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Abstract

Graph-based image segmentation organizes the image
elements into graphs and partitions an image based on
the graph. It has been widely used and many promis-
ing results are obtained. Since the segmentation per-
formance highly depends on the graph, most of ex-
isting methods focus on obtaining a precise similarity
graph or on designing efficient cutting/merging strate-
gies. However, these two components are often con-
ducted in two separated steps, and thus the obtained
graph similarity may not be the optimal one for segmen-
tation and this may lead to suboptimal results. In this
paper, we propose a novel framework, Graph-Without-
Cut (GWC), for learning the similarity graph and image
segmentations simultaneously. GWC learns the similar-
ity graph by assigning adaptive and optimal neighbors
to each vertex based on the spatial and visual informa-
tion. Meanwhile, the new rank constraint is imposed
to the Laplacian matrix of the similarity graph, such
that the connected components in the resulted similar-
ity graph are exactly equal to the region number. Ex-
tensive empirical results on three public data sets (i.e,
BSDS300, BSDS500 and MSRC) show that our un-
supervised GWC achieves state-of-the-art performance
compared with supervised and unsupervised image seg-
mentation approaches.

Introduction

Image segmentation i.e., partitioning an image into sev-
eral disjoint subsets such that each subset has similar color,
intensity or texture achieved an extraordinary success and
has become popular in a wide range of applications, such
as objects recognition, tracking and image analysis (Liu,
Seyedhosseini, and Tasdizen 2015; Arbelaez et al. 2011;
Ren and Bo 2012; Maitin-Shepard et al. 2015; Yi and Moon
2012; Kim et al. 2014; Falcao, Udupa, and Miyazawa 2000;
Sundaramoorthi, Yezzi, and Mennucci 2008; Willett and
Nowak 2007; Boykov and Funka-Lea 2006). The simplest
approach of segmentation is to find an appropriate threshold
for separating the image into foreground and background
group (Yi and Moon 2012). More recently, tremendous
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Figure 1: The overview of GWC.

efforts have been devoted to designing more efficient and
effective segmentation methods, such as edge-based algo-
rithms (Arbelaez et al. 2011), region-based algorithms (Ren
and Shakhnarovich 2013), watershed-based segmentation
(Donoser and Schmalstieg 2014) and graph-based methods
(Peng, Zhang, and Zhang 2013; Arbeláez et al. 2014; De-
long and Boykov 2008; Falcao, Udupa, and Miyazawa 2000;
Grady 2005; Pavan and Pelillo 2003).

Among the existing image segmentation techniques,
many successful ones benefit from mapping the image ele-
ments onto a graph G=(V,E) which pixels/superpixels are
nodes and the weights of edges measure the similarity be-
tween nodes. Cutting/merging is then applied on this graph
to generate the image segments. Most of the existing graph-
based methods focus on two research problems: 1) how to
define a precise similarity graph; and 2) how to cut/merge
the nodes effectively. The Euclidean distance on the visual
features is the simplest way to calculate the similarity graph.
However, the segmentation performance is usually inferior
to a learned similarity. In (Ren and Shakhnarovich 2013;
Liu, Seyedhosseini, and Tasdizen 2015), the authors start
with a fine superpixel over-segmentation and train a logistic
regression model to determine the similarity between two
regions. Based on the similarity graph, they greedily merge
regions at each stage until the whole region merging process
finishes. By contrast, another pipeline of methods work on
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cutting approaches, which explicitly organize the image ele-
ments into mathematically sound structures based on the op-
timization of the predefined cutting loss function. One rep-
resentative criterion is normalized cut (Shi and Malik 2000).
By minimizing a cutting cost objective function, the best
segmentation can be obtained. This objective function is
further proved to be equivalent to the generalized eigenvalue
decomposition problem and lots of follow-ups proposed ef-
ficient solutions for this problem (Arbeláez et al. 2014;
Peng, Zhang, and Zhang 2013). In (Comaniciu and Meer
2002), pixels are represented in the joint spatial-range do-
main by concatenating their spatial and color values into
a single vector. Applying mean shift filtering in this do-
main yields a convergence point for each pixel. Regions are
formed by grouping together all pixels whose convergence
points are closer than a threshold in the spatial domain and
in the range domain.

