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Abstract
In multi-label learning, there are two main challenges: miss-
ing labels and class imbalance (CIB). The former assumes
that only a partial set of labels are provided for each train-
ing instance while other labels are missing. CIB is observed
from two perspectives: first, the number of negative labels
of each instance is much larger than its positive labels; sec-
ond, the rate of positive instances (i.e. the number of pos-
itive instances divided by the total number of instances) of
different classes are significantly different. Both missing la-
bels and CIB lead to significant performance degradation. In
this work, we propose a new method to handle these two
challenges simultaneously. We formulate the problem as a
constrained submodular minimization that is composed of a
submodular objective function that encourages label consis-
tency and smoothness, as well as, class cardinality bound
constraints to handle class imbalance. We further present a
convex approximation based on the Lovasz extension of sub-
modular functions, leading to a linear program, which can
be efficiently solved by the alternative direction method of
multipliers (ADMM). Experimental results on several bench-
mark datasets demonstrate the improved performance of our
method over several state-of-the-art methods.

1 Introduction
Multi-label learning (ML) assumes that one instance can be
assigned to multiple classes simultaneously. For example,
one image can be annotated with several tags, and one docu-
ment can be associated with multiple topics. Although many
multi-label learning methods have been proposed in recent
years, a main challenge remains for this problem, i.e., the
lack of completely labeled training instances. This is im-
portant because in many real life applications, most training
instances are only partially labeled, while other labels are
not provided or missing. One such example is image an-
notation, a human labeler can only feasibly annotates each
training image with a subset of tags, especially when the
number of classes/tags is large. Learning from such partially
labeled instances is referred to as the multi-label learn-
ing with missing labels (MLML) problem (Wu et al. 2014;
Yu et al. 2014).

Several previous works have tried to handle the MLML
problem, such as (Goldberg et al. 2010; Cabral et al. 2011;
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Kapoor, Viswanathan, and Jain 2012; Xu, Jin, and Zhou
2013; Wu et al. 2014; Yu et al. 2014; Wu et al. 2015;
Chen et al. 2015). However, most of them disregard another
important challenge in multi-label learning, i.e., class im-
balance (CIB), which has two different phenomena. Firstly,
each instance is assigned with only a few positive labels,
while most other labels are negative. We refer to this type of
class imbalance as CIB-1 in this work. Secondly, the propor-
tions of positive instances of different classes may be signifi-
cantly different. We refer to this type of CIB as CIB-2 in this
work. CIB-1 often occurs in binary classification problems,
while CIB-2 is more widely encountered in multi-label clas-
sification problems. It has been observed (Sahare and Gupta
2012; Zhang and Hu 2014) that both CIB-1 and CIB-2 are
likely to lead to the performance degradation of many popu-
lar models, such as SVM and neural networks.

The more challenging case is missing labels and two types
of class imbalances co-exist in a multi-label learning prob-
lem. This is becuase the bias between the positive and neg-
ative labels becomes larger than where there is no missing
labels. Thus the missing labels tend to be negative labels
with the larger degree, as the amount of missing labels in-
creases. To date, there only exist a few works (Zhang, Li,
and Liu 2015; Petterson and Caetano 2010) specifically con-
sider CIB-1, but no existing work can handle CIB-1 and
CIB-2 simultaneously, in particular in the context of MLML.

The goal of this work is to develop a unified model to
handle missing labels and class imbalance jointly. We for-
mulate the problem as a transductive learning problem that
include five components that are label consistency, instance-
level and class-level label smoothness, and two types of class
cardinality (lower and upper) bounds. The first three com-
ponents are used to propagate the label information from the
provided labels to missing labels, and the latter two compo-
nents are included to handle two types of the class imbalance
problem. We first formulate a unified model that combines
these components as a constrained submodular minimiza-
tion problem (CSM). However, due to the class cardinality
constraint, it is a NP-hard problem. Utilizing the Lovasz ex-
tension of submodular function, we approximate CSM by a
continuous linear programming (LP) with linear constraints.
The LP problem is efficiently solved by alternative direc-
tion method of multipliers (ADMM). As the final output,
the signs of the continuous labels are adopted as the discrete
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Figure 1: The overall framework of the proposed model.

class labels. A graphical illustration of the overall frame-
work is presented in Figure 1.

The main contributions of this work include: (1) we pro-
pose a unified model to jointly handle missing labels and
class imbalance in multi-label learning by incorporating sev-
eral types of prior knowledge; (2) the unified framework is
formulated as a constrained submodular minimization prob-
lem, of which a convex approximation is also provided based
on the Lovasz extension of the submodular function; (3) ex-
periments on several benchmark multi-label datasets verify
the efficacy of the proposed method, on handling both miss-
ing labels and CIB, as well as its improvements over the
state-of-the-art methods.

