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Abstract

Since amounts of unlabelled and high-dimensional data
needed to be processed, unsupervised feature selection has
become an important and challenging problem in machine
learning. Conventional embedded unsupervised methods al-
ways need to construct the similarity matrix, which makes
the selected features highly depend on the learned structure.
However real world data always contain lots of noise sam-
ples and features that make the similarity matrix obtained by
original data can’t be fully relied. We propose an unsuper-
vised feature selection approach which performs feature se-
lection and local structure learning simultaneously, the sim-
ilarity matrix thus can be determined adaptively. Moreover,
we constrain the similarity matrix to make it contain more
accurate information of data structure, thus the proposed ap-
proach can select more valuable features. An efficient and
simple algorithm is derived to optimize the problem. Experi-
ments on various benchmark data sets, including handwritten
digit data, face image data and biomedical data, validate the
effectiveness of the proposed approach.

Introduction

Due to large amounts of data produced by rapid develop-
ment of technology, the processing of high-dimensional data
has become a big problem in many fields, such as com-
puter vision, data mining, and pattern recognition. High-
dimensional data often contain quite a lot noise features,
which are detrimental to data processing. As one of the
typical method to alleviate this problem, feature selection
attracts more and more attentions. Feature selection aims
at obtaining a subset of features which are selected from
original feature space. Feature selection mainly uses three
approaches: supervised, semi-supervised and unsupervised.
Obviously, unsupervised feature selection is more difficult
than the others for absence of label information, however,
the large amount of unlabelled data makes the unsupervised
feature selection practical.

Various methods of unsupervised feature selection have
been proposed, and can be classified into three distinct types,
i.e. filter method (He, Cai, and Niyogi 2005; Zhao and Liu
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2007), wrapper method (Tabakhi, Moradi, and Akhlaghian
2014), and embedded method (Cai, Zhang, and He 2010;
Zhao, Wang, and Liu 2010; Hou et al. 2014; Li et al. 2012;
Wang, Tang, and Liu 2015). Embedded methods are supe-
rior to others in many respects, and have received more and
more attentions. Since local manifold structure is considered
better than global structure, most of embedded methods try
to discover local structure. The classical graph based meth-
ods contain two independent steps. First, construct similarity
matrix by exploring the local structure. Then, select valuable
features by sparsity regularization.

However, there are at least two issues for conventional
embedded methods. First, conventional spectral based fea-
ture selection methods construct similarity matrix and select
features independently. Therefore, the similarity matrix is
derived from original data and remains constant for the sub-
sequent process, but real world data always contain lots of
noise samples and features, which make the similarity ma-
trix unreliable (Wang, Nie, and Huang 2015). The unreliable
similarity matrix will damage the local manifold structure,
and ultimately lead to suboptimal result. Second, similar-
ity matrix obtained by conventional method is usually not
an ideal neighbor assignment. The optimal similarity matrix
should have exact c connected components, where c is the
number of cluster. However, simply using k-nearest neigh-
bors assignment hardly achieves the ideal state.

To mitigate the impact of above problems, we propose an
unsupervised feature selection approach, called Structured
Optimal Graph Feature Selection (SOGFS). It is worthwhile
to highlight the main contributions of this paper as follows:

1. A novel embedded unsupervised feature selection ap-
proach is proposed. The approach performs feature selec-
tion and local structure learning simultaneously. It adap-
tively learns local manifold structure, and thus can select
more valuable features.

2. A reasonable constraint is introduced to the approach. The
similarity matrix obtained by local structure can be more
accurate when we constrain similarity matrix to make it
contain exact c connected components.

3. Comprehensive experiments on benchmark data sets
show the effectiveness of the proposed approach, and
demonstrate the advantage over other state-of-the-art
methods.
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Related Work

