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Abstract

Outlier detection has been studied extensively and employed
in diverse applications in the past decades. In this paper
we formulate a related yet understudied problem which we
call outlier description. This problem often arises in practice
when we have a small number of data instances that had been
identified to be outliers and we wish to explain why they are
outliers. We propose a framework based on constraint pro-
gramming to find an optimal subset of features that most
differentiates the outliers and normal instances. We further
demonstrate the framework offers great flexibility in incorpo-
rating diverse scenarios arising in practice such as multiple
explanations and human in the loop extensions. We empiri-
cally evaluate our proposed framework on real datasets, in-
cluding medical imaging and text corpus, and demonstrate
how the results are useful and interpretable in these domains.

Introduction

Outlier detection is a core technique used extensively in
AI along with clustering and classification. The core out-
lier detection problem aims to identify which subset of data
instances are most dissimilar to the vast majority. For ex-
ample, in a dataset of individuals containing their physical
measurements an outlier may be an extremely tall or short
person. The recent survey on the topic of anomaly detec-
tion (Chandola, Banerjee, and Kumar 2009) outlines varia-
tions of the core problem such as contextual outlier detec-
tion which identifies a context where the point is an outlier.
In our earlier example, a 6-foot tall person is not an outlier
in general but a 6-foot tall eight-year-old certainly is. Outlier
detection has numerous practical applications, such as fraud
detection, network intrusion detection and climate anomaly
detection (Chandola, Banerjee, and Kumar 2009).

However, in many real world problems a more typical
setting is that the outliers are already known and discover-
ing what makes them outliers will have an immense impact.
Consider the example of automobile recalls. An automobile
recall occurs when a small, yet sufficient, number of cars
are found to have defective steering. Here we are given ex-
amples of the outliers (recalled cars) and many examples of
the non-outliers (non-recalled cars), with the aim to find a
description of what makes the identified outliers anomalous.
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The recall can then be limited to those automobiles which
match the description instead of all automobiles.

We call such setting the outlier description problem and
address it with the definition below.

Problem 1 The General Outlier Description Problem.
Given a collection of instances that are deemed
normal, N , and another separate collection
deemed outliers, O, where instances in both N
and O are in feature space S, find a feature map-
ping t : S → F that maximizes the difference
between O and N according to some outlier prop-
erty measure m : F → R and an aggregate
objective obj : (R|N |,R|O|) → R. That is,
max
t,m

obj(m(t(N)),m(t(O))).

The functions t and m can be naturally viewed as the de-
scription/explanation of the outlying behavior where t de-
scribes the space where the behavior is exhibited and m de-
fines what we deem to be an outlier in this space. In this pa-
per we focus on a particular form of t which projects the data
to a subspace and use an m that measures the local neigh-
borhood density around each point. The objective obj here
is the difference between the densities surrounding the out-
liers and normal instances. Notice that this problem is distin-
guished from metric learning in that t takes single instances
as inputs, instead of pairs, and we do not enforce all normal
instances to be close together.

A key requirement of outlier description is flexibility
since each domain may have its domain knowledge with
which the description should be consistent. To address this
we propose using constraint programming (CP) which is
a declarative paradigm of solving optimization problems,
not unlike mathematical programming, but offers a more
expressive language. A strength of the CP framework is
that it allows the functions t, m and obj to take a wide
variety of forms unincumbered by the limitations associ-
ated with mathematical programming. CP has only recently
been used in data mining, in particular association rule min-
ing (De Raedt, Guns, and Nijssen 2008; 2010) but has
not yet been fully exploited in the community. Our cur-
rent work is another example of using this powerful mature
paradigm which interfaces with highly parallelized state-of-
the-art solvers.

Our contributions are as follows:
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• We introduce and define the outlier description problem.
• We propose a framework for outlier description using CP

languages and explore diverse variations of our frame-
work, each of which addresses practical scenarios.

• We provide a complexity analysis of our CP framework in
terms of the number of variables and constraints required.

• We experimentally demonstrate the utility of our work on
real datasets of medical images and text documents.

