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Abstract

This work provides a study on how Convolutional Neural
Networks, trained to identify objects primarily in photos, per-
form when applied to more abstract representations of the
same objects. Our main goal is to better understand the gen-
eralization abilities of these networks and their learned inner
representations. We show that both GoogLeNet and AlexNet
networks are largely unable to recognize abstract sketches
that are easily recognizable by humans. Moreover, we show
that the measured efficacy vary considerably across different
classes and we discuss possible reasons for this.

Introduction
Convolutional Neural Networks (CNN) are considered the
state-of-the-art model in image recognition tasks. Part of a
deep learning approach to machine learning, CNN have been
deployed successfully in a variety of applications, including
face recognition (Lawrence et al. 1997), object classifica-
tion (Szegedy et al. 2014) and generating scene descriptions
(Pinheiro and Collobert 2013). This success can be partly
attributed to advances in learning algorithms for deep archi-
tectures and partly to large labeled data sets made available,
such as ImageNet (Russakovsky et al. 2015).

ImageNet is a large collection of hierarchical labeled im-
ages that is used in the ImageNet Challenge (Russakovsky
et al. 2015). Two well known trained CNN implementations
that use ImageNet are GoogLeNet (Szegedy et al. 2014) and
AlexNet (Krizhevsky, Sutskever, and Hinton 2012). Both at-
tain a low error when trained over the million of images con-
tained in ImageNet.

GoogLeNet and AlexNet are often used in photo classifi-
cation, as a large fraction of examples in ImageNet are com-
posed of photos. In this case, they are able to generalize well
and successfully classify out-of-sample examples.

Although the general approach is good enough to be
deployed in commercial applications (e.g. Google Photos,
Flickr), an important issue is understanding what is being
learned and the limits in generalization capabilities. It is of-
ten noted that CNNs error rates are comparable to that of
humans (Zeiler and Fergus 2014) when such comparison is
made over a large data set such as ImageNet, but works on
where humans and CNNs differ are still sparse.
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In this paper we aim at analyzing the ability of
GoogLeNet and AlexNet to classify sketches of well-known
subjects. All subjects are included in ImageNet, although al-
most exclusively by photo representations. The sketches we
use in this work are easily recognized by humans in most
cases (Eitz, Hays, and Alexa 2012) and our initial hypothe-
sis was that they would be able to recognize most subjects
with performance comparable to that of humans.

This hypothesis stems from the feature extraction capa-
bilities of CNNs, which is able to identify relevant features
from examples and could in principle learn very abstract rep-
resentations from photos that could be applied to sketches
in much the same way humans do. We however show that
both networks are largely unable to recognize most tested
subjects, indicating that the learned representations are quite
different from that of humans. We argue that such approach
can be useful to assess classifiers’ generalization capabili-
ties, in particular regarding to the abstraction level of learned
representations.

The main contribution of this work is to put forward an
image recognition task where current state-of-the-art mod-
els differ significantly in performance when compared to hu-
mans. By training over less abstract examples (photos) and
testing in more abstract examples (sketches) one may be able
to better understand what is being learned by these models.

This paper is organized as follows. We begin by present-
ing related prior works, following with the statement of our
goal and our proposed methodology, including descriptions
of the models and data sets. We then show our analysis of
the results. Finally, we conclude the paper and discuss some
possible interpretations and future work.

Related Works

Convolutional Neural Networks have been applied to a vari-
ety of tasks with state-of-the-art performance in several ap-
plications. The most used architecture follows that of (Le-
Cun et al. 1998), where a CNN was first applied to recognize
hand-written digits.

The network has been improving since its creation with
the development of new layers (Srivastava et al. 2014;
Girshick et al. 2014) and the addition of classic computer vi-
sion techniques. CNN are often used in the ImageNet Chal-
lenge with many different variations

In (Eitz, Hays, and Alexa 2012) a data set of sketches
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is provided, which we use here and detail in the next sec-
tions. In that paper, it was shown that humans could achieve
a 73.1% accuracy on the data set and results on a classifier
were provided, showing a 56% accuracy.

CNN applied to the same data set was explored in (Yang
and Hospedales 2015), where a CNN was trained to recog-
nize sketches yielding an accuracy of 74.9%, hence outper-
forming humans in the same task. The proposed approach
however makes use of the strokes’ order to achieve such high
accuracy.

Recently, some studies aim at understanding Deep Neu-
ral Networks behavior in adverse circumstances. (Szegedy
et al. 2013) presents a study on how small changes in im-
ages can drastically change the resulting classification. In
the opposite direction of our work, (Nguyen, Yosinski, and
Clune 2014) presents images that are completely unrecog-
nizable by humans but are classified with high certainty by
the networks.