2 Related Work
We briefly review multi-label learning methods that handle
missing labels and handle class imbalance.

Multi-label learning methods handling missing labels can
be generally partitioned into four categories. (i) Miss-
ing labels can be treated as negative labels, which will
bring in undesired label bias, such as (Chen et al. 2008;
Sun, Zhang, and Zhou 2010; Bucak, Jin, and Jain 2011;
Chen, Zheng, and Weinberger 2013; Wang et al. 2014;
Wang, Si, and Zhang 2014; Chen et al. 2015). When mas-
sive missing labels exist, many ground-truth positive labels
will be incorrectly initialized as negative labels, leading to
significant performance degradation. (ii) Missing labels can
be augmented into the label set as a special type of labels.
Wu et al. (Wu et al. 2014; 2015) propose to use three dif-
ferent labels, including positive labels +1, negative labels
−1, and missing labels 0 to model the learning problem.
A similar setting of using {1, 0, 1

2} is also used (Wu, Lyu,
and Ghanem 2015). The label bias is avoided in these three
works. (iii) Techniques in matrix completion (MC) (John-
son 1990) is borrowed to handle missing labels, as in (Gold-
berg et al. 2010; Cabral et al. 2011; Xu, Jin, and Zhou 2013;
Yu et al. 2014). In (Goldberg et al. 2010; Cabral et al. 2011;

Xu, Jin, and Zhou 2013), a recent work known as LEML
(Yu et al. 2014) proposes an empirical risk minimization
(ERM) framework to handle missing labels. Both MC-based
methods and LEML exploit the mask matrix to avoid the la-
bel bias and utilize the low rank assumption to explicitly
embed the label dependencies. (iv) Missing labels can be
treated as latent variables in probabilistic models, including
Bayesian networks (Kapoor, Viswanathan, and Jain 2012;
Vasisht et al. 2014; Bi and Kwok 2014) and conditional
RBMs (Li, Zhao, and Guo 2015). However, all the afore-
mentioned work assumes balanced positive and negative
training data labels, though some of them simply set differ-
ent costs to positive and negative labels in the loss function.
Class imbalance has not been well handled in these models.

On the other hand, class imbalance (CIB) has not been ex-
tensively studied in the multi-label learning context. There
are two main categories of methods here. One category is
to directly maximize the imbalance-specific metric in multi-
label learning, such as the F1−macro in (Petterson and Cae-
tano 2010; Dembczynski et al. 2013). Another category is
recently proposed in (Zhang, Li, and Liu 2015), where the
binary-class imbalance classifier for the current class and the
multi-class imbalance classifier for other classes are aggre-
gated to make final predictions. However, it only consid-
ers CIB-1 in supervised multi-label learning scenarios, while
CIB-2 and missing labels are ignored. In contrast, we handle
CIB by embedding linear constraints, which are independent
of any specific metric or base-learner. Moreover, to the best
of our knowledge, no previous work has been developed to
handle missing labels and the two CIB challenges jointly.

3 Proposed Model

Given a multi-dimensional dataset X = (x1, · · · ,xn) ∈
Rd×n, each instance xi corresponds to a multi-dimensional
data vector and is associated with m different classes
{c1, . . . , cm}. An incomplete label matrix Y ∈
{−1, 0,+1}m×n is also provided, where Yji = +1 means
xi is associated with cj (i.e. the positive label), Yji = −1
means cj does not exist in xi (i.e. the negative label),
and Yji = 0 denotes the missing label. The missing la-
bel proportion in the training label matrix is denoted as
ε = |Ytr==0|

ntr×m , with |Ytr == 0| indicating the number of
zero entries in Ytr. The training label matrix Ytr corre-
sponds to the instances with at least 1 provided label (−1 or
+1) and ntr denotes the number of training instances. The
positive label rate in the whole label matrix is denoted as
η = |Y==1|

n×m . Our goal is to obtain a complete label matrix
Z ∈ {−1,+1}m×n, based on X and Y. To this end, we use
label dependencies among the instances and the classes to
propagate the label information from the provided labels to
the missing labels, as well as, adopt cardinality constraints
to avoid degenerate results due to CIB. We adopt three types
of information, including label consistency, label smooth-
ness, and class cardinality bounds, of which the definitions
will be presented in the following sections.
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Label Consistency
Label consistency serves as the loss function. For YP =
P ◦Y (‘◦’ denotes Hadamard product), we have

�(Z,Y) =

m,n∑
i,j

PijYij(Yij−Zij) = tr(Y�P (Y−Z)). (1)

When Yij = ±1, if Zij �= Yij , then �(Zij ,Yij) = 2Pij ,
while �(Zij ,Yij) = 0 if Zij = Yij . Besides, �(Zij ,Yij =
0) = 0 indicates the missing labels do not contribute to the
loss function. The label cost matrix P is defined as follows:
if Yij = +1, Pij = τ i+; if Yij = −1, Pij = τ i−; if
Yij = 0, Pij = 0. τ i+/τ

i
− is the ratio between the number

of negative and positive instances in class ci.

