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Abstract

Building accurate predictive models of clinical multi-
variate time series is crucial for understanding of the
patient condition, the dynamics of a disease, and clini-
cal decision making. A challenging aspect of this pro-
cess is that the model should be flexible and adaptive
to reflect well patient-specific temporal behaviors and
this also in the case when the available patient-specific
data are sparse and short span. To address this prob-
lem we propose and develop an adaptive two-stage fore-
casting approach for modeling multivariate, irregularly
sampled clinical time series of varying lengths. The
proposed model (1) learns the population trend from a
collection of time series for past patients; (2) captures
individual-specific short-term multivariate variability;
and (3) adapts by automatically adjusting its predictions
based on new observations. The proposed forecasting
model is evaluated on a real-world clinical time series
dataset. The results demonstrate that our approach is
superior on the prediction tasks for multivariate, irreg-
ularly sampled clinical time series, and it outperforms
both the population based and patient-specific time se-
ries prediction models in terms of prediction accuracy.

Introduction
With a wide adoption and availability of electronic health
records (EHRs), the development of models of clinical mul-
tivariate time series (MTS) and tools for their analysis is
becoming increasingly important for meaningful applica-
tions of EHRs in computer-based patient monitoring, ad-
verse event detection, and improved patient management.
(Bellazzi et al. 2000; Clifton et al. 2013; Lasko, Denny,
and Levy 2013; Liu and Hauskrecht 2013; Liu, Wu, and
Hauskrecht 2013; Schulam, Wigley, and Saria 2015; Ghas-
semi et al. 2015; Durichen et al. 2015).

In general, a number of models representing various time
series data and their behaviors exist (Hamilton 1994). How-
ever, modeling of clinical time series data still presents nu-
merous challenges that come from special characteristics
of clinical data (Liu and Hauskrecht 2015). Briefly, clinical
time series are distinguished from other time series data due
to the following characteristics:
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• multiple variables: the real-world clinical dynamics are
multivariate and they often exhibit interactions and co-
movements among different time series.

• irregular samples: sequential observations are collected at
different times, and the time elapsed between two consec-
utive observations may vary.

• length variability: the number of observations in each data
sequence is limited and the duration they span may vary a
lot from patient to patient.

The objective of this work is to study and develop models
that can be used for accurate clinical time series forecast-
ing. More specifically we are interested in developing mod-
els and methods that can predict future values of MTS for
a patient given a history of past observations. This problem
is rather challenging for two reasons (1) the time series of
past observations made for a patient of interest may be rel-
atively short so it may be very hard to learn a good time
series model just from one patient data; (2) the patient-to-
patient variability may be large so it is unclear if the popu-
lation based model derived from many samples of different
patients will be sufficient to support the predictions. The ma-
jority of existing approaches in the literature tackle the clin-
ical time series forecasting problem by taking one of the two
“extreme” approaches: they either build a population based
model or a patient-specific model ignoring what is known
about the population. In this work we seek to develop a new
approach that aims to benefit from the population trend ex-
tracted from past data collection and at the same time adapt
to patient-specific data, thus allowing one to make more ac-
curate MTS predictions.

We propose and develop a new two-stage adaptive fore-
casting model to represent both the population and the
patient-specific multivariate interactions of clinical MTS. In
the first stage, we learn a population model from clinical
MTS sequences from many different patients. In this pa-
per we use and experiment with a linear dynamical system
(LDS) (Kalman 1960) whose parameters are learned with
the help of the EM algorithm. In the second stage, we first
express the time series of past observations for a patient
in terms of residuals (or differences in between predictions
made by the population model and actually observed val-
ues), which reflect the patient-specific deviations from the
population model. Then we use and model these deviations
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with a multi-task Gaussian process (MTGP) (Bonilla, Chai,
and Williams 2007). In the forecasting phase, we automati-
cally adjust the predictions from the population model based
on the new patient-specific observations.

