this paper, since our baselines have been shown
to be the state-of-the-art (Hsieh and Olsen 2014). The
codes of baselines except for ADMM are download from the
homepages of their authors. All experiments are conducted
in the same machine with Intel Xeon E5-2690 3.0GHz CPU
and 128GB RAM.

Simulations

We use synthetic data to exhibit the convergence rates of
the six different NNLS solvers. We do not compare with
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Figure 2: Performance of NNLS solvers for the noiseless
case.

non-convex solvers in simulation since their objective func-
tions are not the same as that of NNLS. Three different
cases are considered in simulations: the noiseless case, the
noisy case, and the ill-conditioned case. Two metrics are
used to compare the convergence rate and the statistical ac-
curacy of compared methods. Specifically, we use the Rel-
ative Objective Value (ROV) to indicate convergence rate:
ROV (t) = (F (X(t))− F ∗)/F (X(0)) where F ∗ is the min-
imal value of objective function obtained by iterating APG
for 3000 times; and we use the Root Mean Square Error:
RMSE(t) = ‖X(t) −XG‖F /

√
mn to indicate the statisti-

cal accuracy where XG is the ground truth matrix. For fair-
ness, all the six solvers are initialized by X(0) = 0. And
their regularizer parameters λ are set to identical values.

Data Generating Following (Mazumder, Hastie, and Tib-
shirani 2010) and (Mishra et al. 2013), we generated the
ground truth matrix XG by two scenarios: (1) XG = LRT

for the noiseless and the noisy case, where L ∈ R
m×r

and R ∈ R
n×r are random matrices with i.i.d normal dis-

tributed entries, and (2) XG = UGdiag(σ)V
T
G for the ill-

conditioned case, where UG ∈ St(r,m),VG ∈ St(r, n),
and singular values are imposed with exponential decay. The
measurement vector b is generated by sampling c r(m+n−
r) elements uniformly from XG and then adding a noise
vector e. In the noiseless case, e = 0. In the noisy or the
ill-conditioned case, e is a Gaussian noise with predefined
Signal to Noise Ratio (SNR). In our simulation, we set both
m and n to 5000, and rank r to 50. The oversampling ratio c
is fixed as 3.

Noiseless Case In this scenario, the optimization prob-
lem (1) is expected to recover the ground true exactly, if
an extremely small regularizer λ is used. As a result, we
set λ = 10−10 for all solvers. And we report ROV and
RMSE w.r.t CPU time in Figure 2. In the noiseless case,
both curves can indicate the rate of convergence. From Fig-
ure 2(a) one can see that HADMCG and HADMNT con-
verge superlinearly to the optimum and are significantly
faster than other baselines. In Figure 2(b) ROV shows a
similar phenomenon. It is rational to conjecture that using
random SVD and solving sub-problem approximately may
make Active ALT underperform others. The unsatisfactory
performance of MMBS may be directly due to the Rieman-
nian trust region method called in each iteration.
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Figure 3: Performance of NNLS solvers for the noisy case.
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Figure 4: Performance of NNLS solvers for the ill-condition
case.

Noisy Case We set the SNR to 0.01. The regularization
parameter λ is set to 0.04

√
(m logm)/p, where p is the

number of sampling elements. Such choice of λ is sug-
gested by Negahban and Wainwright(2012). We report the
performance of the compared methods in Figure 3. From
Figure 3 (a) one can see that our hybrid methods, ADMM,
and APG achieve the same RMSE when converging. This is
because they solve the same convex optimization problem.
HADMNT and HADMCG converge to the optimum much
faster than other baselines. Figure 3 (b) also implies that
HADMNT and HADMCG converge superlinearly. MMBS
and Active ALT still perform unsatisfactorily on this task.

Ill-conditioned Case We impose exponential decay in
singular values (the singular values is generated with
specified Condition Number (CN) by MatLab command
1000 ∗ logspace(−log(CN), 0, 50) where CN is set to 106).
Moreover we perturb the observed entries by a Gaussian
noise with SNR = 0.01. The regularizer parameter is set
to the same value as in the noisy case. We report ROV
and RMSE w.r.t CPU time in Figure 4. From Figure 4(b)
we can see that large CN makes the optimization of F (X)
more challenging. It also shows that HADMCG finally en-
ters superlinearly convergence phase, while, for the other
five methods, their convergence rates become almost van-
ished after 40 seconds. Figure 4(a) illustrates the same
phenomenon. It exhibits that HADMCG outperforms other
methods both in speed and in accuracy.