Label Smoothness
Instance-level label smoothness (Wu et al. 2014) is

tr(ZLXZ�) =
m,n,n∑
k,i,j

WX(i, j)

2

( Zki√
dX(i)

− Zkj√
dX(j)

)2
,

where the instance similarity is WX(i, j) = WX(j, i) =

exp(−‖xi−xj‖2
σiσj

), i �= j, and WX(i, i) = 0. The kernel
size σi and σj are determined by following the setting in
(Wu et al. 2014). The normalized Laplacian matrix is LX =

I −D
− 1

2

X WXD
− 1

2

X with DX = diag(dX(1), · · · ,dX(n)).
WX is viewed as a weighted graph GX = {VX , EX} among
instances, with VX = {1, . . . , n} and EX = {1, . . . , neX}.
neX indicates the number of edges in GX , which is half
the number of non-zero entries in WX . The edge between
nodes e1 and e2 is indexed as e ∈ {1, . . . , neX}, with its
weight being WX(e1, e2).

Class-level label smoothness (Wu et al. 2014) is

tr(Z�LCZ) =

n,m,m∑
k,i,j

WC(i, j)

2

( Zik√
dC(i)

− Zjk√
dC(j)

)2
,

where the class co-occurrence is WC(i, j) =
〈Yi·,Yj·〉
‖Yi·‖·‖Yj·‖

when i �= j and WC(i, i) = 0. Yi· = (Yi· ==
1) ∈ {0, 1}1×n, dC(i) =

∑m
j WC(i, j). LC =

I −D
− 1

2

C WCD
− 1

2

C with DC = diag(dC(1), · · · ,dC(m)).
Similar to WX , WC constitutes a weighted graph GC
among classes, where GC = {VC , EC} with VC =
{1, . . . ,m} and EX = {1, . . . , neC}. neC equals to the half
number of the non-zero entries in WC , and the weight of
edge e is WC(e1, e2).

Note that, to the best of our knowledge, above two
smoothness assumptions were firstly proposed in (Chen et
al. 2008), and they have been borrowed and cited in some
more recent works, such as (Wu et al. 2014; 2015) etc. Due
to the space limit, we cannot cover all work that also use the
similar smoothness assumptions.

Class Cardinality Bounds
We introduce two types of class cardinality bounds to han-
dle class imbalance. The first type constrains the number of

positive labels of each instance in range [υl
1, υ

u
1 ] ⊂ [1,m].

The second type requires the number of positive instances
of class ci ∈ [υl

2(i),υ
u
2 (i)] ⊂ [1, n]. We formulate them as

linear constraints:

CIB-1: υl
11
�
n ≤ 1�mZ ≤ υu

11
�
n , (2)

CIB-2: υl
2 ≤ Z1n ≤ υu

2 , (3)

where υl
1 = 2υl

1 − m, υu
1 = 2υu

1 − m and υl
2 = 2υl

2 −
n1m,υu

2 = 2υu
2 − n1m.

Determine {υl
1, υ

u
1 } of CIB-1. As shown in Figure 1, we

firstly calculate the vector r1 with r1(j) = |Ytr(:, j) == 1|.
Then a histogram h is plotted, with x-coordinate being the
number of positive labels and y-coordinate being the number
of corresponding instances. Denoting the 5th and 95th per-
centiles of h as h0.05 and h0.95 respectively, we define the
lower and upper bounds as: υl

1 = max{1,h0.05 ×min{1 +
ε/3, 1.2}} and υu

1 = min{0.8m,h0.95 ×min{1 + ε, 1.5}}.
When ε = 0, we enforce that the number of positive labels
of each instance to be in [h0.05,h0.95]. Although there is
a range bias for about 10% of the instances, the rest will
have satisfactory prediction. When ε > 0, both h0.05 and
h0.95 will be smaller than their ground-truth values (i.e., in
the case of ε = 0). Thus, we amplify them with a reason-
able rate according to ε. In experiments, we observe that
h0.05 varies in a very small range as ε increases. The reason
is hε=0

0.05 is always a small value in most experiments, and
the range [1,hε=0

0.05] to which hε>0
0.05 belongs is very narrow.