Overall this paper makes the following contributions:

• We develop a new two-stage model to represent the multi-
variate, irregularly sampled clinical time series, which not
only represents the long-term population trend of the dy-
namics, but captures the multivariate interactions within
each patient-specific dynamic.

• Our model is self-adaptive. The model is able to auto-
matically adapt its predictions according to the newly ob-
served data for each individual patient without retraining
the model.

• We design and evaluate our approach from both qualita-
tive and quantitative perspectives by using a real-world
clinical MTS dataset.

The remainder of the paper is organized as follows: Back-
ground Section introduces the basics of the LDS, GP and
MTGP models for time series modeling. Comparisons with
relevant researches are discussed. In Methodology Section,
we describe the details about our two-stage adaptive fore-
casting model, which include a population model learned
from the entire collection of sequences and a model of the
multivariate temporal interactions based on MTGP. In Ex-
periment Section, we (1) qualitatively visualize the predic-
tions made by our forecasting model; (2) quantitatively show
that our model supports better MTS predictions than alterna-
tive approaches on a clinical data derived from the Complete
Blood Count panel. We summarize our work and outline po-
tential future extensions in Conclusion Section.

Background
In this section, we review the basics of three models widely
used to represent time series data: the linear dynamical sys-
tem (LDS), Gaussian process (GP) and multi-task Gaussian
process (MTGP). After that, we discuss the differences be-
tween our model and existing approaches.

Notation
We denote clinical MTS data D as a collection of observed
value set Y and the time stamp set X which contains obser-
vations and time stamps, i.e, D = (Y,X ). We denote a time
series data set with N samples as D = {D1,D2, · · · ,DN}
and correspondingly, we have Y = {Y1,Y2, · · · ,YN},
X = {X1,X2, · · · ,XN} and Dl =< Yl,Xl >, l =
1, 2, · · · , N .

Without loss of generality, for each MTS sequence Dl, we
assume it has n dependent time series with the same length
Tl. Hence, we represent Yl as an n × Tl matrix. Let yl

i,:

and yl
t be the ith row and tth column of Yl. Let ylit be the

tth observation in the ith time series in Yl. In this work, we
assume time series within each sample Dl are obtained at
the same time stamps and Xl can be concisely represented
as a Tl × 1 vector xl. Let xl

t be the tth time stamp in xl.
Let Ez[f(·)] denote the expected value of f(·) with re-

spect to z. For both vectors and matrices, the superscript

(·)� denotes the transpose. Let ⊗ denote the Kronecker
product. For the sake of notational brevity, we omit the ex-
plicit sample index (l) in the rest of Background section.

Linear Dynamical System
The linear dynamical system (LDS) models real-valued
MTS {yt ∈ R

n}Tt=1 using hidden states {zt ∈ R
d}Tt=1:

zt = Azt−1 + εt; yt = Czt + ζt (1)
Briefly, {zt} is generated via the transition matrix A ∈

R
d×d. Observations {yt} are generated from zt via the

emission matrix C ∈ Rn×d (see eq.(1)). {εt}Tt=1 and
{ζt}Tt=1 are i.i.d. multivariate normal distributions with
mean 0 and covariance matrices Q and R respectively. The
initial state (z1) distribution is also multivariate normal with
mean ξ and covariance matrix Ψ. The complete set of the
LDS parameters is Ω = {A,C,Q,R, ξ,Ψ}. The LDS is
arguably the most commonly used time series model for
real-world engineering and financial applications, such as
time series prediction (Rogers, Li, and Russell 2013; Li et
al. 2009) and visual tracking (Lee, Kim, and Kweon 1995;
Funk 2003).