Graph cut methods provide a well-defined relationship be-
tween the segments, while the problem of finding a cut in an
arbitrary graph may be NP-hard. More importantly, because
the graph similarity learning and the graph cut are conducted
in two separated steps, the learned graph similarity matrix
may not be the optimal one for cutting leading to subopti-
mal results. To tackle this problem, in this paper we propose
a novel image segmentation framework: Graph-Without-Cut
(GWC) approach, which learns the similarity graph and cut-
ting structure simultaneously. It is worthwhile to highlight
three aspects of GWC:
• Our image segmentation framework learns the similarity

graph and cutting structure simultaneously to achieve the
optimal segmentation results. We derive a novel and effi-
cient algorithm to solve this challenging problem.

• We impose the rank constraint on the Laplacian matrix
of the learned similarity graph to achieve the ideal neigh-
bors assignment, such that the connected superpixels in
the graph are exactly the number of cuts and each con-
nected subgraph corresponds to one region.

• Extensive empirical results on three publicly data sets
(i.e, BSDS300, BSDS500 amd MSRC) show that our
unsupervised GWC method achieves competitive perfor-
mance to the related state-of-the-art supervised and unsu-
pervised image segmentation approaches (e.g., gPB, IS-
CRA, HOCC, MCG-S, MCG and DC).

Related Work

Image segmentation is one of the most fundamental com-
puter vision problems that has been well-studied for a
long time yet remains challenging (Liu, Seyedhosseini, and
Tasdizen 2015; Arbelaez et al. 2011; Ren and Bo 2012;
Maitin-Shepard et al. 2015; Yi and Moon 2012; Kim et al.
2014; Falcao, Udupa, and Miyazawa 2000; Sundaramoor-
thi, Yezzi, and Mennucci 2008; Willett and Nowak 2007;
Boykov and Funka-Lea 2006). Conventionally, segmenta-
tion can be grouped into two categories: 1) non-graph based
segmentation, which is solely based on boundary or re-
gional information, and 2) graph-based segmentation, which
is based on both regional and boundary information and can
generally achieve globally optimal results. Note that we

leave out of our discussion here the extensive recent liter-
atures on “object-dependent segmentation” in the image. In
this paper we are only concerned with methods that are ag-
nostic about any semantic segmentation.

First, we briefly summarize some related non-graph
works. A novel Watershed-based segmentation approach
(discrete-continuous (DC)) (Donoser and Schmalstieg 2014)
is proposed to locally predict oriented gradient signals
by analyzing mid-level patches in a discrete-continuous
setup. The predicted gradients are passed to an ori-
ented watershed transform and the results are analyzed to
obtain the hierarchical segments. In addition, Ren and
Shakhnarovich proposed ISCRA (Ren and Shakhnarovich
2013), which adaptively divides the whole region merging
process into different cascaded stages and trains a respec-
tive logistic regression model at each stage to determine
the greedy merging, starting with a fine superpixel over-
segmentation. It achieves state-of-the-art performance for
object-independent image segmentation.

Compared with non-graph based segmentation, graph-
based segmentation have been shown to produce more con-
sistent segmentation and it can be further categorized into
five categories: (1) Minimal spanning tree based meth-
ods (Peng, Zhang, and Zhang 2013), which provide a
mechanism for converting any over-segmentation into the
high-level counterparts without loss of the cluster features;
(2) Graph cut with cost functions (Arbelaez et al. 2011;
Arbeláez et al. 2014), which include minimal cuts illustrat-
ing the idea of gestalt principle and normalized cut aiming
at alleviating the bias problem toward finding small compo-
nent; (3) Graph cut on Markov random field (MRF) mod-
els (Delong and Boykov 2008), in which the mutual influ-
ences among pixels can be formulated into conditional MRF
distributions; (4) The shortest path based methods (Falcao,
Udupa, and Miyazawa 2000), which describe a certain na-
ture of the object boundaries in the image; and (5) Other
methods, which refer to several efficient graph theoretic
methods that do not belong to any of the above categories,
such as random walker (Grady 2005) and the dominant set
based method (Pavan and Pelillo 2003).

