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Abstract

Binary code learning, a.k.a., hashing, has been recently pop-
ular due to its high efficiency in large-scale similarity search
and recognition. It typically maps high-dimensional data
points to binary codes, where data similarity can be efficiently
computed via rapid Hamming distance. Most existing unsu-
pervised hashing schemes pursue binary codes by reducing
the quantization error from an original real-valued data space
to a resulting Hamming space. On the other hand, most exist-
ing supervised hashing schemes constrain binary code learn-
ing to correlate with pairwise similarity labels. However, few
methods consider ordinal relations in the binary code learn-
ing process, which serve as a very significant cue to learn the
optimal binary codes for similarity search. In this paper, we
propose a novel hashing scheme, dubbed Ordinal Embedding
Hashing (OEH), which embeds given ordinal relations among
data points to learn the ranking-preserving binary codes. The
core idea is to construct a directed unweighted graph to cap-
ture the ordinal relations, and then train the hash functions us-
ing this ordinal graph to preserve the permutation relations in
the Hamming space. To learn such hash functions effectively,
we further relax the discrete constraints and design a stochas-
tic gradient decent algorithm to obtain the optimal solution.
Experimental results on two large-scale benchmark datasets
demonstrate that the proposed OEH method can achieve su-
perior performance over the state-of-the-arts approaches. At
last, the evaluation on query by humming dataset demon-
strates the OEH also has good performance for music retrieval
by using user’s humming or singing.

Introduction

Large-scale visual search has attracted extensive research
focus recently in computer vision and artificial intelligence
communities (Dean et al. 2013; Grauman and Fergus 2013;
Li et al. 2011). One fundamental challenge lies in its heavy
computational cost, i.e. linearly comparing massive real-
valued features to find the nearest neighbours of the query.
Hashing techniques have been recently popular to tackle
such challenge, which encodes the real-valued data points
into binary codes with significant efficiency in storage and
computation. In principle, most existing hashing methods
learn a set of hash functions {hk : Rd �→ {0, 1}}rk=1, which
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map the original data from a d-dimensional real-valued fea-
ture space to a r-bits Hamming space, such that the distance
among original data can be approximated by Hamming dis-
tance efficiently.

One issue in binary code learning is how to preserve the
similarity among data points in the high-dimensional real-
valued space. To this end, the existing binary code learn-
ing schemes can be classified into either data-independent
or data-dependent ones. Data-independent hashing like Lo-
cality Sensitive Hashing (LSH) (Gionis et al. 1999) typically
adopts random projection to find a set of random sign func-
tions to produce binary codes. For instance, Shift-Invariant
Kernel Hashing (Raginsky and Lazebnik 2009) learns binary
code by using random Fourier features with shift-invariant
kernel transformation. For another instance, Kernelized Lo-
cality Sensitive Hashing (Kulis and Grauman 2012) ex-
tends the general LSH to Kernelized space to support arbi-
trary similarity. However, the above data-independent hash-
ing methods always require long bits to achieve satisfactory
search accuracy.

Data-dependent hashing can be categorized into either su-
pervised or unsupervised ones, Unsupervised hashing, such
as Spectral Hashing (Weiss, Torralba, and Fergus 2009), An-
chor Graph Hashing (Liu et al. 2011), Iterative Quantization
(Gong et al. 2013), Spherical Hashing (Heo et al. 2012), Dis-
crete Graph Hashing (Liu et al. 2014), and Scalable Graph
Hashing (Jiang and Li 2015), models the data structure or
distribution as constraints to achieve high search accuracy
with short binary codes. Differently, supervised hashing pre-
serves the label relation (e.g., pairwise similarity or dis-
similarity) in Hamming space to learn semantic-aware bi-
nary codes, for instance Binary Reconstructive Embedding
(Kulis and Darrell 2009), Minimal Loss Hashing (Norouzi
and Blei 2011), Kernel-based Supervised Hashing (Liu et al.
2012), Hamming Distance Metric Learning (Norouzi, Blei,
and Salakhutdinov 2012), and Supervised Discrete Hash-
ing (Shen et al. 2015). Although supervised hashing typi-
cally provides superior performance, it is typically labour-
intensive to obtain sufficient semantic labels in real applica-
tion.