Gaussian Process
The Gaussian process (GP) is a popular nonparametric non-
linear Bayesian model in statistical machine learning (Ras-
mussen 2006). In time series modeling, each GP is used to
model an individual time series, which is represented by the
mean function m(xt) = E[f(xt)] and the covariance func-
tion KG(xt, xt′) = E[(f(xt)−m(xt))(f(xt′)−m(xt′))],
where f(x) is a real-valued process and xt and xt′ are two
time stamps. The GP can be used to calculate the posterior
distribution p(f(x∗)|(x,yi,:)) of f values for an arbitrary
set of time stamps x∗, given a set of observed values yi,:

from time series i at time stamps x.
Due to the ability of exact inference, GP based model are

widely used in time series regression and forecasting tasks,
where time stamps are modeled as the input of GP and ob-
servations are modeled through the predicted mean function
of the time series (Stegle et al. 2008; Clifton et al. 2013;
Lasko, Denny, and Levy 2013; Liu and Hauskrecht 2014).

Multi-task Gaussian Process
The multi-task Gaussian process (MTGP) is an extension
of GP which models multiple tasks (e.g., multivariate time
series) simultaneously by utilizing the learned covariance
between related tasks. MTGP uses KC to model the simi-
larities between tasks and uses KG to capture the temporal
dependence with respect to time stamps. The covariance ma-
trix of MTGP is shown as follows:

KM = KC ⊗KG +D ⊗ IT (2)
where KC is a positive semi-definite (PSD) matrix that spec-
ifies the inter-task similarities and KC

ij measures the similar-
ity between task i and task j. D is an n× n diagonal matrix
in which Dii is the noise variance δ2i for the ith task.

Exact inference of MTGP can be done by using the
standard GP formulations and the details can be found in
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(Bonilla, Chai, and Williams 2007) and its clinical applica-
tion can be found in (Ghassemi et al. 2015; Durichen et al.
2015).

Related Work
The majority of existing work about clinical time series fore-
casting models each clinical time series separately (Marlin et
al. 2012; Clifton et al. 2013; Lasko, Denny, and Levy 2013;
Liu and Hauskrecht 2014; Schulam, Wigley, and Saria 2015)
which does not allow one to represent dependences among
the different time series. Our model deals with multivariate
data and aims to capture interactions among all variables and
their dynamics.

The works that try to capture MTS and dependences
among its time series include (Ghassemi et al. 2015;
Durichen et al. 2015). In (Ghassemi et al. 2015; Durichen et
al. 2015) the authors apply MTGP to clinical MTS modeling
and forecasting. However, their models that are learned from
time series for just one patient are very simple and results in
either constant or simple parametric mean functions. This is
too restrictive to represent real clinical MTS with large vari-
ability. In addition, this approach does not take advantage of
time series collected for other patients. Our approach tack-
les the problem in two stages and with a combination of two
models: we first use an LDS to model the population trend,
and then take advantage of MTGP to capture the individual-
specific short-term variability. (Fox et al. 2011) utilizes the
beta process to build the joint model for multiple related time
series (not necessarily clinical). It requires intensive MCMC
posterior computations, which is often infeasible to do in
real clinical settings.

Finally, we would like to note that the majority of methods
mentioned above fail to generalize to forecasting models for
a collection of clinical MTS of varying lengths. They are not
able to adapt their forecasts when new values are observed
without retraining the model.

Methodology
In this section, we propose a two-stage model that (1) is
learned from a collection of time series data of varying
lengths; (2) captures the patient-specific short-term multi-
variate interactions; (3) automatically adjusts its predictions
when new observations are obtained without retraining the
model.

Stage 1: Learning A Population Model
In the first stage, we would like to learn a population model
from all available data sequences to represent the trend of
the entire population. We choose an LDS model to model
the population trend, which is a classical and widely used
discrete-time model for real-valued sequence analysis. The
LDS is Markovian and assumes the dynamic behavior of
the system is captured well using a small set of real-valued
hidden-state variables and linear state transitions corrupted
by a Gaussian noise. It has a mathematically predictable be-
havior, and both exact inference and predictions for LDS
models can be done efficiently.