Goals and Methodology

Our main goal is to understand whether a concept learned by
CNN mostly in photos are transferable to more abstract rep-
resentations of the same object. Our general methodology
consists of using CNN trained over the ImageNet data set
and applying the resulting model to the sketch data set, reg-
istering the classification for each example in each category
and analyzing the results.

It must be observed that we do not include the sketches
in the training set, which is known to provide good results
(Yang and Hospedales 2015). Hence, we are not interested
in building better classifiers but rather understand often used
models and how they work when applied across different
representations.

Models

We use two well-known trained CNNs, GoogLeNet
(Szegedy et al. 2014) and AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). Both networks have participated in Ima-
geNet Contest in different years with good results.

The networks differ in general architecture. GoogLeNet
has Inception Modules, which perform different sizes of
convolutions and concatenate the filters for the next layer.
AlexNet, on the other hand, has layers input provided by
one previous layer instead of a filter concatenation. Both
networks have been tested independently and use the imple-
mentation provided by Caffe (Jia et al. 2014), a Deep Learn-
ing framework.

Test Data Set

We use the TU-Berlin sketch (Eitz, Hays, and Alexa 2012)
data set, a crowd-sourced collection of sketches containing
20,000 sketches of everyday subjects divided into 250 cate-
gories. For this study, We chose some wide categories that
are contained in WordNet, which is used to label ImageNet’s
examples. The chosen categories are: airplane, bird, car, cat,
dog, frog, horse, ship and truck.

Furthermore, we grouped ImageNet’s less specific labels
into broader sets that matched that of the sketches. Hence,

Table 1: Classes in ImageNet and TU-Berlin Relationship
Sketch class # of ImageNet classes
Airplane 3
Bird 60
Car 5
Cat 5
Dog 118
Frog 3
Horse 1
Ship 1
Truck 3

for example, “seagull” was relabeled as “bird” and so were
the many different dog breeds into a single “dog” class. Ta-
ble 1 shows how many ImageNet classes were included in
the same TU-Berlin class. This results in an easier task for
the classifiers and accounts for the high abstraction levels of
sketches. In the end, each category contains 80 sketches.

Evaluation

Both CNN output a probability distribution over possible
classes for the input. Two different methods were used to
evaluate the results. The first one considers only the top 10
most probable classes and the second one register the posi-
tion of the correct class in the full probability ranking.

In the first method, we rank the networks’ outputs by
their probability and consider only the top ten most prob-
able classes. We then count how often each class appears for
each image of each target category.

This method allows to assess whether the correct output
is being given a high, and useful, probability, but also allows
for observing qualitatively how consistent the results are for
each category. In this latter case, one expects that for each
category the top 10 does not vary significantly.

In the second method, we construct descriptive statistics
over the position of the correct class in the probability rank-
ing. The higher the position in the ranking, the better the
classification - ideally, the correct class would be located in
the first position.

We calculate the mean and standard deviation for each
category. A low mean corresponds to a higher average po-
sition in the ranking, while a low standard deviation is evi-
dence of consistency of the output for different instances of
the same category. This also allows for capturing the best
and worst instances of each category which we use to dis-
cuss possible reasons for the observed results.

Results

Analysis of Top 10 Ranking

We begin by analyzing the top 10 rankings. Tables 2 through
10 depict the frequency of occurrences of each categoriza-
tion over the available images for each category. For in-
stance, in Table 2, for the 80 available images labeled as “air-
plane”, AlexNet had “safety pin” in the top 10 most probable
classifications for 79 of them.

When analyzing each table independently, one can ob-
serve that for no category does the correct label appear
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Table 2: Outputs for Airplane class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 79 Hook, claw 80
Hook, claw 75 Safety pin 65
Corkscrew, bottle screw 68 Bow 60
Walking stick, stick insect 54 Nematode 55
Envelope 51 Hair slide 50
Nail 51 Stethoscope 44
Hair slide 46 Nail 32
Necklace 32 Walking stick, stick insect 30
Chain 28 Corkscrew, bottle screw 30
Nematode 27 Binder, ring-binder 29

Table 3: Outputs for Bird class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 73 Hook, claw 80
Hook, claw 69 Stethoscope 61
Corkscrew, bottle screw 53 Bow 60
Necklace 50 Nematode 55
Harvestman, daddy longlegs 45 Safety pin 43
Chain 42 Necklace 39
Walking stick, stick insect 37 Binder, ring-binder 36
Envelope 37 Chain 34
Nematode 34 Corkscrew, Bottle screw 27
American egret, Egretta albus 21 Nail 26