In this paper, we focus on unsupervised hashing. To learn
accurate binary codes, the key design lies in preserving the
similarity among data points in the high-dimensional real-
valued feature space. To this end, existing unsupervised
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Figure 1: Framework of the proposed OEH method.

methods only consider the preservation of pairwise similar-
ity between data points. Taking graph hashing (e.g. Spectral
Hashing (Weiss, Torralba, and Fergus 2009), Anchor Graph
Hashing (Liu et al. 2011), Discrete Graph Hashing (Liu et al.
2014) and Scalable Graph Hashing (Jiang and Li 2015)) for
instance, pairwise similar/dissimilar constraints are embed-
ded into neighbor graph construction and decomposition,
which typically result in high complexity, and cannot cap-
ture the relative orders among data points. To the best of
our knowledge, none existing hashing methods can consider
the ordinal relation among data points, which is however
cheaply available and can be obtained in an unsupervised
manner.

In this paper, we propose a novel hashing method, termed
Ordinal Embedding Hashing (OEH), which makes the first
attempt towards preserving the ordinal relation from the
high-dimensional real-valued feature space to the Hamming
space. Our work is inspired by the work in (McFee and
Lanckriet 2011; Terada and Luxburg 2014) which were pro-
posed for embedding arbitrary ordered structures into the
Euclidean space. Different from the existing pairwise sim-
ilarity constraints, we argue that, it is the relative order be-
tween data pairs, rather than the absolute distance, which
must be preserved in the Hamming space. To that effect, our
approach constructs a directed, unweighted ordinal graph to
capture the original relation among data points, upon which
we learn hash functions via a novel stochastic gradient de-
creasing (SGD) algorithm. The whole framework of our pro-
posed OEH approach is shown in Figure 1. We compare the
proposed OEH method against various state-of-the-art un-
supervised hashing methods on two widely-used image re-
trieval benchmarks, i.e., CIFAR10 and LabelMe. Quanti-
tative results demonstrate that OEH outperforms the exist-
ing unsupervised hashing methods with a significant margin.
At last, we propose a two-step framework for the system
of query by humming, and the evaluation on MIR-QBSH
demonstrate the efficiency of our scheme that can quickly re-

trieve similar music by users humming or singing. By work-
ing with the BestImage team (bestimage.qq.com/) in Ten-
cent, the proposed scheme has been integrated into Tencent
QQ Music product (see details in the experiments).

The rest of this paper is organized as follows: In Section
2, we introduce the preliminary formulation of ordinal em-
bedding. The proposed OEH and the iterative SGD based
optimization are introduced in Section 3. In Section 4, we
show the experimental results and analysis. Finally, we con-
clude this paper in Section 5.

Preliminaries

In this section, ordinal embedding and isotonic functions are
introduced, which serve as the basis for the proposed OEH
method. Ordinal embedding, also known as ordinal scal-
ing, non-metric multidimensional scaling, or isotonic em-
bedding (Arias-Castro 2015), targets at finding an embed-
ding of items by comparing their pairwise distances. Let us
denote a set of n items each with dimension d1, and also de-
note δij ≥ 0 as the dissimilarity between the i-th and the
j-th item. Suppose that δii = 0 and δij = δji, an order rela-
tion subset C can be written as follows

δij < δkl, ∀(i, j, k, l) ∈ C. (1)

Given C and a dimension d2 for the new space, the goal
of ordinal embedding is to embed items in C as new fea-
ture representation x1, ..., xn ∈ R

d2 such that the ordinal
constraints are preserved as

δij < δkl ⇒ ‖xi − xj‖ ≤ ‖xk − xl‖ , ∀(i, j, k, l) ∈ C, (2)

where ‖·‖ denotes the Euclidean norm. Eq. (2) is referred
to the Euclidean embedding1. There are two common situ-
ations, i.e., quadruple comparisons where (i, j, k, l) ∈ C =
[n]4, and triplet comparisons where (i, j, i, l) ∈ C =
[n]3. Both settings have widely been studied in the ma-
chine learning community. (Shepard 1962; Young 2013;
von Luxburg and others 2014)

