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Abstract

In recent years, several probabilistic techniques have been ap-
plied to various debugging problems. However, most existing
probabilistic debugging systems use relatively simple statis-
tical models, and fail to generalize across multiple programs.
In this work, we propose Tractable Fault Localization Models
(TFLMs) that can be learned from data, and probabilistically
infer the location of the bug. While most previous statisti-
cal debugging methods generalize over many executions of
a single program, TFLMs are trained on a corpus of previ-
ously seen buggy programs, and learn to identify recurring
patterns of bugs. Widely-used fault localization techniques
such as TARANTULA evaluate the suspiciousness of each line
in isolation; in contrast, a TFLM defines a joint probability
distribution over buggy indicator variables for each line. Joint
distributions with rich dependency structure are often com-
putationally intractable; TFLMs avoid this by exploiting re-
cent developments in tractable probabilistic models (specif-
ically, Relational SPNs). Further, TFLMs can incorporate
additional sources of information, including coverage-based
features such as TARANTULA. We evaluate the fault localiza-
tion performance of TFLMs that include TARANTULA scores
as features in the probabilistic model. Our study shows that
the learned TFLMs isolate bugs more effectively than previ-
ous statistical methods or using TARANTULA directly.

Introduction

According to a 2002 NIST study (RTI International 2002),
software bugs cost the US economy an estimated $59.5 bil-
lion per year. While some of these costs are unavoidable, the
report claimed that an estimated $22.2 billion could be saved
with more effective tools for the identification and removal
of software errors. Several other sources estimate that over
50% of software development costs are spent on debugging
and testing (Hailpern and Santhanam 2002).

The need for better debugging tools has long been recog-
nized. The goal of automating various debugging tasks has
motivated a large body of research in the software engineer-
ing community. However, this line of work has only recently
begun to take advantage of recent advances in probabilistic
models, and their inference and learning algorithms.
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In this work, we apply state-of-the-art probabilistic meth-
ods to the problem of fault localization. We propose
Tractable Fault Localization Models (TFLMs) that can be
learned from a corpus of known buggy programs (with the
bug locations annotated). The trained model can then be
used to infer the probable locations of buggy lines in a previ-
ously unseen program. Conceptually, a TFLM is a probabil-
ity distribution over programs in a given language, modeled
jointly with any attributes of interest (such as bug location
indicator variables, or diagnostic features). Conditioned on
a specific program, a TFLM defines a joint probability dis-
tribution over the attributes.

The key advantage of probabilistic models is their ability
to learn from experience. Many software faults are instances
of a few common error patterns, such as off-by-one errors
and use of uninitialized values (Brun and Ernst 2004). Hu-
man debuggers improve with experience as they encounter
more of these common fault patterns, and learn to recog-
nize them in new programs. Automated debugging systems
should be able to do the same. Another advantage of prob-
abilistic models is that they allow multiple sources of in-
formation to be combined in a principled manner. The rela-
tive contribution of each feature determined by its predictive
value in the training corpus, rather than by a human expert. A
TFLM can incorporate as features the outputs of other fault
localization systems, such as the TARANTULA hue (Jones,
Harrold, and Stasko 2002) of each line.

In recent years, there has been renewed interest in learn-
ing rich, tractable models, on which exact probabilistic in-
ference can be performed in polynomial time (e.g. Sum-
Product Networks; Poon and Domingos 2011). TFLMs build
on Relational Sum-Product Networks (Nath and Domingos
2015) to enable exact inference in space and time linear in
the size of the program. We empirically compare TFLMs to
the widely-used TARANTULA fault localization method, as
well as the Statistical Bug Isolation (SBI) system, on four
mid-sized C programs. TFLMs outperform the other sys-
tems on three of the four test subjects.

Background

Coverage-based Fault Localization

Coverage-based debugging methods isolate the bug’s loca-
tion by analyzing the program’s coverage spectrum on a set
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of test inputs. These approaches take the following as input:
1. a set of unit tests;
2. a record of whether or not the program passed each test;
3. program traces, indicating which components (usually

lines) of the program were executed when running each
unit test.