In this section, we briefly review recent studies of embed-
ded unsupervised feature selection. Spectral analysis is the
most common technique used in embedded methods. Cai,
Zhang, and He (2010) propose Multi-Cluster Feature Selec-
tion (MCFS), MCFS captures the local manifold structure
via spectral analysis, and then selects the features which
can best preserve the clustering structure. Flexible Mani-
fold Embedding (FME) (Nie et al. 2010b) is proposed as
a general framework for dimensionality reduction, and has
also been adopted by many feature selection methods. Based
on FME and �-2,1 norm, Hou et al. (2014) propose a gen-
eral framework for feature selection termed as Joint Em-
bedding Learning and Sparse Regression (JELSR). Li et al.
(2012) jointly use FME, non-negative constraint, and �-2,1
norm to perform Nonnegative Discriminative Feature Selec-
tion (NDFS). Qian and Zhai (2013) propose Robust Unsu-
pervised Feature Selection (RUFS). RUFS uses FME, Non-
negative Matrix Factorization (NMF) and �-2,1 norm to per-
form robust clustering and robust feature selection simulta-
neously. Robust Spectral Feature Selection (RSFS), which is
proposed by Shi, Du, and Shen (2014), also can be consid-
ered as jointly using FME and �-1 norm to perform robust
feature selection. However, as previously mentioned, almost
all of these methods have at least two problems, i.e. unre-
liable similarity matrix and improper neighbor assignment.
These problems make the similarity matrix can’t be fully re-
lied, and eventually lead to suboptimal result.

Methodology

In this section, we introduce the proposed approach SOGFS
by first formulating the optimization problem, and then pre-
senting an efficient algorithm to tackle it.

We first introduce some notations that are used through-
out the paper. For matrix M ∈ R

r×t, the (i, j)-th entry of M
is denoted by mij , the transpose of the i-th row of M is de-
noted by mi ∈ R

t×1. The trace of M is denoted by Tr(M).
The transpose of matrix M is denoted by MT . The F -norm
of M is denoted by ‖M‖F . The �2,1-norm of M is denoted

by ‖M‖2,1 =
∑r

i=1

√∑t
j=1 m

2
ij .

Local Structure Learning

Inspired by the development of spectral analysis and man-
ifold learning, many unsupervised feature selection meth-
ods try to preserve local manifold structure, which is be-
lieved better than global structure. Therefore, similarity ma-
trix is crucial for the ultimate performance of spectral meth-
ods. Nevertheless, most methods construct similarity ma-
trix simply from original features which contain many re-
dundant and noise samples or features. This will inevitably
damage the learned structure, and the similarity matrix is
surely unreliable and inaccurate. Thus, in this paper, we ap-
ply an adaptive process to determine the similarity matrix
with probabilistic neighbors (Nie, Wang, and Huang 2014)
through the algorithm. In other words, we perform feature
selection and local structure learning simultaneously.

Given a data matrix X ∈ R
n×d, where xi ∈ R

d×1 de-
notes the i-th sample. We adopt the data preprocessing pro-
posed by Liu et al. (2013) and define that xi can be con-
nected by all the others with probability sij , where sij is an
element of similarity matrix S ∈ R

n×n . The probability
of two data to be neighbor can be regarded as the similar-
ity between them. According to the common sense, closer
samples are likely to have larger probability to connect, thus
sij is inversely proportional to the distance between xi and
xj (we adopt the square of Euclidean distance for simplic-
ity, i.e. ‖xi − xj‖22). Therefore, determining the value of the
probability sij can be seen as solving

min
sTi 1=1,0≤sij≤1

∑
i,j

(‖xi − xj‖22sij + αs2ij), (1)

where α is the regularization parameter. Regularization term
is used to avoid the trivial solution. Without the regulariza-
tion term, the optimal solution is that the two samples which
are nearest to each other should be neighbor with probability
1. We show how to determine α later.

Structured Optimal Graph

The ideal state of neighbor assignment is that similarity
matrix contains exact c connected components, such as-
signment is obviously beneficial for subsequent processing.
However, the similarity matrix S obtained by the solution
of problem (1) is virtually impossible to be in such state,
in most cases, there is only one connected component (Nie,
Wang, and Huang 2014). Next, we show an efficient yet sim-
ple method to tackle this problem.

There is a basic but important equation in spectral analysis∑
i,j

‖fi − fj‖22sij = 2Tr(FTLSF ), (2)

where F ∈ R
n×c, and LS = D− ST+S

2 is called Laplacian
Matrix, the degree matrix D is a diagonal matrix and the i-th
entry is defined as

∑
j

(sij+sji)
2 .

It can be proved that if rank(LS) = n− c, the similarity
matrix S will contain exact c connected components (Mohar
et al. 1991). Thus we add the constraint to problem (1), then
we have

min
∑
i,j

(‖xi − xj‖22sij + αs2ij).