We further denote Ω ⊆ R
d and a transformation function

f : Ω → R
d, where for all {x, y} ∈ Ω and some λ >

0. Thus we have ‖f(x)− f(y)‖ = λ ‖x− y‖, where f is
isotonic if for all {x, y, z, w} ∈ Ω, the following constraints
hold as:

‖x− y‖ < ‖z − w‖ ⇒ ‖f(x)− f(y)‖ < ‖f(z)− f(w)‖ . (3)

Equivalently, f : Rd → R
d is a linear transformation, given

by f(x) = Wx + b with orthogonal matrix W and an off-
set b ∈ R

d. f is weakly isotonic if Eq. (3) holds only for
{x, y, z, w} ∈ Ω with x = z. And f is locally isotonic for
each points x ∈ Ω with its neighborhood set U .

Ordinal Embedding Hashing

We first introduce some notations before describing the pro-
posed hashing algorithm. Let X = {x1, x2, ..., xn} ∈ R

d×n

be the data matrix with n samples, where xi is the i-th col-
umn of X with d dimensions. As mentioned, an order rela-
tion subset C is used as the ordinal constraints to present

1In Section 3, we further extend such Euclidean embedding into
a binary case for binary code learning.
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the relative dissimilarity degree between δij and δkl. Ac-
cording to C, we construct a directed unweighted graph
G = (V,E) = [n4], where each node vij ⊆ V represents
the dissimilarity degree between the i-th and the j-th sam-
ple, and each directed edge e(i,j,k,l)∈C = (vij → vkl) ⊆ E
represents δij < δkl.

OEH aims at learning a set of mapping functions
H(x) =

{
h1(x), h2(x), ..., hr(x)

}
, which map the real-

valued sample points to the corresponding binary codes
B = {b1, b2, ..., bn} ∈ {0, 1}r×n, where r is the length of
binary codes. Specifically, our goal is to ensure the learned
hash function to hold the following constraint

∀(vij , vkl) ∈ G : ‖H(xi)−H(xj)‖1 < ‖H(xk)−H(xl)‖1 .
(4)

More specifically, given G and the code length r, the hash
function should preserve the ordinal relations as much as
possible. By using a linear transform function with orthogo-
nal mapping matrix, we propose to formulate the following
hashing function

hk = sgn
(
fk(x̂)

)
, k = 1, 2, ..., r, (5)

where sgn(·) is the sign function, which returns 1 if fk(·) >
0 and -1 otherwise, fk(x̂) : R

r → R
r is a linear trans-

formation as described in Section 2, and x̂ ∈ R
r is the

non-linear principle component of the original feature, cal-
culated via kernel transformation (Liu et al. 2012; Shen et al.
2015) and PCA. For simplicity, we define the whole hashing
function as H(x̂) = sgn(WT x̂), with the orthogonal matrix
W = [w1, w2, ..., wr] ∈ R

r×r.
To embed the ordinal relations into H(x̂), we learn hash

codes with the ordinal graph G instead of the pairwise dis-
tance. For edge e(i,j,k,l)∈C ⊆ E in G, we expect the rela-
tion of dissimilar degrees can be preserved by hash func-
tion H(x̂) under the constraint of Eq. (4). In other words,
the Hamming distance between bi and bj should be smaller
than that between bk and bl. We therefore write the objective
function for our proposed OEH method as

min
∑

(vij ,vkl)∈G

I
(
DH(bi, bj) ≥ DH(bk, bl)

)

s.t. bi = sgn(WT x̂i),

WTW = I,

(6)

where I(·) is an indicator function which returns 1 if the con-
dition is satisfied and 0 otherwise. Function DH(bi, bj) rep-
resents the Hamming distance between binary code bi and
bj . This objective function aims at counting up the number
of incorrect order relations, which indicates the Hamming
distance of pair(bi, bj) is lager than that of pair(bk, bl).
Note that the objective function in Eq. (6) is discrete and
hard to optimize. We tackle this issue by an alternative func-
tion, which is equivalent to Eq. (7) with a scale parameter
β > 0, i.e.,

min
∑

(vij,vkl)∈G

o(vij , vkl)max
[
0, DH(bi, bj) + β − DH(bk, bl)

]
, (7)

where function o(vij , vkl) = 1 if there is an directed edge
from vertex vij to vkl, and o(vij , vkl) = 0 otherwise.