Using this information, these methods produce a suspicious-
ness score for each component in the program. The most
well-known method in this class is the TARANTULA system
(Jones, Harrold, and Stasko 2002), which uses the following
scoring function:

STarantula(s) =
Failed(s)

TotalFailed
Passed(s)

TotalPassed + Failed(s)
TotalFailed

Here, Passed(s) and Failed(s) are respectively the number
of passing and failing test cases that include statement s,
and TotalPassed and TotalFailed are the number of pass-
ing and failing test cases respectively. In an empirical evalu-
ation (Jones and Harrold 2005), TARANTULA was shown
to outperform previous methods such as cause transitions
(Cleve and Zeller 2005), set union, set intersection and near-
est neighbor (Renieris and Reiss 2003), making it the state of
the art in fault localization at the time. Since the publication
of that experiment, a few other scoring functions have been
shown to outperform TARANTULA under certain conditions
(Abreu et al. 2009). Nonetheless, TARANTULA remains the
most well-known method in this class.

Probabilistic Debugging Methods

Per-Program Learning Several approaches to fault local-
ization make use of statistical and probabilistic methods. Li-
blit et al. proposed several influential statistical debugging
methods. Their initial approach (Liblit et al. 2003) used �1-
regularized logistic regression to predict non-deterministic
program failures. The instances are runs of a program, the
features are instrumented program predicates, and the mod-
els are trained to predict a binary ‘failure’ variable. The
learned weights of the features indicate which predicates
are the most predictive of failure. In later work (Liblit et
al. 2005), they use a likelihood ratio hypothesis test to deter-
mine which predicates (e.g. branches, sign of return value)
in an instrumented program are predictive of program fail-
ure. Zhang et al. (2011) evaluate several other hypothesis
testing methods in a similar setting.

The SOBER system (Liu et al. 2005; 2006) improves on
Liblit et al.’s 2005 approach by taking into account the fact
that a program predicate can be evaluated multiple times in a
single test case. They learn conditional distributions over the
probability of a predicate evaluating to true, conditioned
on the success or failure of the test case. When these condi-
tional distributions differ (according a statistical hypothesis
test), the predicate is considered to be ‘relevant’ to the bug.
The HOLMES system (Chilimbi et al. 2009) extends Lib-
lit et al.’s approach along another direction, analyzing path
profiles instead of instrumented predicates.

Wong et al. (2008; 2012) use a crosstab-based statisti-
cal analysis to quantify the dependence between statement

coverage and program failure. Their approach can be seen
as a hybrid between the Liblit-style statistical analysis and
TARANTULA-style spectrum-based analysis. Wong et al.
(2009; 2012) also proposed two neural network-based fault
localization techniques trained on program traces. Ascari et
al. (2009) investigate the use of SVMs in a similar setting.

Many of the methods described above operate under the
assumption that the program contains exactly one bug. Some
of these techniques have nevertheless been evaluated on pro-
grams with multiple faults, using an iterative process where
the bugs are isolated one by one. Briand et al. (2007) explic-
itly extend TARANTULA to the multiple-bug case, by learn-
ing a decision tree to partition failing test cases. Each par-
tition is assumed to model a different bug. Statements are
ranked by suspiciousness using a TARANTULA-like scoring
function, with the scores computed separately for each parti-
tion. Other clustering methods have also been applied to test
cases; for example, Andrzejewski et al. (2007) use a form of
LDA to discover latent ‘bug topics’.

Generalizing Across Programs The key limitation of the
statistical and machine learning-based approaches discussed
above is that they only generalize over many executions of
a single program. Ideally, a machine learning-based debug-
ging system should be able to generalize over multiple pro-
grams (or, at least, multiple sequential versions of a pro-
gram). As discussed above, many software defects are in-
stances of frequently occurring fault patterns; in principle,
a machine learning model can be trained to recognize these
patterns and use them to more effectively localize faults in
new programs.