Related Work

Supervised Outlier Detection. Outlier detection has been
extensively studied for decades and applied to diverse ap-
plications. Recent survey articles (Chandola, Banerjee, and
Kumar 2009; Hodge and Austin 2004) and book chapters
(Han, Kamber, and Pei 2011; Aggarwal 2015) have covered
and categorized various methods based on their assump-
tions, principal techniques and application domains. Super-
vised outlier detection is similar to the classic task of making
binary prediction with the additional issues of highly im-
balanced class distribution and its success largely depends
on the assumptions and limitations of the chosen predictive
models. In general models whose target function is compli-
cated (e.g. neural networks) or that learn from more com-
plex projected feature space (e.g. kernel SVM) lack natu-
ral interpretation for our purpose. Our current work, on the
other hand is not focused on prediction of future outliers but
rather attempts to address the problem of describing how
the given outliers are different than normal instances.

Outlying Properties/Explanations/Subspaces Mining.
We summarize this line of work in Table 1 and discuss how
our work differs. First, most of these methods focus on a
single query point and it is not straightforward to extend to
a set of outliers at once. Second, some work is only appli-
cable to either finding contextual outlying property as a sin-
gle feature (Angiulli, Fassetti, and Palopoli 2009) or only
applicable when features are numerical/categorical (Duan
et al. 2015; Angiulli, Fassetti, and Palopoli 2009). In addi-
tion all the work, to our knowledge, still requires the users
to input hyperparameters (or implicitly set some “rules of
thumb”) such as the threshold of outlying measure, size of
the subspace, or the bandwidth of a density kernel, etc. Our
work aims to propose a constraint programming framework
that is flexible in handling diverse situations (e.g. numer-
ical/categorical features, contextual outliers, human in the
loop, etc) and allows the above-mentioned hyperparameters
to be learnt in the model.

Constraint Programming in Data Mining. Constraint
programming (CP) is a declarative paradigm to solve com-
binatorial satisfaction/optimization problems. These combi-
natorial problems are in general NP-Hard (Papadimitriou
and Steiglitz 1998) but efficient solvers had been devel-
oped to tackle a wide range of problems arising in ap-
plications such as scheduling (Bartak 1999). Recently CP
had been studied in the data mining community for fre-
quent itemset mining (De Raedt, Guns, and Nijssen 2008;
2010). Some other work (Angiulli, Greco, and Palopoli
2007; Angiulli, Ben-Eliyahu-Zohary, and Palopoli 2008) has
tried to formally define outlier detection in knowledge-based

systems using the logic programming paradigm but this line
of work addresses a different context and objective than our
current work.

A Framework using CP Formulation

Here we define one outlier description problem more pre-
cisely, introduce our CP framework for the problem and its
variants. Following those, we describe how to encode our
framework in a modern CP software platform. All our ex-
periments are conducted in the CP language Numberjack
(Hebrard, O’Mahony, and O’Sullivan 2010) but this is a
personal preference and other popular languages such as
MiniZinc (Nethercote et al. 2007) could have been used.

As mentioned in Problem 1 the essence of outlier de-
scription is to search for functions, t and m, that describe
what makes the outliers different compared to the inliers.
In this paper we restrict the feature mapping to selecting
a subspace of the feature set both for its simplicity and
natural interpretation. Further we use the local density cri-
terion for outliers based upon the assumption that a nor-
mal instance should have many other instances in proximity
whereas an outlier has much fewer neighbors. This criterion
is a common characterization of outliers and has been uti-
lized by many existing outlier detection methods (Chandola,
Banerjee, and Kumar 2009; Keller, Muller, and Bohm 2012;
Knorr, Ng, and Tucakov 2000). Selecting feature subspace
where the outlying behavior is most exhibited is also well ar-
gued. Not only is a lower dimensional subspace easier to un-
derstand by humans, but the curse of dimensionality renders
any distance measures meaningless in very high dimensions
(Parsons, Haque, and Liu 2004). A natural objective in this
context is to maximize the difference of numbers of neigh-
bors between normal points and outliers. A large gap would
truly substantiate the assumption of local density between
outliers and normal points. With these choices made we can
formally state the definition of outlier description problem
studied in this paper.