Although the order relation can be generated easily, the
total number of order constraints is too large to be used
for training. To solve this problem, inspired by (Terada
and Luxburg 2014), we relax the above global ordinal con-
straints to local ordinal constraint, which significantly re-
duces the number of order constraints in ordinal graph with-
out decreasing the embedding quality. We adopt a landmark-
based ordinal embedding (Arias-Castro 2015) which consid-
ers the comparison from any point to the landmarks. Under
such a circumstance, the number of ordinal constraints re-
duces from n4 to n · L2, where L is the number of land-
marks. Generally, with triple constraints instead of quadru-
ple, the landmark-based ordinal embedding can be written
as the following constraints:

(i, j, k) ∈ C : δ̃ij < δ̃ik ⇒ ‖bi − blj‖1 < ‖bi − blk‖1 , (8)

where blj is the corresponding binary code of landmark lj ∈
R

r. With this constraint, Eq. (7) can be rewritten as

min

n∑
i=1

L∑
j,k=1

o(vij , vik)max
[
0, DH(bi, blj) + β − DH(bi, blk)

]
. (9)

To describe function o(·, ·) more conveniently, we formulate
the neighbor information in the form of k-nearest neighbor
graph A1 ∈ R

n×L. Neighbor graph A1 measures the di-
rected unweighted constraints, where a1ij = 1 means sample
xi is connected with its k-nearest neighbor lj , and a1ij = 0

otherwise. For a given directed unweighted graph A1, the
function can be rewritten as o(i, j, k) = a1ij(1− a1ik), which
reflect the ordinal constraints δi,j < δi,k. To further integrate
the ordinal constraint among landmarks, for a given sample
xi, we select the m-nearest neighbor landmarks as a subset
M and construct a new neighbor graph A2 as before. Based
on A2, we introduce a new objective function for landmark-
based ordinal preserving as follows:

min

M∑

m=1

L∑

j,k �=m

{
o(vmj , vmk)·

max[0, DH(lm, lj) + β −DH(lm, lk)]
}
.

(10)

Correspondingly, we rewrite the overall model for the pro-
posed OEH approach as follows:

F (W |G) =

n∑

i=1

{ L∑

j,k=1

o(i, j, k)max[0, DH(bi, blj)

+ β −DH(bi, blk)] + α
M∑

m=1

L∑

j,k �=m

o(m, j, k)·

max[0, DH(blm, blj) + β −DH(blm, blk)]
}

s.t. bi = H(x̂i), blj = H(lj),

WTW = I.

(11)

where α is the tradeoff among the ordinal information of
sample points and landmarks. Note that different from Eu-
clidean based ordinal embedding (McFee and Lanckriet
2011; Terada and Luxburg 2014), our work measures the
ordinal relation as Hamming distance which is discontinu-
ous. Meanwhile our target is to learn the hash functions that
preserve the ordinal information in the compact Hamming
space. As a result, a new optimization scheme should be de-
signed, which is introduced subsequently in Section 3.
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Optimization

Problem Relaxation

Directly minimizing the objective function in Eq. (11) is in-
tractable, as the coding function is discrete while Hamming
space is not continuous. To solve this problem, we relax the
discrete constraints from the Hamming space to an approxi-
mated continuous space.