This line of reasoning has received relatively little atten-
tion in the automated debugging literature. The most promi-
nent approach is the Fault Invariant Classifier (FIC) of Brun
and Ernst (2004). FIC is not a fault localization algorithm
in the sense of TARANTULA and the other approaches dis-
cussed above. Instead of localizing the error to a particular
line, FIC outputs fault-revealing properties that can guide
a human debugger to the underlying error. These properties
can be computed using static or dynamic program analysis;
FIC uses the Daikon dynamic invariant detector (Ernst et al.
2001). At training time, properties are computed for pairs
of buggy and fixed programs; properties that occur in the
buggy programs but not the fixed programs are labeled as
‘fault-revealing’. The properties are converted into program-
independent feature vectors, and an SVM or decision tree is
trained to classify properties as fault-revealing or non-fault-
revealing. The trained classifier is then applied to properties
extracted from a previously unseen, potentially faulty pro-
gram, to reveal properties that indicate latent errors.

Tractable Probabilistic Models

Sum-Product Networks

A sum-product network (SPN) is a rooted directed acyclic
graph with univariate distributions at the leaves; the internal
nodes are (weighted) sums and (unweighted) products.

Definition 1. (Gens and Domingos 2013)

1. A tractable univariate distribution is an SPN.
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Figure 1: Example SPN over the variables x1, x2 and x3.
All leaves are Bernoulli distributions, with the given param-
eters. The weights of the sum node are indicated next to the
corresponding edges.

2. A product of SPNs with disjoint scopes is an SPN. (The
scope of an SPN is the set of variables that appear in it.)

3. A weighted sum of SPNs with the same scope is an SPN,
provided all weights are positive.

4. Nothing else is an SPN.

Intuitively, an SPN (fig. 1) can be thought of as an alter-
nating set of mixtures (sums) and decompositions (products)
of the leaf variables. If the values at the leaf nodes are set to
the partition functions of the corresponding univariate dis-
tributions, then the value at the root is the partition function
(i.e. the sum of the unnormalized probabilities of all possible
assignments to the leaf variables). This allows the partition
function to be computed in time linear in the size of the SPN.

If the values of some variables are known, the leaves cor-
responding to those variables’ distributions are set to those
values’ probabilities, and the remainder are replaced by their
(univariate) partition functions. This yields the unnormal-
ized probability of the evidence, which can be divided by
the partition function to obtain the normalized probabil-
ity. The most probable state of the SPN, viewing sums as
marginalized-out hidden variables, can also be computed in
linear time. The first learning algorithms for sum-product
networks used a fixed network structure, and only optimized
the weights (Poon and Domingos 2011; Amer and Todorovic
2012; Gens and Domingos 2012). More recently, several
structure learning algorithms for SPNs have also been pro-
posed (Dennis and Ventura 2012; Gens and Domingos 2013;
Peharz, Geiger, and Pernkopf 2013).

Relational Sum-Product Networks

SPNs are a propositional representation, modeling instances
as independent and identically distributed (i.i.d.). Although
the i.i.d. assumption is widely used in statistical machine
learning, it is often an unrealistic assumption. In practice,
objects usually interact with each other; Statistical Rela-
tional Learning algorithms can capture dependencies be-
tween objects, and make predictions about relationships be-
tween them.

Relational Sum-Product Networks (RSPNs; Nath and
Domingos 2015) generalize SPNs by modeling a set of in-
stances jointly, allowing them to influence each other’s prob-
ability distributions, as well as modeling probabilities of re-
lations between objects. RSPNs can be seen as templates
for constructing SPNs, much like Markov Logic Networks
(Richardson and Domingos 2006) are templates for Markov
networks. RSPNs also require as input a part decomposi-
tion, which describes the part-of relationships among the ob-
jects in the mega-example. Unlike previous high-treewidth
tractable relational models such as TML (Domingos and
Webb 2012), RSPNs can generalize across mega-examples
of varying size and structure.