Direct Value Interpolation In spite of the advantages
of LDS models, they are restricted to discrete time do-
main where observations are regularly sampled. In order
to apply the discrete-time LDS model over our irregu-
larly sampled clinical data, we follow (Adorf 1995; Dezh-
bakhsh and Levy 1994; Åström 1969; Bellazzi et al. 1995;
Kreindler and Lumsden 2006; Rehfeld et al. 2011; Liu and
Hauskrecht 2014) and apply the direct value interpolation
(DVI) technique to discretize each irregularly sampled clin-
ical sequence and that replaces it with a regularly sampled
time series data.

The DVI approach assumes that all observations are col-
lected regularly with a pre-specified sampling frequency r.
However, instead of actual readings, the values at these time
points are estimated from readings at time points closest to
them using various interpolation techniques. The interpo-
lated (regular) time series, i.e., ỹl

i,:, is then used to train a
discrete-time LDS model. We put a tilde sign (̃·) over Y , Yl,
yl
i,: and yl

t to indicate the discretized observations. T̃l is the
length of discretized sequence for patient l. The approach is
illustrated in Figure 1.

rrr

Time

Va
lu
e

ỹl
i,T̃l−1ỹli,1 ỹli,2 ỹl

i,T̃l
ỹli,t̃ỹli,t̃−1 ỹli,t̃+1 ỹli,t̃

yli,t+1

yli,t

Figure 1: Transformation of an irregularly sampled time se-
ries yl

i,: to a discrete time series ỹl
i,: by DVI. The empty

circles denote the interpolated values with no readings. The
right panel illustrates the linear interpolation process.

A possible limitation of the DVI data transformation is
possible information loss: as we can see from Figure 1,
some observations in individual time series are discarded
during this discretization process. However, given that LDS
is building a coarse level population model over the entire
collection of data (many patients), this loss is less important.
We also note that patient-specific observations are not dis-
carded in the second stage of our approach that captures fine
grained patient-specific multivariate interactions by MTGP.

EM Learning In order to learn the unified population
model over the entire discretized clinical sequences, we
build our model upon the probabilistic formulation of the
LDS model and follow the EM learning algorithm proposed
by (Ghahramani and Hinton 1996). We extend its formula-
tion to multiple sequences setting. The log joint probability
distribution of the LDS model over the entire collection of
clinical sequences of varying lengths is:
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log
(
p(Ỹ,Z)

)
=

N∑
l=1

log p(zl1) +

N∑
l=1

T̃l∑
t=1

log p(ỹl
t|zlt)

+

N∑
l=1

T̃l∑
t=2

log p(zlt|zlt−1) (3)

where Z = {Z1,Z2, · · · ,ZN} and Zl is the corresponding
hidden state sequence of Ỹl.

E-Step Since the hidden state Markov chain collection Z
defined by the LDS is unobserved, we cannot learn the LDS
directly. Instead, we infer the hidden state expectations. The
E-step infers a posterior distribution of latent states Z given
the observation sequences Ỹ , p(Z|Ỹ).

The E-step requires computing the expected log likeli-
hood of the log joint probability with respect to the hid-
den state distribution, i.e., Q = EZ [log p(Z, Ỹ)], which
depends on three types of sufficient statistics E[zlt|Ỹl],
E[zlt(z

l
t)
�|Ỹl] and E[zlt(z

l
t−1)

�|Ỹl]. Here we follow the
backward algorithm in (Ghahramani and Hinton 1996) to
compute them. The backward algorithm is presented in Sec-
tion A2 in the supplemental material.

Q =
N∑
l=1

EZl

[
log p(zl:,1)

]
+

N∑
l=1

T̃l∑
t=1

EZl

[
log p(ỹl

t|zlt)
]

+

N∑
l=1

T̃l∑
t=2

EZl

[
log p(zlt|zlt−1)

]
(4)

M-Step In the M-step, we try to find Ω that maxi-
mizes the likelihood lower bound Q (eq.(4)). As we can
see, Q function is differentiable with respect to (Ω =
{A,C,R,Q, ξ,Ψ} ). Each of these parameters is estimated
similarly to (Ghahramani and Hinton 1996) by taking the
corresponding derivative of the eq.(4), setting it to zero, and
by solving it analytically. Due the the space limit, update
rules for A,C,R,Q, ξ,Ψ are listed in Section A3 in the sup-
plemental material.