To that effect, we first relax the hashing function H(x̂i) =
sgn(WT x̂i) as follows:

H̄(x̂i) = tanh(WT x̂i), (12)

where tanh(·) is a good approximation for sign(·), which
transforms the binary codes from {0, 1} to {−1, 1}. Corre-
spondingly the Hamming distance could be calculated as:

DH(bi, bj) =
1

2
(r − H̄T (x̂i) · H̄(x̂j)). (13)

Finally, we introduce another function p(·, ·, ·) to relax the
maximum function that is not easy to optimize. Function
p(bi, lj , lk) is defined as:

p(bi, blj , blk) =
1

1 + exp(DH(bi, blk)− β −DH(bi, blj))
.

Based upon the above relaxations, the objective function in
Eq. (10) can be rewritten as:

F̄ (W |G) =

n∑

i=1

{
L∑

j,k

o(i, j, k) · p(bi, blj , blk)

+ α

M∑

m=1

L∑

j,k �=m

o(m, j, k) · p(blm, blj , blk)}

+ γ
∥∥∥WTW − I

∥∥∥ .

(14)

Intuitively, the gradient descent approach can be used to
carry out an iterative optimization for Eq. (14). However,
due to the large number of ordinal constraints, the efficiency
of such a direct gradient descend is low. In the following, we
further introduce an alternative stochastic gradient descent
algorithm to solve this problem efficiently.

Stochastic Gradient Descent

We first conduct PCA for all samples and landmarks before
optimization. Then, a stochastic gradient descent is done
to learn parameters in OEH: Given a data point x̂i uni-
formly sampled from the training set, a set of landmarks
and a relation graph A2 representing the order information
between landmarks are built, based on which we generate
a unweighted KNN graph A1 between the sample and the
landmarks.

We then build the function p(i, j, k), by which the Ham-
ming distance between landmarks and samples can be easily
calculated by the projection matrix W ( W is generated dur-
ing the last iteration). In this way, the gradient of Eq. (14) is

Algorithm 1 Ordinal Embedding Hashing (OEH)
Input: Data samples X = {x̂1, x̂2, ..., x̂n}, landmarks

{l1, l2, ..., lL}, and parameters α, β, γ and η.
Output: The projection matrix W ∈ Rr×r.

1: repeat
2: randomly pick up an sample point x̂i;
3: generate the KNN graph A1 based on x̂i and land-

marks;
4: generate the landmark ordinal graph A2;
5: calculate the gradient according to Eq. (15);
6: make a gradient descent according to Eq. (17);
7: until convergence or reaching the maximum iteration

number.

given by:

∂F̄ (W |A1, A2, x̂i)

∂W
=

γW +

L∑
j,k

o(i, j, k) · (p(bi, blj , blk)(1 − p(bi, blj , blk))
)·

[
∂DH(bi, blk)

∂W
− ∂DH(bi, blj)

∂W

]
+

α
M∑

m=1

L∑
j,k �=m

{
o(m, j, k) · (p(blm, blj , blk)(1 − p(blm, blj , blk))

)·
[
∂DH(blm, blk)

∂W
− ∂DH(blm, blj)

∂W

] }
,

(15)

where the gradient of Hamming distance is formulated as:

∂DH(bi, blj)

∂W
=− 1

2

{
x̂i ·

[(
1-H̄2(x̂i)

)	 H̄(lj)
]T

+ lj ·
[(

1-H̄2(lj)
)	 H̄(x̂i)

]T }
.

(16)

In Eq. (16), � is the Hadamard product which represents the
element-wise product. Based on the gradient, we perform
the update procedure for matrix W as:

Wt+1 = Wt − η
∂F̄ (W |A1, A2, x̂i)

∂W
, (17)

where η is the parameter of the learning rate and t is the
number of iterations. The details of the proposed SGD for
OEH in shown in Algorithm 1. The complexity of the pro-
posed gradient updating is O

(
(m+ 1)r3L2

)

Experiments

In this section, we evaluate the proposed OEH ap-
proach on two widely used benchmark datasets: CIFAR10
(Krizhevsky 2009), and LabelMe (Torralba, Fergus, and
Weiss 2008). We also evaluate the proposed OEH method on
MIR-QBSH dataset with the application of query by hum-
ming, at the last sub-section.