Tractable Fault Localization

Tractable Fault Localization Models

A Tractable Fault Localization Model (TFLM) defines a
probability distribution over programs in some determinis-
tic language L. The distribution may also model additional
variables of interest that are not part of the program itself;
we refer to such variables as attributes. In the fault localiza-
tion setting, the important attribute is a buggy indicator vari-
able on each line. Other informative features may also be
included as attributes; for instance, one or more coverage-
based metrics may be included for each line.
More formally, consider a language whose grammar L =
(V,Σ, R, S) consists of:
• V is a set of non-terminal symbols;
• Σ is a set of terminal symbols;
• R is a set of production rules of the form α → β, where
α ∈ V and β is a string of symbols in V ∪ Σ;

• S ∈ V is the start symbol.
Definition 2. A Tractable Fault Localization Model for lan-
guage L consists of:
• a map from non-terminals in V to sets of attribute vari-

ables (discrete or continuous);
• for each symbol α ∈ V , a set of latent subclasses
α1, . . . , αk;

• πS , a probability distribution over subclasses of the start
symbol S;

• for each each subclass αi of α,
– a univariate distribution ψαi,x over each attribute x as-

sociated with α;
– for each rule α → β in L, a probability distribution ραi

over rules αi → β;
– for each rule αi → β, for each non-terminal α′ ∈ β, a

distribution π(αi→β),α′ over subclasses of α′.
The univariate distribution over each attribute may be re-
placed with a joint distribution over all attributes, such as a
logistic regression model within each subclass that predicts
the value of the buggy attribute, using one or more other at-
tributes as features. However, for simplicity, we present the
remainder of this section with the attributes modeled as a
product of univariate distributions, and assume that the at-
tributes are discrete.
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TFLMs are related to the Latent Variable PCFG (L-
PCFG) models used in the natural language processing
(NLP) community (Matsuzaki, Miyao, and Tsujii 2005;
Prescher 2005; Petrov et al. 2006). As in L-PCFGs, each
symbol α in the language is drawn probabilistically from a
set of latent subclasses α1, . . . , αk. For each latent class, the
model can define a different distribution over the sub-trees
rooted at that symbol.

Conceptually, TFLMs differ from the PCFG-based mod-
els as used in NLP in two ways:

1. In addition to modeling a distribution over strings in the
given language, TFLMs can also jointly model other vari-
ables of interest (‘attributes’). Different latent subclasses
can have different distributions over attributes.

2. In NLP, PCFGs and their extensions are usually used for
parsing, i.e. finding the most probably parse tree accord-
ing to the given probabilistic grammar. In the debugging
context, we assume the program can be parsed unambigu-
ously. The purpose of a TFLM is to answer probabilistic
queries about the attributes of the given program (e.g. in-
fer marginal probabilities).

Being defined over the grammar of the programming lan-
guage, TFLMs can capture information extremely useful for
the fault localization task. For example, a TFLM can repre-
sent different fault probabilities for different symbols in the
grammar. In addition, the latent subclasses give TFLMs a
degree of context-sensitivity; the same symbol can be more
or less likely to contain a fault depending on its latent sub-
class, which is probabilistically dependent on the subclasses
of ancestor and descendent symbols in the parse tree. This
makes TFLMs much richer than models like logistic regres-
sion, where the features are independent conditioned on the
class variable. Despite this representational power, exact in-
ference in TFLMs is still computationally efficient.

Example 1. The following rules are a fragment of the gram-
mar of a Python-like language:

w h i l e s t m t → ’ whi le ’ c o n d i t i o n ’ : ’ s u i t e
c o n d i t i o n → exp r o p e r a t o r exp r
c o n d i t i o n → ’ not ’ c o n d i t i o n

We refer to the above rules as r1, r2 and r3 respectively.
The following is a partial specification of a TFLM over

this grammar, with the while stmt symbol as root.