Following the graph cut segmentation, object indepen-
dent segmentation methods seek to partition an image only
based on its appearance and does not utilize the underly-
ing semantics about the scene or specific information about
target objects. One of the most recent competitive object-
independent graph cut frameworks is the higher-order cor-
relation clustering (HOCC), which is proposed in (Kim et
al. 2014), by generalizing the correlation clustering over a
hypergraph. Specifically, the hypergraph representation is
defined first and then the LP relaxation for hypergraphs is
generalized, followed by the presentation of a feature vector
which consists of pairwise and higher-order feature vectors
to characterize the relationship among superpixels over a hy-
pergraph. In addition, a Multiscale Combinatorial Group-
ing (MCG) (Arbeláez et al. 2014) is proposed by develop-
ing a fast normalized cuts algorithm, a high-performance
hierarchical segmenter, and a grouping strategy that com-
bines multiscale regions into highly-accurate object candi-
dates. They report the best results on the BSDS dataset.

1189



A substantial difference between our approach and the
previous work is that, instead of finding a cut in an arbitrary
graph that may be NP-hard, we propose a graph-without-
cut method by firstly generating a set of over-segmenting
superpixels and then learning an similarity graph between
superpixels which has exactly K connected components.

Graph-Without-Cut for Image Segmentation

In this section, we first introduce the preliminary con-
cepts for image segmentation, and then propose our Graph-
Without-Cut (GWC) method.

The framework of GWC

Given an image I consisting of pixels V , a segmentation is a
partition of V , denoted as G = {Gi}, 1 ≤ i ≤ K. Each Gi,
which is a connected set of pixels in V , is called a segment
or region, and K is the number of total segmentations. All
possible partitions form a segmentation space GV . A ground
truth segmentation Gg ∈ GV is usually generated by humans
and considered as the gold standard. The accuracy of a seg-
mentation G is measured based on its agreement with Gg .

Instead of following the conventional pipeline for im-
age segmentation, in our GWC framework (see Fig. 1), we
propose a novel perspective to solve the graph-based im-
age segmentation problem. In conventional graph-based
image segmentation methods, the similarity weights wij

are usually computed based on the features, and all the
data points are connected as just one connected compo-
nent. Ideally, if the data points are connected as exactly
K components, the pixels are naturally divided into K seg-
mentations and this segmentation is the optimal solution
for different criteria, e.g., normalized cut (Shi and Malik
2000) and minimal spanning tree (Felzenszwalb and Hut-
tenlocher 2004). In GWC, we first generate a set of over-
segmenting superpixels as a preprocessing. Then we learn
a similarity graph between superpixels which has exactly
K connected components. A superpixel is an image seg-
ment consisting of pixels that have similar visual charac-
teristics. A number of algorithms (Achanta et al. 2012;
Levinshtein et al. 2009) can be used to generate superpix-
els. Next we introduce our graph learning method.

Ideal graph learning

Suppose that for each superpixel, we extracted T features.
Let Xt = {xt

i}Ni=1 denote the feature matrix of the t-th
feature of a set of N superpixels, where t ∈ {1, ..., T}.
Y = {y1, y2, ..., yN} is the average location information for
the superpixels. The goal is to learn the similarity matrix S
between each superpixel based on different features as well
as the spatial information, and all the superpixels have ex-
actly K connected components.

An optimal graph S should be smooth on different fea-
tures as well as the spatial information, which can be formu-
lated as:

min
S,α

g (Y, S) + μ
∑T

t=1
αth

(
Xt, S

)
+ βr (S, α) (1)

where g (Y, S) is the penalty function to measure the
smoothness of S on the spatial information Y and h (Xt, S)

is the loss function to measure the smoothness of S on the
feature Xt. r (S, α) is regularizer defined on the target S
and α. μ and β are balancing parameters, and αt determines
the importance of each feature.