Datasets

The CIFAR10 dataset consists of 60,000 color images in 10
classes (6,000 images per class) each with 32 × 32 spatial
resolution. Each image is represented by a 512-dimensional
GIST feature (Oliva and Torralba 2001). 1,000 images are
randomly selected as the test set, and the remaining are used
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Table 1: mAP comparision using Hamming ranking on both datasets with different hash bits.
CIFAR10 LabelMe

Methods 8 16 32 64 8 16 32 64
LSH 0.1170 0.1122 0.1243 0.1271 0.1412 0.2473 0.2444 0.3112
SH 0.1243 0.1287 0.1276 0.1259 0.2044 0.2437 0.2779 0.3802

AGH 0.1507 0.1575 0.1483 0.1440 0.2381 0.2603 0.3601 0.4075
DSH 0.1418 0.1472 0.1625 0.1675 0.0629 0.2521 0.3354 0.4148
SpH 0.1465 0.1487 0.1537 0.1617 0.0570 0.2913 0.4149 0.4356
ITQ 0.1512 0.1650 0.1693 0.1761 0.3516 0.3011 0.4222 0.4467

OEH 0.1682 0.1728 0.1759 0.1797 0.3022 0.3496 0.4240 0.4512
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(1) ANN search performance on CIFAR10.
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(2) ANN search performance on LabelMe.

Figure 2: ANN search of performance of different hashing methods on both datasets using 16-bit codes (ours in red).

for training. Since this dataset is fully annotated, we evaluate
the performance by the ground-truth semantic labels.

The LabelMe dataset consists of 22,019 images, each of
which is represented by a 512-dimensional GIST feature as
well. We randomly selected 2,000 images from the dataset
as the test set, leaving remaining images for training. Since
label information is unavailable, neighbors in the Euclidean
space are defined by a threshold as pseudo labels. That is,
for a given query, the top 5% ranking items with Euclidean
distances are defined as with the same label of the query.

The corpora MIR-QBSH in MIREX for QBH is used
as the evaluation dataset2, which is composed of 48 MIDI

2http://www.music-ir.org/mirex/wiki/2015:Query by Singing/

music files and 4431 humming queries. All the queries are
hummed from the beginning of the MIDI songs. We also add
2000 noise MIDI files from the 5000+ Essen Collection3.

Compared Methods

The proposed OEH method is compared with six unsuper-
vised hashing methods, including Locality Sensitive Hash-
ing (LSH) (Raginsky and Lazebnik 2009), Spectral Hash-
ing (SH) (Weiss, Torralba, and Fergus 2009), Anchor Graph
Hashing (AGH) (Liu et al. 2011), Spherical Hashing (SpH)
(Heo et al. 2012), Density Sensitive Hashing (DSH) (Jin

Humming
3http://www.esac-data.org/
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et al. 2014) and Iterative Quantization (ITQ) (Gong et al.
2013). 4 We implement our OEH hashing using Matlab on
a PC with Intel Duo Core i7-3412 3.4GHz and 16G RAM.
We repeat each experiment 10 times and report the average
performance over all runs. In each run, training and testing
sets are randomly split with the ratios reported above.

In particular, W is randomly initialized with the Gaus-
sian distribution of mean 0 and standard deviation 1, which
follows the traditional settings. The learning rate η is set
as 0.3 in all experiments. For the constraints in Eq. (8),
the landmarks are consisted of 500 features obtained by K-
means clustering. We will also give experimental analysis
on whether the setting of k-nearest neighbor affects the or-
dinal graph. It is worth to note that landmarks generated by
K-means reflect the distribution and structure of data points.
Therefore, the order information among landmarks is con-
sidered as vital as the sample to landmarks. Therefore the
parameter α is set as 1 as a balance parameter. Following
(Bartlett and Wegkamp 2008), we set the regularization pa-
rameter λ as 0.001, and the parameter β as 1 in all our ex-
periments for better search performance.