• All non-terminal symbols have buggy and suspiciousness
attributes. buggy is a fault indicator, and suspiciousness is
a diagnostic attribute, such as a TARANTULA score.

• Each non-terminal has two latent subclass symbols. For
example, while stmt has subclasses while stmt1 and
while stmt2.

• The distribution over start symbols is:
π(while stmt1) = 0.4, π(while stmt2) = 0.6.

• For subclass symbol while stmt1 (subclass subscripts
omitted):
– ψbuggy ∼ Bernoulli(0.01)

– ψsuspiciousness ∼ N (0.4, 0.05)

– ρ(r1) = 1.0, since while stmt has a single rule.

– The distributions over child symbol subclasses
for r1 are: πr1,condition(condition1) =
0.7, πr1,condition(condition2) = 0.3,
πr1,suite(suite1) = 0.2, πr1,suite(suite2) = 0.8.

(The complete TFLM specification would have similar defi-
nitions for all the other subclass symbols in the model.)

Semantics Conceptually, a TFLM defines a probability
distribution over all programs in L, and their attributes. More
formally, the joint distribution P (T,A,C) is defined over:

• a parse tree T ;

• an attribute assignment A, specifying values of all at-
tributes of all non-terminal symbols in T ;

• latent subclass assignment C for each non-terminal in T .

For parse tree T containing rules r1 =
α1 → β1, r2 = α2 → β2, . . . , rn =
αn → βn, and root symbol αR, P (T,A,C) =∏

ri

(
ρC(αi)(αi → βi)×

∏
α′∈βi

π(C(αi)→βi),α′(C(α′))×
∏

x∈attr(αi)
ψC(αi),x(A(x))

)
× πS(C(αR))

Inference Like RSPNs, inference in TFLMs is performed
by grounding out the model into an SPN. The SPN is con-
structed in a recursive top-down manner, beginning with the
start node:

• Emit a sum node over subclasses of the start node,
weighted according to πS . Let the current symbol α be
the start symbol, and let αi be its subclass. Let N+

α refer
to the sum node over subclasses of symbol α.

• Emit a product node N×
αi

with one child for each attribute
of α, and a child for the subprogram rooted at αi. (N×

αi
in

turn is a child of N+
α .)

• For each attribute x of α, emit univariate distribution
ψαi,x over the attribute values for the current symbol, as
a child of N×

αi
.

• Emit a sum node N+
ραi

over production rules αi → β,
weighted according to ραi

. N+
ραi

is also a child of N×
αi

.
(Note that when grounding a TFLM over a known parse
tree, all but one child of this sum node is zeroed out, and
need not be grounded.)

• Recurse over each non-terminal α′ in β, choosing its sub-
class via a sum node weighted by π(αi→β),α′ . The recur-
sively constructed sub-SPNs are added as children to a
product node N×

αi→β , which in turn is a child of N+
ραi

.

Following the above recursive grounding procedure naı̈vely
results in a tree-structured SPN. However, note that we can
cache the sub-SPN corresponding to each subclass of each
symbol α in the parse tree, grounding it once and connecting
it to multiple parents. The resulting SPN is a directed acyclic
graph.
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Table 1: Subject programs

Program Versions Executable LOC Buggy vers.
grep 4 3368 ± 122 8 ± 5
gzip 5 1905 ± 124 7 ± 3
flex 5 3907 ± 254 10 ± 4
sed 7 2154 ± 389 3 ± 1

Learning The learning problem in TFLMs is to estimate
the π and ψ distributions from a training corpus of programs,
with known attribute values but unknown latent subclasses.
(The ρ distributions have no effect on the distribution of in-
terest, since we assume that every program can be unam-
biguously mapped to a parse tree.)

As is commonly done with SPNs, we train the model via
hard EM. In the E-step, given the current parameters of π
and ψ, we compute the MAP state of the training programs
(i.e. the latent subclass assignment that maximizes the log-
probability). In the M-step, we re-estimate the parameters
of π and ψ, choosing the values that maximize the log-
probability. These two steps are repeated until convergence,
or for a fixed number of iterations.