Thus we increase hε>0
0.05 with a small rate, by multiplying

min{1 + ε/3, 1.2}. Compared to h0.05, the variation range
of h0.95 becomes larger. But h0.95 still varies smoothly w.r.t.
ε. Thus we adjust it by multiplying it by min{1 + ε, 1.5}.

Determine {υl
2,υ

u
2} of CIB-2. As shown in Figure 1, we

calculate r2 with r2(i) = |Ytr(i, :) == 1|, which is the
number of positive instances of class ci. The correspond-
ing number in the complete label matrix is estimated as
r̂2(i) = r2(i)× n

ntr
× 1

1−ε . Then, the bounds are: υl
2(i) =

max{1, r̂2(i) × ζ1} and υu
2 (i) = min{0.8n, r̂2(i) × ζ2},

where we choose ζ1 and ζ2 from the sets {0.8, 1.2, 1.5} and
{1.5, 2, 3} respectively.

Objective Function
Combining the previous terms, we formulate MLML as a
discrete optimization problem with linear constraints,

min
Z

tr(Y�P (Y − Z)) + βtr(ZLXZ�) + γtr(Z�LCZ),

s.t. Z ∈ {−1, 1}, υl
11
�
n ≤ 1�mZ ≤ υu

11
�
n ,υ

l
2 ≤ Z1n ≤ υu

2 .
(4)

β and γ control the trade-off between label consistency and
label smoothness. They can be tuned by cross validation.
For clarity, we denote the objective function of (4) as F (Z),
and define the constraint space as Ω0 = {Z|υl

11
�
n ≤ 1�mZ ≤

υu
11
�
n ,υ

l
2 ≤ Z1n ≤ υu

2},Ω1 = {−1, 1} ∩ Ω0. Problem (4)
is simplified as minZ∈Ω1

F (Z).
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Proposition 1 Problem (4) is a constrained submodular
minimization (CSM) problem, and it is NP-hard1.

Proposition 2 The Lovasz extension of objective function
(4) is formulated as follows:

f(Z) =− tr(Y�PZ) +
1

2

m∑
k

n∑
i,j

ŴX(i, j)|Zki − Zkj |

+
1

2

n∑
k

m∑
i,j

ŴC(i, j)|Zik − Zjk|+ const, (5)

where ŴX(i, j) = 2βWX(i, j)
√
dX(i)dX(j) and

ŴC(i, j) = 2γWC(i, j)
√
dC(i)dX(j). const =

tr(Y�PY) + β
2

∑m
k

∑n
i,j [d

− 1
2

X (i) − d
− 1

2

X (j)]2 +

+γ
2

∑n
k

∑m
i,j [d

− 1
2

C (i)− d
− 1

2

C (j)]2.

Proposition 3 F (Z) and f(Z) satisfy the conditions:

min
Z∈Ω1

f(Z) ≥ min
Z∈Ω1

F (Z) ≥ min
Z∈[−1,1]

f(Z) = min
Z∈{−1,1}

F (Z),

min
Z∈Ω1

f(Z) ≥ min
Z∈Ω2

f(Z) ≥ min
Z∈[−1,1]

f(Z) = min
Z∈{−1,1}

F (Z).

A Convex Approximation to (4)
We will focus on three different approximation methods to
solve (4). The first one is to simply drop the cardinality con-
straints, thus, becoming a submodular optimization prob-
lem minZ∈{−1,1} F (Z), which can be exactly solved us-
ing the st-cut algorithm (Boykov and Kolmogorov 2004).
The second approximation is a LP relaxation of the first
model based on Lovasz extension of submodular functions,
as minZ∈[−1,1] f(Z) (see Proposition 2). The third method
adds the cardinality constraints to the second one. For sub-
sequent description, the corresponding algorithms of the
second and third methods are referred to as MMIB-0 and
MMIB, respectively.

Utilizing Proposition 2, we relax (4) to a continuous one:

min
Z

f(Z), s.t. Z ∈ Ω2 = [−1, 1]m×n ∩ Ω0. (6)

As shown in Proposition 3, the original discrete problem (4)
and its approximated continuous problem (6) share the same
lower and upper bounds.

4 ADMM Solution to (6)
To handle the �1 terms in Problem (6), we introduce two
auxiliary variables UX and UC , as follows:

min
Z∈Ω2,UX≥0,UC≥0

tr(UXW
�
X) + tr(UCW

�
C)− tr(Y�PZ),

s.t.ZA ≤ UX ,−ZA ≤ UX ,BZ ≤ UC ,−BZ ≤ UC , (7)

where UX ∈ Rm×neX with UX(k, e) = |Zke1 − Zke2 |.
Two nodes e1 and e2 is connected by the edge e. WX =

1We refer the readers about the proofs of all propositions to
https://sites.google.com/site/baoyuanwu2015/Publications.