Table 4: Outputs for Car class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 78 Hook, claw 80
Hook, claw 69 Hair slide 68
Hair slide 68 Safety pin 63
Chain 66 Binder, ring-binder 55
Envelope 62 Stethoscope 52
Corkscrew, bottle screw 47 Plate rack 45
Necklace 47 Envelope 35
Binder, ring-binder 45 Nematode 34
Stretcher 39 Necklace 33
Whistle 35 Chain 30

among the most frequent classifications. Nonetheless, both
networks are quite consistent, having high counts for a small
subset of classes. In other words, the networks provide con-
sistently incorrect classifications.

By observing all tables a pattern emerges, where essen-
tially the same classifications are being given for all im-
ages in all different categories. AlexNet essentially sees a
safety pin in all cases, while GoogLeNet sees a hook/claw.
For other less frequent classifications there are still a large
overlap across different categories.

The reason for this behavior seems to be that most clas-
sifications are for objects that contain simple, thin traces in
their composition, such as safety pins and bow strings. It is
therefore understandable that the networks may mistake a
drawing with a few lines with these objects. But it is also
clear that this is a major departure from what humans offer
as classifications for the same sketches.

Analysis of Position of Correct Label

We now turn our attention to the position in the ranking of
the correct label. A correct classification is one where the
correct label is the most probable classification output by
the network, i.e. the first position in the rank composed of
1000 labels. Tables 11 and 12 summarize the results.

Both networks behave in a very similar way (the Pearson
correlation coefficient between means is of 0.92) and none

Table 5: Outputs for Cat class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Hook, claw 69 Hook, claw 80
Necklace 63 Stethoscope 72
Chain 53 Nematode 55
Envelope 49 Binder, ring-binder 47
Safety pin 40 Envelope 46
Harvestman, daddy longlegs 40 Bow 45
Garden spider 33 Chain 43
Nematode 27 Necklace 42
Corkscrew, bottle screw 26 Safety pin 37
Paper towel 24 Cassette 32

Table 6: Outputs for Dog class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Hook, claw 75 Hook, claw 79
Safety pin 68 Stethoscope 73
Chain 65 Nematode 72
Envelope 61 Bow 61
Necklace 61 Chain 58
Corkscrew, bottle screw 53 Binder, ring-binder 51
Nematode 44 Safety pin 43
Whistle 31 Hair slide 43
Hair slide 27 Envelope 32
Binder, ring-binder 26 Necklace 31

Table 7: Outputs for Frog class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 69 Hook, claw 79
Necklace 66 Stethoscope 65
Chain 63 Nematode 61
Envelope 59 Envelope 57
Hook, claw 58 Binder, ring-binder 54
Binder, ring-binder 43 Necklace 43
Corkscrew, bottle screw 36 Safety Pin 42
Hair slide 33 Bow 41
Fire screen, fireguard 33 Chain 40
nematode 30 Hair slide 39

perform adequately in a consistent manner. On average, net-
works are behaving better than random guessing, but results
are hardly useful in practical terms. Even when considering
the best ranked image of each class the networks perform
poorly, with the exception of a few Bird sketches that were
correctly classified.

The best results occur for Bird and Dog classes, which are
two of the largest classes by number of examples contained
in Imagenet, with many different sub-classes (see Table 1).
This suggests that having a larger set of examples does help
in identifying more abstract representations. It is not clear,
however, what helps the networks correctly predict individ-
ual instances.

Figures 1 and 2 show the best and worst ranked sketches
for the Bird class. Qualitatively it seems that the best ranked
images are slightly more realistic in their proportions, in-
cluding more details of feathers and some texture. In any
case the sketches in both groups are not that different and
even the worst ranked ones are arguably easily recognizable
by humans. Similar observations can be made for the other
categories.

These results are evidence that the networks can recog-
nize some sketches successfully, albeit they seem to require
less abstract representations for that and seem to be rather
sensitive to small changes in such abstraction level. Again,
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Table 8: Outputs for Horse class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 74 Hook, claw 79
Chain 69 Bow 74
Corkscrew, bottle screw 64 Stethoscope 66
Hook, claw 59 Chain 63
Envelope 57 Safety Pin 60
Necklace 50 Binder, ring-binder 59
Hair slide 46 Nematode 55
Walking stick, stick insect 40 Hair slide 52
nematode 31 Corkscrew, bottle screw 38
Stretcher 30 Nail 36