Evaluation Protocols

To evaluate the performance of different hashing methods,
mean Average Precision (mAP) is employed as the eval-
uate protocol, which is an overall evaluation of both pre-
cision and recall defined by mean of AP as: mAP =
1

|Q|
∑|Q|

i=1 AP (qi), where |Q| is the number of query points.
AP = 1

l

∑n
i=1 p(i)	(i), where l is the number of ground-

truth neighbors of the i-th query, p(i) denotes the precision
at the cutoff i for the ranking list, and 	(i) = 1 if the i-
th retrieved result is a truth points, otherwise 	(i) = 0.
We also consider other three evaluation protocols, i.e., pre-
cision at top-K positions (Precision@K), recall at top-K
positions (Recall@K) and Precision-Recall curve. For the
experiments on query by humming, the evluation measure-
ments are Top-10 Hit Rate and the average retrieval time for
each query.

Quantitative Results on Image Retrieval

We compare OEH with the state-of-the-art hashing methods
listed above on both CIFAR10 and LabelMe datasets. As
shown in Table 1 and Figure 2 with hash bits varied from 8 to
64, we observe that OEH consistently achieves the superior
mAP results comparing to all baselines, especially when the
hash bit is low.

For in depth analysis, previous hashing methods mainly
reduce the quantization errors between the real-valued Eu-
clidean distance and the Hamming distance. Instead, in our
scheme the constraint of the order information among sam-
ples is much more comprehensive than that in Euclidean dis-
tance, which therefore results in more accurate quantization.
For example, given three samples x1, x2, x3, suppose the
Euclidean distance between x1 and x2 is much larger than
that of x1 and x3, the traditional hashing methods constrain

4The source codes of all the compared methods are available
publicly.
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Figure 3: mAP curves @16 bits vs the number of K.

that the Hamming distance between pairs(x1, x2) is always
larger than that between pairs(x1, x3), which is not easy
to hold during optimization, since Hamming distance is dis-
crete and discontinue. In contrast, for the order comparison
constraints in OEH, we just need to preserve the order rela-
tion in Hamming space, e.g. Hamming distance DH(x1, x2)
is larger than that of DH(x1, x2), which can be easily rep-
resented in the Hamming space. As a result, the correspond-
ing optimization is much more efficient and accurate, which
results in much higher mAP comparing to all baselines. Spe-
cially, OEH gets higher in CIFAR10 than all baselines with
lower hash bits, which can better reflect the label similarity
in the Hamming space.

We further investigate the performance of the pro-
posed OEH algorithm using the protocols of Precision@K,
Recall@K and Precision-Recall curve, with a fixed hash bit
of 16. The result is shown in Figure 2. With the increas-
ing number of retrieved data points, the precision and recall
always increase for all hashing algorithms, among which
OEH increases the most. This indicates that the discrimina-
tion degree of Hamming distance is not evident comparing
to that of Euclidean distance. Therefore, the proposed OEH
significantly improves the accuracy of approximated nearest
neighbor search. This also suggests that the iterative stochas-
tic gradient descent algorithm proposed in this paper works
well in finding the optimal hash functions.

At last, we discuss the influence of both landmarks and the
number of k-nearest neighbours. Note that the landmarks are
generated by K-means clustering, and it’s not necessary that
the clustering process always converges. And in an extreme
case, the landmarks can be obtained by uniform sampling
from the training set. As shown in Figure 3, the mAP value
is relatively better when the number of k increases from 10
to 20. Therefore, we use a function k = 2× log(L) to set the
relative parameter k, where L is the number of landmarks.

The experiments on Query by Humming

The traditional QBH problems focus on the two crucial
problems of feature extraction and melody matching. For the
problem of pitch detecter, F0 tracking (Molina et al. 2014) is
always used to detect pitch sequence as the melody represen-
tation, which have been used in many QBH systems (Guo et
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Figure 4: Framework of the Query by Humming.

al. 2013). In this part, we mainly focus on melody match-
ing. Dynamic time warping (DTW) is a popular match-
ing method for QBH, which finds a optimal matching path
by a dynamic programming. However, DTW is not a suit-
able solution to match humming query with large-scale song
database, due to its higher time complexity. Therefore, many
methods have been proposed to solve this problem by divid-
ing retrieval system into two steps. Some quickly matching
algorithms, e.g. Earth Moverpsilas Distance (EMD) (Wang
et al. 2008), are used as the first step to select song candi-
dates, which can be viewed as the fuzzy search. During the
second step, DTW algorithm will match query with candi-
date songs for accurate searching. So, we propose a method
for QBH system, which uses OEH as fuzzy search and DTW
method as accurate search. The framework of the query by
humming system using OEH is shown in Figure 4.