(wX , . . . ,wX)� ∈ Rm×neX with wX(e) = ŴX(e1, e2),
∀e ∈ EX . UC ∈ R

neC
×n with UC(e, k) = |Ze1k −

Ze2k|. WC = (wC , . . . ,wC) ∈ R
neC

×n with wC(e) =

ŴC(e1, e2), ∀e ∈ EC . A ∈ {−1, 1, 0}n×neX with
A(e1, e) = 1,A(e2, e) = −1 for e ∈ EX , while other
entries being 0. B ∈ {−1, 1, 0}neC

×m with B(e, e1) =
1,B(e, e2) = −1 for e ∈ EC , while other entries being 0.

The LP problem (7) can be solved by many standard al-
gorithms using off-the-shelf solvers. However, most existing
solvers are designed for vector variables. Although we can
vectorize (7), that will lead to a large LP problem that is inef-
ficient to solve with standard solvers. Instead, we adopt the
alternating direction method of multipliers (ADMM) (Boyd
et al. 2011), which is known to have good convergence prop-
erties and can take advantage of special structural properties
of our problem.

Following the procedure of the conventional ADMM, we
firstly present the augmented Lagrange function of Problem
(7), by introducing two slack variables Φ1 and Φ2,

Lρ1,ρ2
(Z,UX ,UC ,Φ1,Φ2,Λ1,Λ2) = −tr(Y�PZ)+ (8)

tr(W
�
XUX) + tr(UCW

�
C) + tr[Λ�1 (ZA−UXC

−G1 +Φ1)] + tr[Λ�2 (BZ−DUC −G2 +Φ2)]+
ρ1
2
||ZA−UXC−G1 +Φ1||2F +

ρ2
2
||BZ−DUC

−G2 +Φ2||2F ,

where A = [A,−A,−1n,1n] ∈ {−1,+1, 0}n×2(neX
+1),

C = [I, I,0n,0n] ∈ {0, 1}neX
×2(neX

+1), G1 =

[0m×2neX
,−υl

2,υ
u
2 ] ∈ R

m×2(neX
+1), and Φ1 ∈

R
m×2(neX

+1)
+ . B = [B;−B;−1�m;1�m] ∈ R

(2neC
+2)×m,

D = [I; I;02×nec
] ∈ R

(2neC
+2)×neC , G2 =

[02neC
×n;−υl

11
�
n ; υ

u
11
�
n ] ∈ R

(2neC
+2)×n, and Φ2 ∈

R
(2neC

+2)×n
+ . Λ1 ∈ R

m×2(neX
+1) and Λ2 ∈ R

(2neC
+2)×n

denote two Lagrangian parameter matrices, while ρ1, ρ2 > 0
indicate the trade-off parameters of two augmented terms.
Based on (8), Problem (7) could be solved by following it-
erative updates:

Zt+1 = argmin
Z∈[−1,1]

tr(M�
0 Z) +

ρ1
2
tr(ZM1Z

�) (9)

+
ρ2
2
tr(Z�M2Z),

Ut+1
X =max(0,− 1

2ρ1
MX), (10)

Ut+1
C =max(0,− 1

2ρ2
MC), (11)

Φt+1
1 =max(0,Ut+1

X C+G1 − 1

ρ1
Λt

1 − Zt+1A), (12)

Φt+1
2 =max(0,DUt+1

C +G2 − 1

ρ2
Λt

2 −BZt+1), (13)

Λt+1
1 =Λt

1 + ρ1[Z
t+1A−Ut+1

X C−G1 +Φt+1
1 ], (14)

Λt+1
2 =Λt

2 + ρ2[BZt+1 −DUt+1
C −G2 +Φt+1

2 ], (15)
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Algorithm 1 ADMM algorithm for Problem (7)

Input: ADMM parameters and {Z0,U0
X ,U0

C ,Φ
0
1,Φ

0
2,

Λ0
1,Λ

0
2,y

0
2}

Output: Z∗
1: while not converged do
2: update Zt+1 by solving Eq (9)
3: update (Ut+1

X ,Ut+1
C ) using Eq (10) and (11)

4: update (Φt+1
1 ,Φt+1

2 ) according to Eq (12) and (13)
5: update (Λt+1

1 ,Λt+1
2 ) according to Eq (14) and (15)

6: end while
7: Z∗ = sign(Zt+1).