Table 9: Outputs for Ship class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 71 Hook, claw 74
Envelope 50 Bow 45
Hook, claw 47 Safety pin 37
Nail 46 Plate rack 29
Walking stick, stick insect 46 Nail 27
Plate rack 44 Walking stick, stick insect 27
Folding chair 33 Stethoscope 27
Harvestman, daddy longlegs 31 Binder, ring-binder 26
Corkscrew, bottle screw 30 Matchstick 23
Bow 29 Harvestman, daddy longlegs 23

Table 10: Outputs for Truck class
AlexNet’s Output Frequency GoogLeNet’s Output Frequency
Safety pin 79 Hook, claw 80
Envelope 69 Safety pin 74
Hook, claw 66 Binder, ring-binder 66
Corkscrew, bottle screw 50 Plate rack 51
Binder, ring-binder 50 Stretcher 46
Stretcher 50 Hair slide 42
Chain 49 Stethoscope 38
Buckle 44 Bannister, handrail 33
Fire screen, fireguard 29 Bow 28
Lighter, light, igniter 23 Swing 26

this is a departure from how humans classify sketches

Conclusions

In this paper we presented results of applying Convolutional
Neural Networks trained using images from Imagenet on a
sketch data set. Our goal was to observe whether training
these networks on mostly realistic representations of sub-
jects (photos) is enough to classify more abstract represen-
tations (sketches). The work presented here contributes to
the understanding of the applicability of CNN in domains
that are different but related to that of the training set.

We showed that both AlexNet and GoogLeNet are largely
unable to consistently classify the shown sketches. The
drawing lines are often confused for objects with simple
and thin lines, such as safety pins. Nonetheless, both net-
works are able to perform better than random guess and
display better performance for some categories. When an-
alyzing such categories we found that categories with more
training images are better classified and we observed that
instances with more correct classifications are qualitatively
less abstract.

Overall, we conclude that the test networks are not useful
to perform sketch classification and their classifications are
different from the classifications offered by humans. This is
in contrast to results using photos where CNN are able to
approach human accuracy. These results provide initial evi-

Table 11: Position of the correct label (AlexNet)
Expected Class Best Ranked Worst Ranked Mean Std. Deviation
Airplane 20 749 195.81 135.03
Bird 1 127 26.98 26.59
Car 13 376 133.01 83.35
Cat 148 635 387.34 98.52
Dog 9 324 82.75 61.67
Frog 387 942 711.1 123.44
Horse 453 931 723.55 126.56
Ship 38 693 342.55 165.92
Truck 177 689 422.4 110.42

Table 12: Position of the correct label (GoogLeNet)
Expected Class Best Ranked Worst Ranked Mean Std. Deviation
Airplane 27 739 377.16 203.05
Bird 1 178 41.6 44.44
Car 11 453 183.14 88.00
Cat 129 456 276.43 68.12
Dog 78 269 187.83 42.99
Frog 265 897 602.76 132.99
Horse 508 941 780.41 83.77
Ship 24 851 403.04 213.15
Truck 34 755 322.30 160.33

dence that these networks are overfitting on the abstraction
level of the training images, making them unable to transfer
the learned concepts to those simpler, more abstract repre-
sentations.

Of course, CNN are perfectly able to classify sketches if
they are trained over adequate examples containing sketches
(Yang and Hospedales 2015), but that they are unable to
transfer the learned concepts to sketches when trained us-
ing photos is an interesting outcome since it arguably dif-
fers from the ability of humans to do so. Our results show
that one possible solution is to train with even more data,

Figure 1: Best ranked birds from AlexNet. Images presented
to the network and their respective best ranked correct guess.
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possibly with more diversified examples. More interesting
is the need to improve learning algorithms and network ar-
chitectures to make them better cope with this kind of task.
We argue that using different representations for training and
testing, in particular by using sketches, is an useful method
to evaluate concept learning.

In this direction, an important question is whether training
over sketches representing objects that are not present in the
test set could help the network learn more adequately. For
instance, it could be argued that humans would not be able to
identify sketches if they were not exposed to sketches before
- i.e. sketch identification is a skill in itself and needs to be
learned. It must be noted that both data sets used contain a
number of sketch-like images, but very few are related to
particular objects and are used to represent concepts such as
painting or art.

We plan on improving the analysis by testing the networks
on sketches and images with different levels of details, using
techniques such as kurtosis measurement of wavelet coeffi-
cients (Ferzli, Karam, and Caviedes 2005) to provide quan-
titative measurements of detail, relating that to classifica-
tion accuracy. Also as future work we plan on training CNN
over more constrained categories and varying the diversity
of the examples, including untargeted sketches, relating that
to classification performance.
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