Problem 2 The Subspace Outlier Description Problem.
Given a set of normal instances N and a set
of outliers O in a feature space S, find the tu-
ple (F, kN , kO, r) where kN − kO is maximized,
F ⊂ S and ∀x ∈ N , |NF (x, r)| ≥ kN , and
∀y ∈ O, |NF (y, r)| < kO. NF (x, r) is the set
of instances within radius r of x in subspace F .

This definition embodies the belief that the normal points
are locally denser than the outliers and the core of the prob-
lem is to find the feature subspace where this occurs. In
terms of the languages used in Problem 1, t is characterized
by F and simply zeros out some components in the origi-
nal feature space S; m(x) = |N (x, r)|; and obj(A,B) =
minA − maxB. Our CP formulation aims to encode this
precise problem (and some of its variants) using properly
defined variables and constraints.

Optimization Models

In this section we propose three CP optimization models
that address our outlier description problem. The first for-
mulation is a direct translation of Problem 2 where the vari-
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(Duan et al. 2015) Given a query outlier, look for the minimal subspace where the point ranks highest in outlyingness as measured by estimated density using Guassian kernel
(and bandwith set according to (Härdle 1991)).

(Angiulli, Fas-
setti, and Palopoli
2009)

Given a query outlier q, find disjoint subspaces S and E such that q is outlying in S with respect to all points sharing the same values with q on E (i.e.
contextual explanation). Outlyinyness is measured by a notion relative frequency. Need user-specified thresholds θ (for outlyingness) and σ (for size of
E). Only for categorical variables.

(Zhang and Wang
2006)

Define outlying degree (OD) of a point as sum of distances to its k nearest neighbors; look for all subspaces in which (given) outliers have OD > some
threshold T ; employ genetic algorithms to search for subspaces.

(Knorr and Ng
1999)

Find outliers first based on neighborhood coverage (similar to ours, but with user-specified radius d and coverage proportion p); define notions of strong
and weak outliers and search for smallest subspaces in which the detected outliers are outlying.

Table 1: Some existing related work that looks for explanations (e.g. properties, subspaces) where a query point exhibits the
most outlying characteristics.

ables (F, kN , kO, r) are defined and properly constrained.
The other two formulations show the flexibility offered by
a CP framework. The second formulation allows an outlier
to be in either one of multiple subspaces, whilst the third
formulations allows placing a human in the loop to answer
queries. We motivate each of these formulations with simple
but practical examples and thus demonstrate the flexibility
of the CP framework.

Formulation #1: Learning A Single Outlier Description.
The CP model is formulated as in equation (1). The subspace
F in which the outlying behavior is exhibited is defined as
a binary vector variable; the bits that are set in the solution
correspond to the subspace. One major strength of CP for-
mulation is that the users only need to supply the bounds
of hyperparameters (kmax, kmin, rmax) to be searched over.
In other work of outlier detection/description these hyperpa-
rameters/criteria are commonly chosen beforehand accord-
ing to domain knowledge in applications (Knorr, Ng, and
Tucakov 2000) or certain rule of thumb (Duan et al. 2015).

An alternative choice of objective can be minimizing∑
i fi since a small subspace is often more interpretable in

applications (Knorr and Ng 1999; Duan et al. 2015). It is
worth noting that CP models can also be solved without an
objective, but instead requiring the density gap to be at least
some constant; in such cases, the solver searches for all fea-
sible solutions and it is up to the user to decide which is the
most suited in his/her context.

Objective Maximize kN − kO

Variables F = [f1, f2, . . . , f|S|] ∈ {0, 1}|S|

kmin ≤ kO ≤ kN ≤ kmax

0 ≤ r ≤ rmax

Constraints (C1) ∀x ∈ N, |NF (x, r)| ≥ kN

(C2) ∀y ∈ O, |NF (y, r)| < kO

(1)

Formulation #2: Outliers in Multiple Subspaces Here
we consider the case where outliers can reside in differ-
ent (outlying) subspaces. This fits the setting where there
could be multiple reasons/explanations why a point is an
outlier. Recall the automobile manufacturing example from
the introduction section. This formulation allows describ-
ing outliers due to multiple parts or their combinations. For
clarity we explain the formulation with two subspaces. In
this case we have two sets of feature subspace selectors

F = {f1, . . . , f|S|} and G = {g1, . . . , g|S|} as variables.
Normal instances must satisfy the dense neighborhood con-
dition (C1) in both subspaces, whereas an outlier is outlying
in either subspace defined by F or G. Note this is not the
same as using a single feature selector being the disjunction
of F and G; a single feature selector H = F ∨ G would
require the outliers to be outlying in a higher dimensional
subspace that includes dimensions from both F and G.