If the attributes are modeled jointly rather than as a prod-
uct of univariate distributions, retraining the joint model in
each iteration of EM is computationally expensive. A more
efficient alternative is to use a product of univariates during
EM, in order to learn a good subclass assignment. The joint
model is then only trained once, at the conclusion of EM.

Experiments

We performed an experiment to determine whether TFLM’s
ability to combine a coverage-based fault localization sys-
tem with learned bug patterns improves fault localization
performance, relative to using the coverage-based system di-
rectly. As a representative coverage-based method, our study
used TARANTULA, one of the most widely-used approaches
in this class, and a common comparison system for fault lo-
calization algorithms. We also compared to the statement-
based version of Liblit et al.’s Statistical Bug Isolation (SBI)
system (Liblit et al. 2005), as adapted by Yu et al. (2008).
SBI serves as a representative example of a lightweight sta-
tistical method for fault localization.

Subjects

We evaluated TFLMs on four mid-sized C programs (ta-
ble 1) from the Software-artifact Infrastructure Repository
(Khurshid et al. 2004). All four test subjects are real-world
programs, commonly used to evaluate fault localization ap-
proaches. The repository contained several sequential ver-
sions of each program, each with several buggy versions.
The repository also contained a suite of between 124 and
525 TSL tests for each version, which we used to compute
the TARANTULA scores.

The number of executable lines was measured by the gcov
tool. We excluded buggy versions where the bug occurred in
a non-executable line (e.g. lines excluded by preprocessor
directives), or consisted of line insertions or deletions. Un-
like most previous fault localization studies that use these

Table 2: Localization accuracy (fraction of lines skipped)

Program TFLM Tarantula SBI
grep 0.645 0.640 0.564
gzip 0.516 0.682 0.540
flex 0.770 0.704 0.618
sed 0.927 0.851 0.603

Table 3: TFLM (with Tarantula feature) vs Tarantula alone

Program TFLM wins Ties Tarantula wins
grep 18 0 14
gzip 11 0 23
flex 31 0 18
sed 17 0 7

subjects, we do not exclude versions for which the test re-
sults were uniform (i.e. consisting entirely of passing or fail-
ing tests). Although coverage-only methods such as TARAN-
TULA can provide no useful information in the case of uni-
form test suites, TFLMs can still make use of learned con-
textual information to determine that some lines are more
likely than others to contain a fault.

Methodology

We implemented TFLMs for a simplified version of the C
grammar with 23 non-terminal symbols, ranging from com-
pound statements like if and while to atomic single-line
statements such as assignments and break and continue
statements. Each symbol has a buggy attribute, and a
suspiciousness attribute, which is the TARANTULA score
of the corresponding line. (For AST nodes that correspond
to multiple lines in the original code, we use the highest
TARANTULA score among all lines). As described in the
previous section, the attributes are modeled as independent
univariates during EM (buggy as a Bernoulli distribution,
and suspiciousness as a Gaussian), and then via a logis-
tic regression model within each subclass. The model pre-
dicts the buggy attribute, using the TARANTULA score and a
bias term as features. We use the SCIKIT-LEARN (Pedregosa
et al. 2011) implementation of logistic regression, with the
class weight=‘auto’ parameter, to compensate for
the sparsity of the buggy lines relative to bug-free lines. For
TFLMs, we ran hard EM for 100 iterations. For each subject
program, TFLMs were learned via cross-validation, training
on all versions of the program except the one being evalu-
ated. The number of latent subclasses was also chosen via
cross-validation, from the range [1, 4].