The penalty function g (F, S) should be defined in such a
way that close superpixels should have high similarity and
vice versa. In this paper, we define it as follows:

g (Y, S) =
∑

ij
‖yi − yj‖22sij (2)

where yi and yj are the locations of superpixels xi and xj .
Similarly, h (Xt, S) can be defined as:

h
(
Xt, S

)
=

∑
ij

∥∥xt
i − xt

j

∥∥2

2
sij (3)

Note that for simplicity, we use a distance based method
to build the similarity graph here. Other options based on
the reconstruction coefficients methods can be utilized (Nie,
Wang, and Huang 2014; Cai et al. 2011; Gao et al. 2015a;
Li et al. 2015; Song et al. 2011; Nie et al. 2011; Song et al.
2013; 2015; Gao et al. 2015b). The regularizer term r (S, α)
is defined as:

r (S, α) = ‖S‖2F + γ ‖α‖22 (4)

We further constrain that S ≥ 0,S1 = 1,α ≥ 0 and αT 1 =
1. Then we can obtain the objective function for learning the
optimal graph by replacing g (F, S), h (Xt, S) and r (S, α)
in (1) using (2), (3) and (4), as follows:

min
S,F,α

∑
ij

‖yi − yj‖22 sij + μ
∑
tij

(
αt

∥∥xt
i − xt

j

∥∥2

2
sij

)
+β ‖S‖2F + βγ ‖α‖22
s.t.S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1

(5)

The matrix S ∈ R
N×N obtained in the neighbors assign-

ment can be seen as a similarity matrix of the graph with the
N data points as the nodes. For a nonnegative similarity ma-
trix S, there is a Laplacian matrix L associated with it. Ac-
cording to the definition of Laplacian matrix, suppose each
superpixel xi is assigned a random value as fi ∈ R

K×1,
then L can be calculated as:∑

ij
‖fi − fj‖22 sij = 2tr

(
FTLF

)
(6)

where F ∈ R
N×K with the i-th row formed by fi, L =

D− St+S
2 is called the Laplacian matrix in graph theory, the

degree matrix D ∈ R
N×N is defined as a diagonal matrix

where the i-th diagonal element is
∑

j (sji + sij) /2. The
Laplacian matrix L has the following property.

Theorem 1 The number K of the eigenvalue 0 of the Lapla-
cian matrix L is equal to the number of connected compo-
nents in the graph with the similarity matrix S if S is non-
negative.

Theorem 1 indicates that if rank(L) = N − K, then
the superpixels have K connected components based on S.
Motivated by Theorem 1, we add an additional constraint
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rank(L) = N − K into (5) to achieve the ideal similarity
matrix. Thus, our new graph learning model is to solve:

min
S,α

∑
ij

‖yi − yj‖22 sij + μ
∑
tij

(
αt

∥∥xt
i − xt

j

∥∥2

2
sij

)
+β ‖S‖2F + βγ ‖α‖22
s.t.

{
S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1
rank (L) = N −K, L = f(S)

(7)

where L = f(S) = D − St+S
2 . It is difficult to solve the

problem (7). Because L = D − (
ST + S

)
/2 and D also

depends on S, the constraint rank(L) = N −K is not easy
to tackle. In the next subsection, we will propose a novel
and efficient algorithm to solve this challenging problem.

Iterative optimization

Suppose ei is the i-th smallest eigenvalue of L, we know
ei ≥ 0 since L is positive semi-definite. It can be seen that
the problem (7) is equivalent to the following problem for a
large enough value of ρ:

min
S,α

∑
ij

‖yi − yj‖22 sij + μ
∑
tij

(
αt

∥∥xt
i − xt

j

∥∥2

2
sij

)

+β ‖S‖2F + βγ ‖α‖22 + 2ρ
K∑
i=1

ei

s.t.S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1

(8)

When ρ is set to a large enough value,
∑K

i ei will be im-
posed to be close to 0, which results in rank (L) = N −K.

According to the Ky Fans Theorem (Fan 1949), we have:

K∑
i=1

ei = min
F∈RN×K ,FTF=I

tr
(
FTLF

)
(9)

Therefore, the problem (8) is further equivalent to the fol-
lowing problem:

min
S,F,α

∑
ij

‖yi − yj‖22 sij + μ
∑
tij

(
αt

∥∥xt
i − xt

j

∥∥2

2
sij

)
+β ‖S‖2F + βγ ‖α‖22 + 2ρtr

(
FTLF

)
s.t.