The optimization model is formulated similarly to (1) ex-
cept we add subspace selector G = [g1, g2, . . . , g|S|] ∈
{0, 1}|S| and include two neighborhood radii rF , rG to the
variable set and substitute constraints (C1) and (C2) with

(C3) ∀x ∈ N, |NF (x, rF )| ≥ kN AND |NG(x, rG)| ≥ kN

(C4) ∀y ∈ O, |NF (y, rF )| < kO OR |NG(y, rG)| < kO
(2)

Formulation #3: Human in the Loop In practice, often
the known outliers are hand labeled (e.g. defects in car re-
call, frauds in transactions, etc) and thus the labels are con-
sidered more accurate. The set of normal points, on the
other hand, can also potentially contain outliers not yet re-
ported/found. Therefore we formulate the constraints that
allow some points in the normal set to violate the normal
density conditions. These contentious points can then be re-
ferred to a human expert for further examination. This can
be achieved by defining an additional set of binary variables
W = {w1, . . . , wn} each being an indicator for whether a
normal point xi obeys the neighborhood constraint. An addi-
tional pre-specified upper bound, wmax, is necessary to rule
out trivial solutions.

The model can be obtained from equation (1) by adding
violation points indicator W = [w1, w2, . . . , wn], wi ∈
{0, 1} to the variable set and replacing constraint (C1) with

(C5) ∀xi ∈ N, |NF (xi, r)| ≥ (1− wi)kN

(C5.5)

n∑

i=1

wi ≤ wmax
(3)

Encoding Constraints in CP

Modern CP software platforms typically offers a range
of common but simple constructs (constraints, func-
tions/operations on variables, etc). More complicated con-
straints are typically achieved by defining additional aux-
iliary variables. Auxiliary variables are often artifacts of
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the problem and allow for an easy to understand and im-
plement formulation. Auxiliary variables can also be con-
strained by basic constructs such as summation, subtrac-
tion and < and >, etc. Here we describe how to encode
the neighborhood density constraints (C1) and (C2) with
auxiliary variables; other variations of constraints can be en-
coded similarly (Note that logical AND and OR are simple
constructs in most CP software). We first define binary aux-
iliary variables {zij} which is set to 1 if instance j is within
the r-neighborhood of instance i, or 0 otherwise. This is
achieved by requiring zij = (dF (xi, xj) ≤ r) where dF
is the distance function in the subspace F and the right hand
side evaluates to either 1 (true) or 0 (false). The con-
straints (C1) and (C2) can then be written as

/* Define the auxiliary variable zij

∀xi, xj ∈ N ∪O, zij = (dF (xi, xj) ≤ r)

/* Constrain zij

∀xi ∈ N,
∑

j

zij ≥ kn ∀xi ∈ O,
∑

j

zij < kO

Other constraints involving the numbers of neighbors can be
encoded similarly. It is however worth noting that in the defi-
nitions above, we also make the assumption that the distance
dF can be written as a simple function of F (over individual
features separately). This is often no trouble for most com-
monly used distances such as �p norm, Hamming distance,
etc. For example, if the Euclidean distance (�2 norm) is used,
then dF (xi, xj) =

∑d
k=1 fk(x

(k)
i − x

(k)
j )2; in this case we

can pre-compute a table of entry-wise squared differences
||xi − xj ||22 between each pair of instances beforehand, and
during the optimization dF amounts to simply entry-wise
multiplying F against pre-computed constants.