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, rank(LS) = n− c

(3)

Because the constraint rank(LS) = n − c also depends
on similarity matrix S, the problem (3) is difficult to solve.
To tackle it, let σi(LS) denote the i-th smallest eigenvalue
of LS . As LS is positive semi-definite, we get σi(LS) ≥
0. It can be verified that rank(LS) = n − c indicates∑c

i=1 σi(LS) = 0. Due to the deviation of
∑c

i=1 σi(LS)
is difficult to handle, considering of Ky Fan’s Theorem (Fan
1949), we have

c∑
i=1

σi(LS) = min
F∈Rn×c,FTF=I

Tr(FTLSF ). (4)
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Thus, we can rewrite problem (3) as (Nie, Wang, and Huang
2014; Wang et al. 2015)

min
∑
i,j

(‖xi − xj‖22sij + αs2ij) + 2λTr(FTLSF ).

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, F ∈ R
n×c,

FTF = I

(5)

Obviously, as long as λ is large enough, the Tr(FTLSF )
will come infinitely close to zero. In fact, in each iteration,
we can increase or decrease λ when the connected compo-
nents are smaller or greater than c, respectively. Through
transforming the constraint of matrix rank into trace, prob-
lem (5) is much easier to tackle than original one. By solving
problem (5), S contains exact c connected components, thus
captures more accurate information of local structure.

Structured Optimal Graph Feature Selection

According to the theory of manifold learning, there always
exists a low-dimensional manifold that can express the struc-
ture of high-dimensional data. First, we aim at finding a lin-
ear combination of original features to best approximate the
low-dimension manifold. Denote XW as this linear combi-
nation, where W ∈ R

d×m is the projection matrix, d and m
are the original dimension and projection dimension respec-
tively. We apply it to Eq. (5), and finally we get

min
∑
i,j

(‖WTxi −WTxj‖22sij + αs2ij)

+γ‖W‖2,1 + 2λTr(FTLSF ),

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1, F ∈ R
n×c,,

FTF = I,WTW = I

(6)

where γ is the regularization parameter. The sparsity regu-
larization on W makes it suitable for selecting valuable fea-
tures. We adopt �2,1-norm regularization (Nie et al. 2010a)
on W to make it row sparse.

The importance of the i-th feature can be measured by
‖wi‖2. The most important h features are selected by the
sorted ‖wi‖2, where h is the number of features that need
to be selected. In feature selection tasks, the feature num-
ber of data is usually very high and we can’t use PCA as
data preprocessing, thus the covariance matrix of X , which
is denoted by St, is often singular in practice. Therefore,
even though the constraint WTStW = I is often adopted in
feature extraction (Nie, Wang, and Huang 2014), it is by no
means a good choice for feature selection. In this paper, we
adopt the constraint WTW = I instead of WTStW = I
to make the feature space distinctive after reduction (Wang,
Nie, and Huang 2014). W is used for selecting features and
S is used to capture local structure, thus the proposed ap-
proach performs feature selection and local structure learn-
ing simultaneously.

Optimization Algorithm
Since problem (6) contains �-2,1 norm regularization and
three different variables, it is hard to tackle it directly. Thus,
we propose an alternative iterative algorithm to solve this
problem.

Fix S update W

With fixed S, the problem (6) is transformed into

min
WTW=I

∑
i,j

‖WTxi −WTxj‖22sij + γ‖W‖2,1. (7)

According to Eq. (2), and replace ‖W‖2,1 with
∑

i ‖wi‖2,
we rewrite problem (7) as

min
WTW=I

Tr(WTXTLSXW ) + γ
∑
i

‖wi‖2. (8)

Obviously, ‖wi‖2 can be zero in theory, however, it will
make Eq. (8) non-differentiable. To avoid this condition, we
transform ‖wi‖2 into

√
(wi)Twi, and regularize

√
(wi)Twi

as
√

(wi)Twi + ε, where ε is a small enough constant.
Therefore, we have

min
WTW=I

Tr(WTXTLSXW ) + γ
∑
i

√
(wi)Twi + ε,

(9)
which is apparently equal to problem (7) when ε is infinitely
close to zero. The Lagrangian function of the problem (9) is

L(W,Λ) =Tr(WTXTLSXW ) + γ
∑
i

√
(wi)Twi + ε

+Tr(Λ(WTW − I)),
(10)

where Λ is the Lagrangian multiplier. Taking the derivative
of L(W,Λ) w.r.t W , and setting the derivative to zero, we
have

∂L(W,Λ)