{
S ≥ 0, S1 = 1, α ≥ 0, αT 1 = 1
F ∈ RN×K , FTF = I

(10)

Compared with the original problem (7), the problem (10)
is much easier to solve. We propose an iterative method to
minimize the above objective function (10).

Firstly, we initialize αt = 1/T and we initialize S by the
optimal solution to the problem (5). Once these initial values
are given, in each iteration, we first update F given S and
α, and then update S and α by fixing the other parameters.
These steps are describe as below:

Update F By fixing S and α, the problem (10) is equiva-
lent to optimize the following objective function:

min
F∈RN×K ,FTF=I

tr
(
FTLF

)
(11)

The optimal solution F to the problem (11) is formed by
the K eigenvectors of L corresponding to the K smallest
eigenvalues.

Update S By fixing F and α, we can obtain S by optimiz-
ing (5). It is equivalent to optimize the following objective
function:

min
S≥0,S1=1

∑
ij

‖yi − yj‖22 sij + ρ
∑
ij

‖fi − fj‖22 sij
+β ‖S‖2F + μ

∑
tij

(
αt

∥∥xt
i − xt

j

∥∥2

2
sij

) (12)

It can be reformulated as:

min
S≥0,S1=1

∑
i

(
βsisi

T + (ai + μbi + ρci) si
T
)

⇒ min
S≥0,S1=1

∑
i

(
sisi

T + ai+μbi+ρci
β si

T
) (13)

where ai = {aij , 1 ≤ j ≤ n} with aij = ‖yi − yj‖22,
bi = {bij , 1 ≤ j ≤ n} with bij =

∑
t αt

∥∥xt
i − xt

j

∥∥2

2
and

ci = {cij , 1 ≤ j ≤ n} ∈ R
1×n with cij = ‖fi − fj‖22. It is

further equivalent to:

min
S≥0,S1=1

∑
i

(
si +

ai+μbi+ρci
2β

)2

2
(14)

Then each si can be efficiently solved by using a quadratic
programming solver, which will be introduced in the next
subsection (solution for problem (14)).

Update α By fixing F and S, we can obtain α by optimiz-
ing (5). It is equivalent to optimize the following objective
function:

min
α≥0,αT 1=1

μ
∑
t
αt

(∑
ij

∥∥xt
i − xt

j

∥∥2

2
sij

)
+ β ‖α‖22

⇒ min
α≥0,αT 1=1

μdα+ β ‖α‖22
(15)

where d = {dt, 1 ≤ t ≤ T} with dt =
∑

ij

∥∥xt
i − xt

j

∥∥2

2
sij .

Then we can be use a quadratic programming solver to ob-
tain α.

We update F, S and α iteratively until S has K connected
components, as shown in Algorithm 1.

Algorithm 1 Solution for ideal graph learning
Input: Initialized α, S, segmentation number K, parame-

ters β, γ, μ, a large enough ρ;
Output: F, S, α;

1: repeat
2: Fix S and α, calculate F according to the solution of

problem (11);
3: Fix F and α, update S by solving the problem (14);
4: Fix F and S, update α by solving the problem (15);
5: until S has K connected components or max iteration is

reached.
6: return F, S, α;

Solution for problem (14) In this subsection, we intro-
duce an efficient solution for problem (14). In the mean-
time, we present an effective method to determine the regu-
larization parameter β in the problem (14), so that we have
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fewer parameters to tune. The Lagrangian function of prob-
lem (14) is:

� (si, η,εi)=
1
2

∑
i

∥∥∥si+ ai+μbi+ρci
2β

∥∥∥2

2
−η(sTi 1−1)−sTi εi (16)

where η, εi ≥ 0 are the Lagrangian multipliers, and β is
the regularization parameter for each si. According to the
KKT condition, it can be verified that the optimal solution
si should be:

sij =

(
−aij + μbij + ρcij

2β
+ η

)
+

(17)