Insights into Formulations

Here we discuss some insights into our work in particular in
relation to existing work. In this work we study a mapping
that projects the instances to a subspace where the set O
are considered outliers according to a neighborhood density
criterion. Similar criteria in outlier detection (Knorr, Ng, and
Tucakov 2000) would identify exactly the same outliers in
the projected (reduced) subspace.

We can also view our subspace description in terms of
the connectivity among normal instances. One can construct
a nearest neighbor graph from the output from m, where
nodes are data instances and edges are present between
neighbors within radius r in the projected (reduced) feature
subspace F . By definition, the normal nodes will each have
at least kN links whereas outlier nodes at most kO−1 (since
it’s < kO). If the gap kN − kO is large enough, a “random
surfer” (Page et al. 1998) on this graph would end up in a
normal node with much higher probability than an outlier
node. This could potentially offer more insights when cou-
pled with the Human-in-the-loop formulation (#3). In prac-
tice even the normal instances could have a range of the
numbers of neighbors (or connectivity, or ranks). Examin-
ing the ranks of nodes and the changes of the gap kN − kO

in formulation #3 could lead to more accurate identification
of fuzzier outliers not yet identified.

Complexity of Models

Here we provide a discussion of the complexity of our pro-
posed framework in terms of the number of variables and
basic constraints as functions of the numbers of data in-
stances and their dimension. We analyze these numbers us-
ing formulation #1 though similar analysis is applicable to
all other variant models. First the variables explicitly defined
are F, kN , kO and r. To allow the complexity to be quanti-
fied we require that r take on a discrete set. One straightfor-
ward approach is to simply specify a step size, s, such that
r ∈ {0, s, 2s, . . . , rmax}. This discretization does not apply
to kN and kO as the numbers of neighbors are by nature inte-
gers. As explained above, the actual encoding of the neigh-
borhood constraints requires additional auxiliary variables
and constraints: one zij for each pair of data instances and
one constraint to set its value. Once we have these in place,
enforcing the number of instances within a neighborhood is
a single constraint for each instance. Overall the complexity
for formulation #1 is summarized in Figure 1. Though the
combinatorial nature of the problem makes it seem complex,
it is important to note that our formulations not only allow
great flexibility but also perform an exhaustive optimization
and return a global optimum.

Variables Size Domain
F p {0, 1}

kN , kO 2 {kmin, . . . , kmax}
r 1 {0, s, 2s, . . . , rmax}
zij

(n
2

) {0, 1}
(a) Variables

Constraints Size
kO ≤ kN 1

zij = (dF (xi, xj) ≤ r)
(n
2

)
∑

i zij ≥ kN (or < kO) n

(b) Constraints

Figure 1: Complexity summary in terms of the numbers of
variables (and their domains) and basic constraints. n =
|N ∪O| is the total number of data instances and p = |S| is
the dimension of the feature space.

Empirical Evaluation

In this section we aim to empirically evaluate our proposed
framework and demonstrate its applicability and usefulness
with experiments on real datasets. We describe tasks and re-
port results on two datasets, medical imaging data and text
corpus. In each experiment we designate a small number of
instances from a known group as “outliers” and aim to find
the most suitable descriptions in terms of the neighborhood
density in some feature subspace. We start each experiment
with a description on the setup and preprocessing (if any).
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Experiment 1

Dataset In this experiment we study a functional magnetic
resonance imaging (fMRI) dataset. This dataset consists of
resting state scans from 61 elderly subjects, of which 21 sub-
jects were diagnosed as demented, another 21 were mildly
cognitively impaired (MCI) and the remaining 19 subjects
were healthy. Each scan consists of a sequence of 3D snap-
shots of the voxels’ blood oxygenation levels over 100+ time
stamps. For the ease of experiment and presentation, we only
pick a middle slice of the brain images to work on such that
our scans are 2D images over time.