Stage 2: Learning Multivariate Interaction Models
A population model built from a collection of clinical data
for multiple patients is crucial since each individual se-
quence is usually very short. The learned model from the
entire population is more robust and stable. However, the
prediction task is performed patient by patient and the fore-
casting model should also reflect and take into account the
variations specific to the current patient. To address this
problem, we model the patient-specific multivariate interac-
tions by using an MTGP. More specifically, instead of sim-
ply modeling the clinical time series trends (the mean func-
tion of MTGP) by using constants or simple known para-
metric forms (e.g., linear functions) (Ghassemi et al. 2015;
Durichen et al. 2015), we use the population model (learned
in Stage 1) to reflect the time series tendency and build an
MTGP on a residual signal that reflects the deviations of

patients’ true observations and the predictions made by the
population LDS model. We define the multivariate residual
time series as follows:
Definition 1. (MULTIVARIATE RESIDUAL TIME SERIES)
For each patient l, given time series Yl and its corresponding
predictions Ŷl from model Ω, a multivariate residual time
series Rl represents the deviations from Yl to Ŷl, i.e., Rl =

Yl − Ŷl.
Notice that each residual time series Rl is computed by

using the true observations Yl (not the discretized sequence
Ỹl), there is no information loss for each patient under the
prediction task and Rl is irregularly sampled.

The multivariate residual time series reflect each patient’s
unique variations from the general population and they are
distinguished patient by patient. Furthermore, clinical events
usually only affect a handful of measurements within a small
time window. Hence, for each patient l, we model these
transient deviations nonparametrically using an MTGP. The
MTGP has mean 0 and a squared exponential covariance
function (eq.(2)), which is the most frequently-used exam-
ple in literature (Rasmussen 2006). In eq.(2), KG is defined
as follows:

KG(xi,t, xj,t′) = α exp
(
− (xi,t − xj,t′)

2

2β2

)
(5)

The complete parameter set Λ in the MTGP model is
Λ = {α, β, δi,KC} where i = 1, · · · , n. In this work, we
adopt the Cholesky decomposition and the “free-form” pa-
rameterization techniques (KC = LL�) to learn the param-
eter set Λ by minimizing the negative log marginal likeli-
hood via gradient descent (Rasmussen 2006; Ghassemi et
al. 2015).

Usually the MTGP model has the computation limitation
that it has O(n3T 3) compared with n×O(T 3) for standard
GP models (T is the length of the time series). However, this
limitation is not as relevant in our application setting, given
that the number of clinical observations is very limited and
clinical time series are usually short span.

Adaptive Prediction
In the real clinical setting, a successful forecasting model
needs to be adaptive, that is, when newly observed values
are obtained, the model should efficiently adapt to the new
change and utilize new values to make better predictions. In
this work, we develop a new adaptive prediction algorithm
based on the Kalman filtering algorithm (Kalman 1960) that
utilizes our two-stage forecasting model.

Let u denote the current patient we consider in our predic-
tion task. Yu is an n× Tu matrix which denotes the current
observed values for patient u. Given an arbitrary future time
stamp t∗ (t∗ > Tu), the value ŷu

t∗ is predicted as follows:

Step 1. Compute the discretized observations Ỹu by using
DVI on Yu.

Step 2. Infer patient-specific hidden dynamics by using
population model Ω and Ỹu. This step adaptively com-
putes the patient-specific hidden state Zu using patient’s
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latest observations. Details are provided in Section A1 in
the supplemental material1.