The experiment results on MIR-QBSH dataset is shown
in Table 2. The first three row of Table 2, we compared
the OEH algorithm with two time seiries matching meth-
ods, e.g., EMD and DTW. From the last four rows in
Table 2, we compared the proposed QBH system, a.k.a,
OEH+DTW, with the well known Query-by-Humming sys-
tem EMD+DTW 5, which has been proposed in (Wang et
al. 2008). We also replace the OEH part in the proposed
method with other two hashing methods, e.g., LSH and ITQ.
For the EMD+DTW, we use the EMD algorithm to do the
first stage, and use the top-300 ranking results as the candi-
date, which will be reranked in the second stage by DTW
matching. For the hashing based QBSH, we select Top-500
Hamming ranking results as the candidates. We transform
each MIDI file to a numerical pitch sequence, and seperate
each sequence into 7 sub-sequence by holding the begin-
ning of the song and moving the end at different frames.
The length of sub-sequence is less than 66% of the original
sequence length, and more than 33% at the same time. We
also transform all the sub-sequence and query sequence to a
fixed length by linear interpolation.

5The source codes of the EMD+DTW is available publicly.

Table 2: The experiment result on MIR-QBSH.
Methods Top-10 Hit Rate Query Time (s)

EMD 0.804 1.523
DTW 0.925 17.071
OEH 0.630 0.121

EMD+DTW 0.914 3.572
LSH+DTW 0.586 0.574
ITQ+DTW 0.872 0.787

OEH+DTW 0.907 0.695

As shown in Table 2, the proposed OEH+DTW can get
the similar retrieval performance compared with classic
EMD+DTW, with reducing 80% of searching time. In spite
of well search perfomance, the average time of each query is
too slow which can’t be tolerant in real system. LSH+DTW
and ITQ+DTW have worse performance for these applica-
tion, due to using Euclidean distance to approximate the
similarity between time sequence features. But for our OEH,
we construct the ordinal graph according to the more ac-
curate DTW metric, that is to say our proposed OEH can
be independent of any metric space. As a result, it can fil-
ter out most of the nosiy music, and DTW re-ranking can
futher improve the searching performance. In general, the
proposed method can quickly and accurately complete the
task of query by humming, which can also be used in large-
scale music database. And it has been integrated into Ten-
cent QQ Music product now.

Conclusion and Future Work

In this paper, we proposed a novel unsupervised hashing
approach dubbed Ordinal Embedding Hashing (OEH) for
large-scale image retrieval. Unlike most previous unsuper-
vised hashing methods, the proposed approach exploits the
ordinal information between sample points and landmarks,
and embeds the order relations among data points into a
Hamming space. The core idea of OEH is to minimize the
number of wrong order comparisons in the Hamming space
for a set of predefined ordinal information, which was mod-
eled as an ordinal relation graph. Due to a large number
of order comparisons in the ordinal relation graph, we fur-
ther introduced a landmark-based order embedding to re-
duce the training scale without significantly decreasing the
retrieval accuracy. In optimization, an iterative stochastic
gradient descent algorithm was developed. Extensive experi-
ments on two benchmark datasets demonstrated that the pro-
posed OEH approach achieves the best performance in con-
trast with various state-of-the-art hashing methods. We also
extend the OEH to the application of query by humming,
and the experiment shows our proposed method has better
performance of music search by user’s humming or singing.
In our future work, we would further extend our proposed
method to larger-scale image retrieval dataset and investi-
gate the possibility to conduct large-scale optimization in
the binary code learning process.
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