For each scan we construct the feature set as follows. We
use a mask of the know anatomical regions (AR) in the brain,
provided by Neurology professionals (see Figure 2(a)), to di-
vide the brain into 27 disjoint parts. A feature is constructed
from each pair of distinct ARs: we compute the Pearson’s
correlation coefficients between the time series of all pairs
of voxels across these two ARs and record the average of
these correlations as the value for this feature. Such pairwise
correlation is a natural measure for measuring degree of co-
activation between time sequences and is common in brain
connectivity studies in neuroscience commmunity (Friston
2011). Eventually each scan is characterized by

(
27
2

)
= 351

features where each takes values in the interval [−1, 1]. In
the experiments we use the �1 norm as the distance, i.e. the
sum of entry-wise absolute differences.

Tasks and Results Demented Subjects as Outliers. One
question of interest to the neuroscience community is the
identification of parts of the brain whose deformation is re-
sponsible for people to develop dementia. In this experiment
we use the 19 scans from the healthy subjects as normal
points and randomly choose 3 scans from the demented sub-
jects as outliers and search for an outlier explanation using
our formulation #1 with kmin = 1, kmax = 10 and dis-
cretized domain for r ∈ {0, 0.5, 1, . . . , 10}. Further we add
a bound constraint on the size of the learnt subspace with∑

i fi ≤ 30 both to speed up the optimization and also be-
cause lower dimensional subspaces are often easier to in-
terpret. The results for the neighborhood density criteria are
kN = 4, kO = 2 and r = 2.5 and the subspace F has 17
entries set to 1. Our results suggest that each healthy scan
has at least 3 other scans sharing similar (within 2.5) corre-
lations on these 17 pairings of ARs whereas each demented
scan has no other scans sharing. We examine the learnt fea-
ture subspace (i.e. entries set to 1 in F ) and show the top 3
regions involved in most pairs being selected in F and also
the pairings with the top 1 region in Figure 2. These results
offer insightful and interpretable descriptions that allow neu-
rology professionals to further inspect the data in this regard.

Experiment 2

Dataset In this experiment we apply our methods to
the text corpus, 20 Newsgroups Dataset.1This popular text
dataset contains ∼ 20000 documents collected from 20

1The version we used is from http://qwone.com/∼jason/
20Newsgroups/ where cross-posts and some headers were re-
moved.

newsgroups. Each document was recorded as bag-of-word
features from a dictionary of 61188 words.

Task and Results The task at hand is to see if we can
successfully describe outliers where we can select all doc-
uments from one major newsgroup as the normal instances
and a smaller number of documents from another newsgroup
as outliers. The goal here would be to identify the subset of
words that can separate those outliers from the majority doc-
uments in terms of their numbers of neighbors.

Since the dictionary is large in size and most documents
only have a handful of words present at all, for the ease
of experiments we preprocess our data by using only the
top 50 non-stop-words from each of the selected news-
groups as features. We sample 50 documents from news-
group comp.sys.ibm.pc.hardware (denoted by Hardware)
as normal instances and we sample 3 documents from each
of the two newsgroups rec.sport.baseball (Baseball) and
talk.religion.misc (Religion) as outliers. Table 2 lists some
most frequently occurring words from these 3 newsgroups,
respectively. It is worth noting that in this experiment we use
�1 norm as our distance as opposed to the more standard co-
sine distance in text mining. Since we have a very small (but
meaningful) vocabulary set as features, many documents
will not share any non-zero features at all. This renders the
inner product (i.e. cosine distance) a poor choice since most
pairs of instances (both outliers and normal) would have a
distance of 0 or a extremely small measure, making the re-
sults difficult for any insight.

Hardware drive, scsi, can, edu, com, one, will, card, mb, idle, system, . . .
Baseball edu, write, year, can, article, game, don, one, will, team, . . .
Religion god, one, will, edu, can, writes, people, jesus, com, article, . . .

Table 2: Most frequently occurring words from each of the 3
newsgroups used in our experiments. We can see words that
are characteristic of the particular topics in the newsgroups,
such as drive, scsi, team, baseball, god, jesus, etc. But an-
other set of words common in all 3 newsgroups are ones like
edu, com, will, can, etc.

Outliers Described by a Single Subspace. In this first
experiment we apply formulation #1 to maximize the dif-
ference between the numbers of neighbors between normal
instances and outliers. The parameter bounds are set as fol-
lows. kmax = 20 and r ∈ {0.01, 0.02, . . . , 2.0} and we en-
force a constraint on the size of the subspace,

∑
i fi ≤ 10.