where M0 = −YP + (Λt
1 − ρ1(U

t
XC+G1 −Φt

1))A
�
+

B
�
[Λt

2 − ρ2(DUt
C + G2 − Φt

2)],M1 = AA
�
,M2 =

B
�
B. MX = WX − [Λt

1+ ρ1(Z
t+1A−G1+Φt

1)]C
� ∈

R
m×neX and MC = WC − D�[Λt

2 + ρ2(BZt+1 −
G2 + Φt

2)] ∈ R
neC

×n. In above updates, only the up-
date of Zt+1 is efficiently solved by projected gradient
descent algorithm (PGD) (Boyd and Vandenberghe 2004)
with exact line search method, while others have closed-
form solution. As only matrix multiplication operations in-
volved in ADMM, its computational complexity is about
O(T (amn2 + bm2n + cmn)), where T is the iterations
(T < 100 in our experiments), and a, b, c are small scalars.
The global convergence of ADMM for convex problem has
been proved in (Boyd et al. 2011; Ghadimi et al. 2013;
Raghunathan and Di Cairano 2014). Algorithm 1 briefly
summarizes above steps.

5 Experiments
Experimental Setup
Datasets and missing labels. Five benchmark multi-
label datasets are used, namely Emotions (Trohidis et al.
2008), Scene (Boutell et al. 2004) Yeast (Elisseeff and We-
ston 2001), CAL500 (Turnbull et al. 2008) and Corel5k
(Duygulu et al. 2002). The first four are downloaded
from the ‘Mulan’ website2, while Corel5k is downloaded
from (Guillaumin et al. 2009)3. The first three datasets
are provided with fixed training and testing partitions,
and the testing results are reported, while CAL500 and
Corel5k are evaluated using 5-fold cross validation. In
Corel5k, some classes correspond to very few positive in-
stances and some instances are assigned to very few pos-
itive classes. To avoid null classes (no positive instances
exist) and null instances (no positive classes exist) when
missing labels exist, we delete these rare classes and in-
stances. The data details are summarized in Table 1, where
stats(r1) = [min(r1),median(r1),max(r1), std(r1)] de-
notes the basic statistics of r1, and stats(r2) =
[min(r2),median(r2),max(r2), std(r2)] denotes the basic
statistics of r2. Obviously both CIB-1 and CIB-2 exist in
all datasets and the more scattered distribution indicates the

2http://mulan.sourceforge.net/datasets-mlc.html
3http://lear.inrialpes.fr/people/guillaumin/data.php

Table 1: Data statistics (symbols defined in the text)
dataset n m d η% stats(r1) stats(r2)
Emotions 593 6 72 31.16 [1, 2, 3, 0.67] [148, 170, 264, 41]

Scene 2407 6 294 17.9 [1, 1, 3, 0.26] [364, 429, 533, 56.81]
Yeast 2417 14 103 30.21 [13, 26, 48, 5.7] [34, 660, 1816, 546.5]

CAL500 502 174 68 15 [1, 4, 11, 1.58] [5, 39, 444, 81.17]
Corel5k 4211 62 1000 4.54 [2, 3, 5, 0.73] [55, 117, 1059, 203.5]

larger impact of CIB. Moreover, we create Ytr by varying
ε from 0% to 80%. In each case, the missing labels are ran-
domly chosen and this process is conducted 5 times to obtain
different missing labels.

Compared methods. As mentioned earlier, our proposed
model can be approximated by three optimization problems,
which are solved by st-cut, MMIB-0 and MMIB. We com-
pare these methods in our experiments. We obtain st-cut
from a publicly available MATLAB toolbox BK matlab4

and we implement MMIB using MATLAB. Several state-
of-the-art mutli-label methods that can handle missing la-
bels are compared, including MLR-GL (Bucak, Jin, and
Jain 2011), MC-Pos (Cabral et al. 2011), FastTag (Chen,
Zheng, and Weinberger 2013), MLML-exact (Wu et al.
2014) and LEML (Yu et al. 2014). We also compare with
COCOA (Zhang, Li, and Liu 2015), which is the latest
class-imbalance-aware multi-label method. Note that we
use the MATLAB code made available for all the afore-
mentioned methods. The binary weighted SVM (W-SVM)
is also trained using the LIBSVM toolbox (Chang and Lin
2011), as a baseline classifier, which only trains on labeled
instances of each class separately. The weight of each class
is set to be the ratio between the number of negative and pos-
itive instances in this class. The predicted continuous labels
of above methods are finally rounded to discrete labels by
setting the threshold as their middle values (0 or 1

2 ), while
COCOA sets the threshold by maximizing F1 score.

Evaluation metrics. Three widely used metrics, example-
based F1, F1−macro and F1−micro, are adopted to evaluate
the quality of the predicted label matrix from different per-
spectives. Their formal definitions can be found in (Sorower
2010). In our experiments, we observe that no single metric
is enough to reflect prediction quality. Thus, we also define
a new metric: F1−mean = 1

3 (F1 + F1−macro + F1−micro).