According to Eq.(17) and the constraint sTi 1 = 1, we have

sTi 1=
N∑
j=1

(
−dij

2β + η
)
= 1⇒η= 1

N + 1
2Nβ

N∑
j=1

dij (18)

where dij = aij + μbij + ρcij . Without loss of generality,
suppose di1, di2, ..., diN in are ordered from small to large.
If the optimal si has only P nonzero elements, then accord-
ing to (17), we know siP > 0 and si,P+1 = 0. Therefore,
we have:

− diP

2βP
+ η > 0, −di,P+1

2βP+1
+ η ≤ 0 (19)

and

sTi 1=
P∑

j=1

(− dij

2βi
+ η)=1 ⇒ η= 1

P + 1
2Pβi

P∑
j=1

dij (20)

By replacing η in (19) using (20), we have the following
inequality for βi:

P

2
diP − 1

2

P∑
j=1

dij < βi ≤ P

2
di,P+1 − 1

2

P∑
j=1

dij (21)

Therefore, in order to obtain an optimal solution si to the
problem (14) that has exactly P nonzero values, we set

βi =
P

2
di,P+1 − 1

2

∑P

j=1
dij (22)

The overall β could be set to the mean of β1, β2, ..., βN . The
number of neighbors P is much easier to tune than the regu-
larization parameter β since P is an integer and has explicit
meaning.

Experiments

We conduct experiments with two validation goals. First, we
study the influence of parameters in our algorithm. Second,
we compare our results with other state-of-the-art algorithms
on three public datasets.

Datasets We experiment with three publicly available data
sets for image segmentation: (1) Berkeley Segmentation
Data Set 300 (BSDS300) (Martin et al. 2001) consists of
all of the grayscale and color segmentations for 300 im-
ages. Specifically, it collects 12,000 hand-labeled segmen-
tations with half of them obtained from presenting the sub-
ject with a color image and the other half from presenting a
grayscale image. (2) Berkeley Segmentation Data Set 500
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Figure 2: Effect of parameters on BSDS500 dataset

(BSDS500) (Arbelaez et al. 2011) is an extension of the
BSDS300 with 200 fresh images of the same size. This
dataset consists of 500 natural images, ground-truth human
annotations and benchmarking code. (3) Microsoft Research
Cambridge (MSRC) Object Recognition Data Set cleaned
version (Malisiewicz and Efros 2007) contains 591 natural
images with dense labeling and a large number of object
categories and 591 320 × 213 natural images with single
ground truth. We utilize gPb (Arbelaez et al. 2011) to gen-
erate the over-segmentations, and we further extract color
features (32D LAB, 32D HSV, 3D LAB, 3D HSV) and tex-
ture features (64D Texton) from each superpixel.

Baselines To evaluate the performance of the GWC ap-
proach, we compare our methods with several state-of-
the-art image segmentation methods: a) non-graph-based
methods (i.e., DC (Donoser and Schmalstieg 2014) and IS-
CRA (Ren and Shakhnarovich 2013)); and b) graph based
approaches ( i.e., gPb (Arbelaez et al. 2011), HOCC (Kim et
al. 2014), MCG (single-scale hierarchy) and MCG-S (multi-
scale hierarchy) (Arbeláez et al. 2014)) on the above three
publicly available dataset.

Evaluation metrics Following (Arbelaez et al. 2011), we
use three evaluation metrics: 1) segmentation covering (Ev-
eringham et al. ) that measures averaged matching between
proposed segments with a ground truth labeling; 2) prob-
abilistic rand index (PRI) (Unnikrishnan, Pantofaru, and
Hebert 2007) that measures pairwise similarity between
two multi-label clusterings; and 3) variation of information
(VI) (Meila 2005) that measures the relative entropy be-
tween a proposed segmentation and a ground truth labeling.
For a family of machine segmentations associated with dif-
ferent scales of a hierarchical algorithm or different sets of

Table 1: Results of different methods on the BSDS300
dataset

BSDS300
Covering PRI VI

Method ODS OIS ODS OIS ODS OIS
gPb 0.59 0.65 0.81 0.85 1.65 1.47

ISCRA 0.60 0.67 0.81 0.86 1.61 1.40
HOCC 0.60 - 0.81 - 1.74 -
GWC 0.61 0.68 0.82 0.86 1.60 1.42
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Table 2: Results of different methods on the BSDS500
dataset