∂W
= XTLSXW + γQW +WΛ = 0, (11)

where Q ∈ R
d×d is a diagonal matrix, and the i-th element

is defined as
Qii =

1

2
√
wT

i wi + ε
. (12)

Note that Q is also unknown and depend on W , thus we
develop an iterative algorithm to solve problem (9). With
fixed W , then Q is obtained by Eq. (12). And with fixed
Q, it is easily to prove that solving Eq. (11) is equivalent to
solving

min
WTW=I

Tr(WTXTLSXW ) + γTr(WTQW ), (13)

and problem (13) can be solved directly to get W . The de-
tail of the algorithm is described in Algorithm 1. Later, we
will prove that Algorithm 1 can make problem (9) converge.
Obviously, the converged solution satisfies KKT condition.

Fix S update F

With fixed S, the problem (6) is transformed into

min
F∈Rn×c,FTF=I

Tr(FTLSF ). (14)

The optimal solution F is formed by the c eigenvectors of
LS corresponding to the c smallest eigenvalues.
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Algorithm 1 Algorithm to solve problem (9)
Input: Data matrix X ∈ R

n×d, Laplacian Matrix LS ∈
R

n×n, regularization parameter γ, projection dimension
m
Initialize Q ∈ R

d×d as Q = I;
repeat

1. With current Q, the optimal solution W by solv-
ing problem (13) is formed by the m eigenvectors
of (XTLSX + γQ) corresponding to the m smallest
eigenvalues.
2. With current W , Q is obtained by Eq. (12).

until converge
Output: Projection matrix W ∈ R

d×m.

Fix W and F update S

With fixed W and F , the problem (6) is transformed into

min
∑
i,j

(‖WTxi −WTxj‖22sij + αs2ij)

+2λTr(FTLSF ).

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1

(15)

According to Eq. (2), we get

min
∑
i,j

(‖WTxi −WTxj‖22sij + αs2ij)

+λ
∑
i,j

‖fi − fj‖22sij .

s.t. ∀i, sTi 1 = 1, 0 ≤ sij ≤ 1.

(16)

Note that the similarity vector of each sample is indepen-
dent, thus we can tackle the following problem for the i-th
sample

min
∑
j

(‖WTxi −WTxj‖22sij + αs2ij)

+λ
∑
j

‖fi − fj‖22sij .

s.t. sTi 1 = 1, 0 ≤ sij ≤ 1

(17)

For ease of representation, we denote matrix M ∈ R
n×n

with mij = ‖WTxi −WTxj‖22 and matrix N ∈ R
n×nwith

nij = ‖fi − fj‖22. Denote vector di ∈ R
n×1 with dij =

mij + λnij . Then, we can rewrite problem (17) as follows

min
sTi 1=1,0≤sij≤1

‖si + 1

2α
di‖22. (18)

The solution of this problem will be shown later. We summa-
rize the detail algorithm in Algorithm 2. Noted that, in real
life application, we can run only one iteration in Algorithm
1 in order to speed up Algorithm 2.

Convergence Analysis of Algorithm 1

The method proposed by Algorithm 1 can be used to find a
locally optimal solution of problem (9). To prove the conver-
gence, we need the lemma proposed by Nie et al. (2010a),
which describes as follows.

Algorithm 2 Algorithm to solve problem (6)
Input: Data matrix X ∈ R

n×d, number of select features
h, cluster number c, projection dimension m, regulariza-
tion parameter γ, parameter α, a large enough λ
Initialize S by solving problem (1).
repeat

1. Update W via Algorithm (1).
2. Calculate LS = D− ST+S

2 , where the degree matrix
D is a diagonal matrix and the i-th element is defined
as
∑

j
(sij+sji)

2 .
3. Update F via solving problem (14), F is formed by
the c eigenvectors of LS corresponding to the c smallest
eigenvalues.
4. Update S, each si is calculate by solving problem
(18) individually.

until converge
Output: Calculate all ‖wi‖2(i = 1 : . . . : n) and sort in

descending order, select top h ranked features as ultimate
result.

Lemma 1. The following inequality holds for any positive
real number u and v.√

u− u

2
√
v
≤ √

v − v

2
√
v
. (19)

For detail and proof, see lemma 1 in (Nie et al. 2010a).
The convergence of Algorithm 1 can be proven by follow-

ing theorem.
Theorem 1. In Algorithm 1, updated W will decrease the
objective value of problem (9) until converge.