Comparison on Handling Missing Labels
Figure 2 presents the results of all compared methods on
handling missing labels.

MMIB-0 v.s. st-cut. According to Proposition 3, their ob-
jective functions will be equal at the global optimum. How-
ever, their solutions tend to be very different. When ε = 0%,
st-cut gives good results on the first three datasets, where
the CIB degrees are not very high. On CAL500 and Corel,
due to the high CIB, st-cut shows poor performance. This
demonstrates the performance of st-cut is significantly influ-
enced by CIB, and it is likely to give a poor solution when
the CIB degree is large. Moreover, when ε > 0, the perfor-

4http://vision.csd.uwo.ca/code/
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Figure 2: Results on all datasets with different missing label proportions.

mance of st-cut degrades sharply, even leading to degenerate
results when ε is large. This reveals that when missing labels
exist, the impact of CIB increased even more, as described
in Introduction. Although MMIB-0 is also influenced by
missing labels and CIB, MMIB-0 presents significant im-
provements over st-cut in most cases, especially when ε is
large. The main reason is MMIB-0 can search for the solu-
tion in the continuous convex space, rather than in the dis-
crete space as done by st-cut, thus, it is unlikely to get stuck
at solutions corresponding to very poor performance. This
verifies the efficacy of the proposed approximation.

MMIB v.s. MMIB-0. The main difference between them
is the class cardinality bounds. Comparing them will eval-
uate the contribution of the linear constraints that enforce
these bounds. MMIB gives better results than MMIB-0
in all cases. Specifically, following the sequence ε =
[0, 20, 40, 60, 80]%, the improvements of F1−mean values
are: Emotions [1.49, 2.2, 2.65, 3.6, 6.54]%; Scene [3.90,
4.36, 4.50, 2.08, 1.41]%; Yeast [2.30, 2.40, 1.85, 1.59,
3.12]%; CAL500 [5.64, 5.01, 4.86, 5.32, 6.15]%; Corel5k
[4.62, 4.89, 4.42, 5.21, 4.32]%. These results show that the
bounds (embedded as linear constraints) are beneficial to the

model performance.

MMIB v.s. Others. MMIB-0 gives consistent improve-
ments over most compared methods in most datasets, while
MMIB shows further improvements over MMIB-0. This is
due to two main reasons. (1) From the model perspective,
both class-level and instance-level label smoothness are used
to propagate the label information among different classes
and instances. Also, there is no label bias since missing
labels are treated as 0. In contrast, other methods except
MLML-exact ignore the correlations among different in-
stances, and label bias exists in MLR-GL and FastTag. Note
that MLML-exact adopts a similar model. However, there
are significant differences between MMIB-0 and MLML-
exact. The objective function of MMIB-0 is based on Lovasz
extension, which leads to the same objective value as the
original discrete objective function, while MLML-exact di-
rectly relaxes {−1, 1} to [−1, 1]. The specific label weights
are assigned to different classes and different instances in
MMIB-0 through YP , while uniform weights are adopted
in MLML-exact. (2) The linear constraints enforcing class
cardinality bounds play an important role in MMIB to alle-
viate the negative impact of CIB. In contrast, other methods
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Table 2: Comparison of multi-label learning methods on handling CIB when no labels are missing. Metric 1, 2, 3, 4 indicate
F1, F1−macro, F1−micro, F1−mean respectively.

dataset Emotions Scene Yeast CAL500
metric 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
W-SVM 53.27 59.75 62.88 58.63 65.29 72.70 72.41 70.13 61.31 34.22 63.71 53.08 31.77 ± 1.15 4.71 ± 0.37 31.41 ± 1.21 22.63 ± 0.91
COCOA 62.05 65.38 67.37 64.93 66.89 72.89 72.19 70.66 61.83 42.61 64.08 56.17 33.63 ± 1.75 17.35 ± 0.98 37.56 ± 1.52 29.51 ± 1.42
MMIB 70.35 69.85 73.00 71.07 72.48 75.12 74.48 74.03 64.54 45.98 66.08 58.87 48.08 ± 0.60 16.74 ± 0.43 48.51 ± 0.61 37.78 ± 0.55

Table 3: Sensitivity test of class bounds (ζ1, ζ2) on CAL500 data, evaluated by F1−mean values(%). The satisfied results are
highlighted in bold. Please see text for details.