Step 3. Make predictions by using the population model Ω
and Zu. Note that we need to predict the value at time
points closest to the target time t∗, and after that, apply the
interpolation approach to estimate the target value. The
prediction made by the population model is ŷu

t∗(Ω)
Step 4. Use the population model to predict patient u’s

known observations (Yu) adaptively, denoting as Ŷu.
Compute the residual time series for patient u, i.e., Ru =

Yu − Ŷu.
Step 5. Learn the MTGP model Λu from Ru to capture the

patient-specific short-term variability.
Step 6. Predict patient-specific short-term variability
ŷu
t∗(Λ

u) by using Λu at the target time t∗.
Step 7. Compute the final prediction ŷu

t∗ by combining
ŷu
t∗(Ω) and ŷu

t∗(Λ
u), i.e., ŷu

t∗ = ŷu
t∗(Ω) + ŷu

t∗(Λ
u).

Summary
Algorithm 1 summarizes our two-stage adaptive forecasting
model and its learning and prediction parts.

Algorithm 1 Learning and Prediction Procedures
INPUT:
• Train data collection D = {< Yl,xl >}, where l = 1, · · · , N .
• DVI sampling frequency r.
• Number of hidden states in LDS d.
• Current observations Yu for patient u who is being predicted.
• An arbitrary future time stamp t∗ (t∗ > Tu).
PROCEDURE:
1: // Stage1: Learning the population model.
2: {Ỹl} = DV I({Yl}, {xl}, r).
3: Ω = LearnLDS({Ỹl}).
4: // Stage2: Learning the multivariate interaction model.
5: Compute residual time series Ru.
6: Λu = LearnMTGP (Ru).
7: // Adaptive Prediction: Predicting ŷu

t∗ by Ω and Λu.
8: Trend prediction: ŷu

t∗(Ω) = PredictLDS(Ω, t∗).
9: Variability prediction: ŷu

t∗(Λ
u) = PredictMTGP (Λu, t∗).

10: ŷu
t∗ = ŷu

t∗(Ω) + ŷu
t∗(Λ

u).
OUTPUT: Prediction at time stamp t∗: ŷu

t∗.

Experimental Evaluation
In this section we evaluate our approach on a real-world clin-
ical dataset. We demonstrate the benefits our adaptive ap-
proach both (1) qualitatively by visualizing time series pre-
dictions made for one of the patients, and (2) quantitatively
by comparing the prediction accuracy of our two-stage adap-
tive forecasting model to alternative approaches. We would
also like to note that the hyper parameters (e.g., DVI sam-
pling frequency r, number of hidden states in LDS d) used
in our methods are selected (in all experiments) by the in-
ternal cross validation approach while optimizing models’
predictive performance.

1The supplemental material can be found at http://www.
zitaoliu.com/download/aaai2016 sup.pdf.

Clinical Data
We test our two-stage adaptive model on a clinical MTS
data obtained from EHRs of post-surgical cardiac patients
in PCP database (Hauskrecht et al. 2010; 2013). We take
500 patients from the database who had their Complete
Blood Count (CBC) tests 2 done during their hospital-
ization. The MTS data consists of six individual CBC
lab time series: mean corpuscular hemoglobin concentra-
tion(MCHC), mean corpuscular hemoglobin(MCH), mean
corpuscular volume(MCV), mean platelet volume(MPV),
red blood cell(RBC) and red cell distribution width(RDW).
In the following experiments, we have randomly selected
100 patients out of 500 as a test set and used the remain-
ing 400 patients for training the models.

Baseline
We compare our proposed approach (AdaptLDS+reMTGP)
to the following baselines, which are widely used in both
clinical pharmacology and machine learning communities:

• Mean of the entire population (P Mean).
• Mean of each individual patient (I Mean).
• Gaussian process regression model (GP) for each individ-

ual time series. A squared exponential covariance func-
tion is used (eq.(5)). (Rasmussen 2006)

• Multi-task Gaussian process model (MTGP) for mul-
tivariate time series. A squared exponential covariance
function is used (eq.(2)). (Ghassemi et al. 2015; Durichen
et al. 2015)

• An LDS-based population model without adaptive pre-
diction (LDS). LDS models are widely used forecasting
models from dynamic Bayesian network (DBN) family
(Murphy 2002).