The output of a fault localization system is a ranking of

Table 4: TFLM learning and inference times

Program Avg. learn time (s) Avg. infer time (s)
grep 1135.00 20.91
gzip 433.33 5.25
flex 978.63 13.15
sed 326.37 5.18
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Figure 2: The horizontal axis is the fraction of lines skipped (FS), and the vertical axis is the fraction of runs for which the FS
score equalled or exceeded the x-axis value.

the lines of code from most to least suspicious. For TFLMs,
we ranked the lines by predicted probability that buggy = 1.
(Each line in the original program is modeled by the finest-
grained AST node that encloses it.) The evaluation met-
ric was the ‘fraction skipped’ (FS) score, i.e. the fraction
of executable lines ranked below the highest-ranked buggy
line. Despite its limitations (Parnin and Orso 2011), this is a
widely-used metric for fault localization (Jones and Harrold
2005; Abreu et al. 2009).

Results

Results of our experiments are displayed in tables 2 and 3,
and figure 2. TFLMs outperform TARANTULA and SBI on
three of the four subjects, isolating the majority of bugs more
effectively, and earning a higher average FS score. However,
TFLMs perform poorly on the gzip domain. This demon-
strates the main threat to the validity of our method: machine
learning algorithms operate under the assumption that the

test data is drawn from a similar distribution to the training
data. If the bugs occur in different contexts in the training
and test datasets (as in gzip), learning-based methods may
perform worse than methods that try to localize each pro-
gram independently. This risk is particularly great when the
learning from a small corpus of buggy programs.

However, in three of the four subjects in our experiment,
the training and test distributions are sufficiently similar to
allow useful generalization, resulting in improved fault lo-
calization performance. TFLMs’ advantage arises from its
ability to localize faults even when the coverage matrix used
by TARANTULA does not provide useful information (e.g.
when the tests are not sufficiently discriminative). TFLMs
combine the coverage-based information used by TARAN-
TULA with learned bug probabilities for different symbols,
in different contexts. Context sensitivity is captured via la-
tent subclass assignments for each symbol.

As seen in table 4, our unoptimized Python implementa-
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tion predicts bug probabilities in a few seconds for programs
a few thousand lines in length. An optimized implementa-
tion may be able to make predictions at interactive speeds;
this makes TFLMs a practical choice of inference engine for
a debugging tool in a software development environment.
Learning TFLMs can take several minutes, but note that the
model can be trained offline, either from previous versions
of the software being developed (as in our experiments), or
from other related software projects expected to have a sim-
ilar bug distribution (e.g. projects of a similar scale, written
in the same language).

Conclusions

This paper presented TFLMs, a probabilistic model for fault
localization that can be learned from a corpus of buggy pro-
grams. This allows the model to generalize from previously
seen bugs to more accurately localize faults in a new con-
text. TFLMs can also incorporate the output of other fault-
localization systems as features in the probabilistic model,
with a learned weight that depends on the context. TFLMs
take advantage of recent advances in tractable probabilistic
models to ensure that the fault location probabilities can be
inferred efficiently even as the size of the program grows.
In our experiments, a TFLM trained with TARANTULA as a
feature localized bugs more effectively than TARANTULA or
SBI alone, on three of the four subject programs.

In this work, we used TFLMs to generalize across sequen-
tial versions of a single program. Given adequate training
data, TFLMs could also be used to generalize across more
distantly-related programs. The success of this approach re-
lies on the assumption that there is some regularity in soft-
ware faults, i.e. the same kinds of errors occur repeatedly
in unrelated software projects, with sufficient regularity that
a machine learning algorithm can generalize over these pro-
grams. Testing this assumption is a direction for future work.

Another direction for future work is extending TFLMs
with additional sources of information, such as including
multiple fault localization systems, and richer program fea-
tures derived from static or dynamic analysis (e.g. invari-
ants (Hangal and Lam 2002; Brun and Ernst 2004)). TFLM-
like models may also be applicable to debugging methods
that use path profiling (Chilimbi et al. 2009), giving the
user more contextual information about the bug, rather than
just a ranked list of statements. The recent developments in
tractable probabilistic models may also enable advances in
other software engineering problems, such as fault correc-
tion, code completion, and program synthesis.
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