Experiments on Recommendation

In recommendation task, the ratings given by users to items
are partially observed. We need to predict the unobserved
ratings based on observed ones. Three largest public avail-

Dataset users Items Ratings
ML10M 69,878 10,677 10,000,054
NetFlix 2,649,429 17,770 100,480,507
Yahoo 1,000,990 624,961 252,800,275

Table 2: Statistics of datasets.

Dataset
ML10M NetFlix Yahoo

RMSE Time(s) RMSE Time RMSE Time
Active ALT 0.8106 1609 0.8472 24330 - -

ADMM 0.8101 77.95 0.8666 1715 22.25 15080
APG 0.8066 188.7 0.8402 2259 23.10 15920

MMBS 0.8067 28760 - - - -
LMaFit 0.8100 140.6 0.8507 1828 23.14 15020

LRGeomCG 0.8246 146.6 0.8633 1133 22.49 17540
R3MC 0.8206 94.57 0.8532 1000 22.38 17270

RP 0.8119 283.3 0.8473 736.4 23.28 12380
HADMNT 0.8062 69.45 0.8498 821.8 23.83 14740
HADMCG 0.8039 53.10 0.8398 708.2 22.00 7027

Table 3: Performance comparison on recommendation tasks.

able recommendation datasets are used in our comparison:
Movielens 10M (ML10M) (Herlocker et al. 1999), Net-
Flix (KDDCup 2007), and Yahoo music (Dror et al. 2012).
Their statistics are showed in Table 2. We randomly parti-
tion the datasets into two groups: 80% ratings for training
and the remaining 20% ratings for testing. We repeat the ex-
periments 5 times and report the average testing RMSE and
CPU time.

In our experiments, the regularizer parameters λ of the
six NNLS solvers (including our hybrid solvers) are set to
identical values. We set λ = 20 for both ML10M and Net-
Flix, and 200 for Yahoo Music. The six NNLS solvers and
the non-convex method RP are initialized by 0. The rank
parameters r of fix rank methods, (namely LMafit, LRGe-
omCG and R3MC) are set to the rank estimated by our hy-
brid methods. Since 0 is not a valid initializer for the fix rank
methods, LMafit,LRGeomCG and R3MC are initialized by
top-r SVD of the training matrix. We terminate these meth-
ods once a pre-specified training RMSE is achieved or they
iterate more than 500 times.

The comparison results are given in Table 3. From it one
can see that both HADMNT and HADMCG outperform
other NNLS solvers in speed. That is because HADMNT
and HADMCG are superlinearly convergent methods. Es-
pecially, our HADMCG method outperforms other methods
both in speed and accuracy. One can also find that fix rank
methods (LMaFit, LRGeomCG and R3MC) do not show su-
perior advantage over others even though they do not need
to estimate rank. The probable reason is that ill-condition of
the recommendation dataset may slow down their conver-
gence, and also they may be trapped in local optimum when
minimizing a non-convex objective function.

Conclusion

In this paper we propose two hybrid methods, HADMNT
and HADMCG, to solve large-scale NNLS. In theory, we
prove HADMNT converges to an optimum of NNLS at least
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quadratically. Pratically both HADMNT and HADMCG are
faster than state-of-the-art NNLS solvers.
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vergence of forward–backward under partial smoothness. In
Advances in Neural Information Processing Systems, 1970–
1978.
Lin, Z.; Ganesh, A.; Wright, J.; Wu, L.; Chen, M.; and Ma, Y.
2009. Fast convex optimization algorithms for exact recovery
of a corrupted low-rank matrix. Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP) 61.
Lu, C.; Zhu, C.; Xu, C.; Yan, S.; and Lin, Z. 2015. Generalized
singular value thresholding. AAAI.
Mazumder, R.; Hastie, T.; and Tibshirani, R. 2010. Spectral
regularization algorithms for learning large incomplete matri-
ces. The Journal of Machine Learning Research 11:2287–
2322.
Mishra, B., and Sepulchre, R. 2014a. R3mc: A rieman-
nian three-factor algorithm for low-rank matrix completion.
In IEEE 53rd Annual Conference on Decision and Control,
1137–1142.
Mishra, B., and Sepulchre, R. 2014b. Riemannian precondi-
tioning. arXiv preprint arXiv:1405.6055.
Mishra, B.; Meyer, G.; Bach, F.; and Sepulchre, R. 2013. Low-
rank optimization with trace norm penalty. SIAM Journal on
Optimization 23(4):2124–2149.
Mishra, B.; Meyer, G.; Bonnabel, S.; and Sepulchre, R. 2014.
Fixed-rank matrix factorizations and riemannian low-rank op-
timization. Computational Statistics 29(3-4):591–621.
Mishra, B. 2014. A Riemannian approach to large-scale con-
strained least-squares with symmetries. Ph.D. Dissertation,
Université de Namur.
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