• An LDS-based population model with adaptive prediction
(AdaptLDS).

• Combination of an LDS-based population model
with adaptive prediction and Gaussian process regres-
sion model for each individual residual time series
(AdaptLDS+reGP), which is a simplified version of our
model.

Evaluation Metrics
We evaluate and compare the performance of the different
methods by calculating the average Mean Absolute Percent-
age Error (Avg-MAPE) of models’ predictions. Avg MAPE
measures the prediction deviation proportion in terms of true
values:

Avg-MAPE =

∑N
l=1

∑n
i=1

∑Tl

t=1 |1− ŷlit/y
l
it|

n
∑N

l=1 Tl

× 100%

where | · | denotes the absolute value; ylit and ŷlit are the tth
true and predicted values from time series i for patient l.

2CBC panel is used as a broad screening test to check for such
disorders as anemia, infection, and other diseases.
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Figure 2: Clinical MTS predictions for one patient. The population based LDS model is trained on 400 patient sequences.

Table 1: Prediction results on a real-world clinical dataset.

Method P Mean I Mean GP MTGP LDS AdaptLDS AdaptLDS+reGP AdaptLDS+reMTGP

Avg-MAPE 6.61 4.37 3.45 3.36 7.19 2.71 2.70 2.69

Qualitative Results
We first show the benefit of adaptation qualitatively. Figure
2 shows the one-step-ahead clinical MTS predictions results
for one patient from our test set. (Due to space limit, more
results can be found in Section A4 in the supplemental mate-
rial) The population model is trained on a 400-patient clini-
cal MTS training set. As we can see from Figure 2, (1) the in-
dividual patient-specific time series are noisy and short span.
Since the population based model is learned from the en-
tire population and the predictive nature of LDS (predicting
by matrix multiplication), the predictive trajectory is smooth
and tends to converge to the mean in the long run, which
is insufficient to reflect the changes of specific patient-level
dynamics; and (2) due to the patient-specific variability, the
individual patient time series may deviate from the popula-
tion trend, as seen in MCV and RDW time series in Figure
2, which limits the applicability of the population model. In
the contrary, AdaptLDS is able to quickly adapt to the past
values obtained for the current patient and provide a better
fit, as observed, for example, in RDW time seriesin Figure
2.

Quantitative Results
In this section, we quantitatively compute and compare
the one-step-ahead prediction accuracy of the proposed
method AdaptLDS+reMTGP with various state-of-the-art
approaches. These methods are widely used in both clinical
pharmacology and machine learning communities to model
collections of irregularly sample multivariate time series se-
quences. Given the short span characteristic and the fact that
the median length of our clinical data is 14, we predict the

last four observations for each patient dynamic in test data.
The results are shown in Table 1. As we can see from Table
1, all adaptive methods (AdaptLDS, AdaptLDS+reGP and
AdaptLDS+reMTGP) perform significantly better than other
population based (P Mean and LDS) and individual based
methods (I Mean, GP and MTGP). Furthermore, by model-
ing the patient-specific short-term variability of time series
AdaptLDS+reMTGP approach gives the best overall predic-
tive performance, slightly outperforming predictions made
by both AdaptLDS and AdaptLDS+reGP methods.

Conclusion
In this paper, we presented a two-stage adaptive forecasting
model for irregularly sampled multivariate clinical time se-
ries data. Comparing with the traditional forecasting models,
the advantages of our model are: (1) it can be learned from
a collection of varying-length clinical time series which
have multiple variables and are irregularly sampled; and
(2) it is able to make accurate MTS predictions. Experi-
mental results on a real-world irregularly sampled multi-
variate clinical dataset demonstrated that our model outper-
forms other state-of-the-art forecasting approaches in terms
of Avg-MAPE. In the future, we plan to study switching-
state and controlled dynamical systems and their applica-
tions in clinical MTS modeling and forecasting.
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