BSDS500
Covering PRI VI

Method ODS OIS ODS OIS ODS OIS
gPb 0.59 0.65 0.83 0.86 1.69 1.48

ISCRA 0.59 0.66 0.82 0.86 1.60 1.42
HOCC 0.60 - 0.83 - 1.79 -

DC 0.59 0.64 0.82 0.85 1.68 1.54
MCG-S 0.60 0.66 0.81 0.86 1.62 1.41
MCG 0.61 0.67 0.81 0.86 1.55 1.37
GWC 0.61 0.66 0.83 0.87 1.62 1.41

Table 3: Results of different methods on the MSRC dataset
MSRC

Covering PRI VI
Method ODS OIS ODS OIS ODS OIS

gPb 0.65 0.75 0.78 0.85 1.28 0.99
ISCRA 0.67 0.75 0.77 0.85 1.18 1.02
GWC 0.68 0.76 0.78 0.85 1.24 0.98

parameters (e.g., K for GWC), we report the segmentation
results at optimal dataset scale (ODS) and optimal image
scale (OIS).

Parameters study

There are two balancing parameters (i.e., μ and γ) affect-
ing the performance of our algorithm. In this subsection, we
study the performance variation with different parameters.
Due to the space limit, we only report the results at ODS
on the BSDS500 dataset in Fig. 2. We can see that the pa-
rameter μ is important to the performance. In general, when
μ < 102, an unsatisfactory performance is achieved, prob-
ably due to that visual features are assigned with a small
weight. By contrast, the performance is not very sensitive to
γ. When γ is set to a large constant, similar weights αv will
be assigned to different features. On the other hand, when γ
is small, GWC tends to depend on the best performance of a
single feature.

Results

We show the comparison of our GWC with the baselines
in Table 1,2 and 3 and also in the quantitative examples in
Fig. 3. From these results, we have several observations.
• Compared with other state-of-the-art graph-based meth-

ods, our method outperforms most of them, and can
achieve comparable performance with the current best re-
sult (MCG). Specifically, the results for HOCC are not
available on the MSRC dataset, but on the BSDS500
datasets GWC performs better than HOCC in terms of all
metrics at ODS. In addition, the results for MCG-S and
MCG are both only available on the BSDS500 dataset,
the results indicate that GWC is comparable with MCG
in terms of Covering and PRI, and better than MCG-S.

• We can see that by learning an ideal graph, the perfor-
mance is improved compared with gPb around (0.02 in

Figure 3: The qualitative results of GWC on BSDS500. first
column: input images, second: results of gPb (Arbelaez et
al. 2011), third: our results, fourth: ground truth.

covering ODS, 0.013 in covering OIS, 0.01 PRI OIS, 0.05
in vi ODS and 0.04 in OIS) and ISCRA about (0.013 for
covering at ODS, 0.01 for PRI at ODS and 0.01 for VI at
ODS). The result for the DC is available on the BSDS500
dataset and our experimental results show that GWC per-
forms better than DC in terms of all evaluation metrics.

• The quantitative examples show that our GWC can
achieve promising performance in practice. Some of the
segmentation results are even more reasonable than the
groundtruth. However, our GWC fails to segment the re-
gions when the adjacent components have similar visual
features (e.g., the hairs of the girl and the trees in the back-
ground are very similar in the fourth line).

Conclusions

This paper proposed the GWC framework by simultane-
ously learning the graph similarity matrix and image seg-
mentation instead of first organizing the image elements into
graphs and then cutting the generated graph for segmen-
tation. Based on the spatial and visual information, each
vertex is assigned with adaptive and optimal neighbors for
graph similarity learning. By using the Laplacian matrix, the
connected components in the generated similarity graph are
exactly equal to the segmentation numbers. Experimental
results show that the proposed unsupervised GWC achieved
comparable results or even outperformed other image seg-
mentation algorithms on various datasets.
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