Proof. Suppose the updated W is W̃ , it’s easy to know that

Tr(W̃TXTLSXW̃ ) + γTr(W̃TQW̃ )

≤Tr(WTXTLSXW ) + γTr(WTQW ).
(20)

We add γ
∑

i
ε

2
√

wT
i wi+ε

to both sides of the inequality (20),

and substitute the definition of Q in Eq. (12), then inequality
(20) can be rewritten as

Tr(W̃TXTLSXW̃ ) + γ
∑
i

w̃i
T
w̃i + ε

2
√
wT

i wi + ε

≤Tr(WTXTLSXW ) + γ
∑
i

wT
i wi + ε

2
√
wT

i wi + ε
,

(21)

Based on Lemma 1, we know

γ
∑
i

√
w̃i

T
w̃i + ε− γ

∑
i

w̃i
T
w̃i + ε

2
√
wT

i wi + ε

≤ γ
∑
i

√
wi

Twi + ε− γ
∑
i

wi
Twi + ε

2
√
wT

i wi + ε

(22)

Sum over the inequality (21) and inequality (22), we arrive
at

Tr(W̃TXTLSXW̃ ) + γ
∑
i

√
w̃i

T
w̃i + ε

≤ Tr(WTXTLSXW ) + γ
∑
i

√
wi

Twi + ε
(23)
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which completes the proof.

Determination of α

Let us first consider two extreme conditions of α for problem
(1). One is α = 0, it will make only one element of vector si
not zero. Another is α = ∞, it will make every element of
vector si equal to 1

n . Therefore, α can determine the number
of sample’s neighbors, and the optimal value of α should
make most of si contain exact k non-zeros elements, where
k is the number of neighbors connected to xi.

In order to achieve above goals, we consider the La-
grangian Function of problem (18) as

L(si, θ, ϕi) =
1

2
‖si + di

2αi
‖22 − θ(sTi 1 − 1)− ϕT

i si, (24)

where θ and ϕi are Lagrangian multipliers. Based on the
KKT condition, the optimal solution of si is

sij = (− dij
2αi

+ θ)+, (25)

where θ = 1
k + 1

2kαi

∑k
j=1 dij (Nie, Wang, and Huang

2014). Note that, problem (1) also can be solved in the same
way.

To make si contain exact k non-zero elements, si must
satisfies si,k+1 ≤ 0 < sik, thus αi should be set as

k

2
dik − 1

2

k∑
j=1

dij < αi ≤ k

2
di,k+1 − 1

2

k∑
j=1

dij , (26)

where di1, di2, . . . , din are sorted in ascending order. There-
fore, to get a good enough α which can make most of si has
k non-zeros elements, we can set α to be

α =
1

n

n∑
i=1

αi =
1

n

n∑
i=1

(
k

2
di,k+1 − 1

2

k∑
j=1

dij). (27)

Experiments

In this section, we demonstrate the effectiveness of the pro-
posed unsupervised feature selection method SOGFS on 8
benchmark data sets, and then show several analysis of ex-
perimental results.

Data Sets

The experiments are conducted on 8 different public avail-
able data sets, including handwritten digit (i.e. Binary Al-
phabet (BA) (Belhumeur, Hespanha, and Kriegman 1997),
UMIST (Hou et al. 2014), USPS (Hull 1994)), human face
(i.e. JAFFE (Lyons, Budynek, and Akamatsu 1999), ORL
(Cai, Zhang, and He 2010)), object image (i.e. COIL20
(Nene, Nayar, and Murase 1996)), biology (i.e. SRBCT
(Khan et al. 2001), Lung (Singh et al. 2002)). The detail of
these data sets are summarized in Table 1.

Comparison Scheme

To validate the effectiveness of SOGFS, we compare it
with several state-of-the-art unsupervised feature selection
approaches, including Laplacian Score (LS) (He, Cai, and

Niyogi 2005), Multi Cluster Feature Selection (MCFS)
(Cai, Zhang, and He 2010), Unsupervised Discriminate Fea-
ture Selection (UDFS) (Yang et al. 2011), Robust Unsu-
pervised Feature Selection (RUFS) (Qian and Zhai 2013)
and Robust Spectral Feature Selection (RSFS) (Shi, Du,
and Shen 2014). We also use all features to perform K-
means as Baseline. We set parameters of all approaches
in same strategy to make the experiments fair enough, i.e.
{10−3, 10−2, 10−1, 1, 10, 102, 103}. For the selected fea-
tures, we use 5 times K-means clustering from different
starting points, and only report optimal result to alleviate the
stochastic effect caused by clustering method. To evaluate
the result of selected features, we use clustering ACCurate
(ACC) as evaluation metrics in this paper.