The optimal solution is shown in Figure 3(a). This suggests
that for this small dataset in the 10-dimensional feature sub-
space corresponding to the 10 words, all 6 outliers (Baseball
and Religion)) can be isolated without any neighbor (i.e.
< kO = 2) with radius r = 0.15 whereas all normal in-
stances (Hardware) have at least 20 instances in the same
neighborhood. We can also see that the words identified by
F are very characteristic of the differences between news-
groups and provide an interpretable description of the outly-
ing behavior.

Outliers Described by Multiple Subspaces. Here we
want to utilize our multiple subspace formulation to see if
we can identify 2 distinct feature subspaces each character-
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(a) Color-coded
known anatomi-
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brain.
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(b) The top 3 anatomical regions appearing the
most times in the pairs selected in F ; Number of
occurrences are 5 (left), 3 (middle) and 3 (right).
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(c) The pairs of anatomical regions selected in F that involve the most frequent occur-
ring region (left in 2(b)).

Figure 2: A closer look of the feature subspace F in the experiments of describing the demented outliers. Each feature in the
original feature space corresponds to a pair of known anatomical regions in Figure 2(a).

izing one group of outliers. Note that formulation #2 is a
strict generalization of formulation #1. This implies if all pa-
rameters are set identically in both models, then formulation
#2 would simply output the same one subspace as found by
formulation #1 and the other subspace would be trivial (say,
rG = 0 hence every pairs are neighbors). To avoid this, we
explicitly set the objective to minimize

∑
i fi +

∑
i gi in-

stead of maximizing kN − kO, effectively looking for the
most compact subspaces in which the outlying behavior is
exhibited. To ensure the local density criteria still in tact,
we add an additional bound on kN − kO ≥ 5. The choices
of kmax and rF , rG are the same as above. The results are
shown in Figure 3(b). Again the two subspaces F and G con-
form to our “truth” of selecting outliers from two sources,
Baseball and Religion, respectively. The minimality of sub-
space dimensions make them practical to be further exam-
ined by human experts.

∑
i fi Words identified by F kN kO r

10 last, season, like, bible, team,
baseball, god, play, say, true

20 2 0.15

(a) Optimal solution to the single subspace model.

∑
i fi Words identified by F

∑
i gi Words identified by G

1 season 2 bible, man

kN kO rF rG

20 15 0.03 0.15
(b) Optimal solution to the
multiple subspaces model.

Figure 3: Results for the outlier descriptions on 20 News-
groups datasets using both a single subspace model and a
two subspaces model.

Each of our experiments (fMRI and text documents) took
about 5 minutes to run on a 12-core workstation. Note that
the additional bounds such as

∑
i fi ≤ 10 play an important

role in speeding up the computation as they could greatly re-

duce the domains of the variables and thus the search space.
Solving these formulations on large data sets could poten-
tially be time-consuming; we offer some directions to this
issue in the conclusion.

Conclusion

In this paper we formally define the outlier description prob-
lem, which aims to find explanations about how a given
set of outliers deviate from the normal instances. We focus
on one particular definition based on neighborhood density
criterion and subspace selection. We propose a constraint
programming based framework to encode the problem. Our
framework offers great flexibility: the user can solve for an
optimal objective or only look for a feasible solution; learn
all parameters at once or only a subset of them while supply-
ing others; and encode additional constraints and other prob-
lem variations arising in practical applications. We demon-
strate the usefulness of our proposed framework by experi-
ments on real datasets of medical imaging and text corpus.

One major limitation of the framework is the scalabil-
ity issue stemming from combinatorial optimization in gen-
eral and the numbers of auxiliary variables needed in en-
coding the problem. This is partially alleviated since many
CP languages interface with state-of-the-art integer program
solvers such as Gurobi (Gurobi Optimization 2015) and
CPLEX2 which efficiently utilize multi-core architectures.
Machines with more cores such as Amazon’s AWS could
further exploit the parallelization. Another way to scale up
is to implement more efficient propagators in a more special-
ized CP environment such as Gecode (Gecode Team 2006).
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