Clustering Result with Selected Features

The performance of feature selection approaches which are
evaluated by ACC is shown in figure 1. Through the analysis
of experimental results, we get some conclusions.

Generally speaking, as the size of feature subset in-
creased, the performance of feature selection approaches
shows the trend with first increase then decrease. Real life
data sets always contain many redundant features, therefore
the necessary information is just contained in a small size
of feature set. If we increase the size excessively, lots of
noise features will be brought into the final results which
will surely decrease the performance. The trend indirectly
validates the effective of feature selection methods.

Through feature selection, we obtain refined data which
contains more valuable information. Compared to baseline
which uses all features to perform K-means, the results
which use selected features become better in most cases. Es-
pecially our proposed method SOGFS, has more than 10%
improvement in average. It directly validates that feature se-
lection improves the data’s quality.

Overall, the performance of our proposed method SOGFS
exceeds other methods in ACC. To be specific, SOGFS has
more than 7% improvement for human face data sets (i.e.
JAFFE, ORL), compared to the second best approach RUFS.
And more than 6.4% improvement for handwritten digit data
sets (i.e. BA, USPS, UMIST), compared to RSFS, which
is the second best approach in handwritten digit data sets.
SOGFS also achieves pretty good performance for the rest
data sets in average.

It seems that embedded approaches, such as MCFS,
UDFS, RSFS, RUFS, have better performance than LS. With

Table 1: Data Set Description
Data sets Sample Feature Class Select features
BA 1404 320 36 [10,20,. . .,100]
USPS 1000 256 10 [10,20,. . .,100]
UMIST 575 644 20 [50,100,. . .,300]
JAFFE 213 676 10 [50,100,. . .,300]
ORL 400 1024 40 [50,100,. . .,300]
COIL20 1440 1024 20 [50,100,. . .,300]
SRBCT 83 2308 4 [50,100,. . .,300]
LUNG 203 3312 5 [50,100,. . .,300]
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Figure 1: Clustering accuracy on 8 data sets with different number of selected features.
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Figure 2: Clustering accuracy with different γ.

discriminate analysis and considering of noise data, RSFS
and RUFS outperform MCFS. The proposed SOGFS uses
structured optimal graph, and performs feature selection and
local structure learning simultaneously, therefore, we obtain
better results at last.

Parameter Sensitivity and Convergence Study

First, we investigate the impact of parameters in SOGFS.
The parameter m influences performance slightly and is
usually set empirically around d

3 to 2d
3 in our experiments.

Therefore, we only focus on the influence of parameter γ
with fixing m. Parameter γ is used to control the row spar-
sity of W , and its value seriously influences the performance
of SOGFS . As we vary the value of γ, the variance of per-
formance is demonstrated in Figure 2. For brevity, we only
show results on two data sets (i.e. ORL, COIL20). Results
show that SOGFS is to some extent robust to γ. Nonetheless,
we suggest to perform hierarchy grid search to get better re-
sult in real life application.

We propose Algorithm 1 to iteratively solve problem (9).
We have already proven the convergence in the previous sec-
tion, and now we experimentally study the speed of its con-
vergence. For simplicity, we only show results on two data
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Figure 3: Convergence curve of Algorithm 1

sets (i.e. UMIST, COIL20). The convergence curves of the
objective value are shown in Figure 3. We can see that, Algo-
rithm 1 converges very fast and almost within 10 iterations.
The fast convergence of Algorithm 1 ensures the speed of
the whole proposed approach.

Conclusions

In this paper, we propose a novel unsupervised feature selec-
tion approach named SOGFS, which performs feature se-
lection and local structure learning simultaneously, to ob-
tain optimal local structure, we propose a constraint to the
approach. The selected features are obtained by analysis of
projection matrix W . An efficient optimization algorithm is
proposed to solve the problem. Comprehensive experiments
on 8 benchmark data sets demonstrate the effectiveness of
our approach. One of our future work is to replacing the
regularization term γ‖W‖2,1 with constraint ‖W‖20 = h,
which will greatly improve the usability of the proposed ap-
proach. The other is to use some technologies to speed up
the approach.
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