ε → 0% 20% 40% 60% 80%

ζ1 ↓, ζ2 → ∞ 3 2.5 2 1.5 ∞ 3 2.5 2 1.5 ∞ 3 2.5 2 1.5 ∞ 3 2.5 2 1.5 ∞ 3 2.5 2 1.5
0 32.02 31.75 31.41 30.92 30.09 32.46 32.06 31.87 31.56 30.57 30.48 30.48 30.48 30.48 30.48 31.13 32.48 32.26 31.97 29.76 30.24 34.76 34.72 34.09 30.35
0.8 32.02 31.75 31.41 30.92 30.09 32.46 32.06 31.87 31.57 30.57 31.97 32.14 32.03 31.76 30.49 31.17 32.48 32.31 31.99 29.74 30.40 34.80 34.75 34.10 30.31
1.2 37.44 37.35 37.28 37.25 37.28 35.91 35.72 35.60 35.49 35.11 31.97 34.75 34.65 34.47 33.54 33.82 34.72 34.76 34.39 32.41 31.95 35.34 35.41 34.90 31.30
1.5 36.87 36.83 36.82 36.78 N/A 37.55 37.61 37.57 37.51 N/A 34.78 36.99 36.96 36.81 N/A 35.19 36.22 36.33 36.04 N/A 32.16 35.66 35.75 35.34 N/A
2 34.79 34.73 34.70 N/A N/A 36.28 36.17 36.13 N/A N/A 36.86 36.84 36.81 N/A N/A 36.69 36.80 36.82 N/A N/A 35.22 36.02 36.25 N/A N/A

ignore this unavoidable challenge, and when ε > 0, the im-
pact of CIB is further observed. Since MLR-GL and Fast-
Tag treat missing labels as negative, the imbalance between
positive and negative labels will be further amplified. Thus,
it is not strange that some methods show very poor (even
degenerate) results when ε > 0. Note that there is an ex-
ception in the CAL500 dataset, where the F1−macro values
of MLR-GL and FastTag are higher than those of MMIB,
but the values of the other metrics are much lower. On this
dataset, we see that MLR-GL and FastTag actually give de-
generate results (i.e. classes with relatively high rates of pos-
itive instances in training have predictions that are always
positive in the test). Thus the F1 scores for these classes
are very high, leading to a relatively high F1−macro value.
This demonstrates that separate F1 metrics are not enough
to reflect prediction quality properly and that the proposed
F1−mean is a more comprehensive metric.

Comparison on Handling Class Imbalance
The results on handling CIB are shown in Table 2. As
COCOA cannot handle missing labels, we only compare
them in the case of ε = 0. The data format of Corel5k
does not satisfy the requirement of COCOA, thus it is not
tested. COCOA gives better results than W-SVM, while
MMIB shows significant improvements over COCOA, up
to [6.1, 3.4, 2.7, 8.3]% in F1−mean on the four datasets,
respectively. We believe such an improvement is due to
two main reasons. First, COCOA is built on base classi-
fiers (C4.5 decision tree with undersampling), whose per-
formance dictates that of COCOA. In contrast, the class car-
dinality bounds adopted in our model are independent of
any classifier. Second, COCOA only considers CIB-1, while
MMIB enforces both CIB-1 and CIB-2.

Sensitivity Analysis of Cardinality Bounds
The estimated class bounds {υl

1, υ
u
1 ,υ

l
2,υ

u
2} based on Ytr

may not be exactly the ground-truth values. However, the
proposed model is robust to large variations in these bounds.
To verify this, we test bound sensitivity on the challeng-
ing dataset CAL500. When ε changes, υl

1, υ
u
1 do not vary

much, while υl
2,υ

u
2 may vary in a range. Thus, we fo-

cus on the sensitivity test of υl
2,υ

u
2 . For simplicity, we

fix υl
2 = 0,υu

2 = m, i.e., CIB-1 is not embedded. We
choose the rates ζ1 and ζ2 from {0, 0.8, 1.2, 1.5, 2} and
{∞, 3, 2.5, 2, 1.5} respectively, with ζ1 < ζ2. Using each
pair (ζ1, ζ2), we run our model several times to report the
average F1−mean value. The test results are summarized
in Table 3. In every ε, our model can always give satis-
factory results in a relatively wide and stable range, e.g.,
ζ1 ∈ {1.2, 1.5, 2} and ζ2 ∈ {3, 2.5, 2}. Note that the pair
(ζ1 = 0, ζ2 =∞) means there is no CIB-2 constraint. Com-
pared to other pairs (ζ1, ζ2), embedding CIB-2 constraints
leads to significant improvements in most cases.

6 Conclusion
In this work, we propose a unified method to jointly handle
missing labels and class imbalance in multi-label learning.
To handle missing labels, our method propagates label infor-
mation from the labeled instances to the unlabeled ones us-
ing label consistency and smoothness. The class imbalance
problem is solved by the introduction of cardinality bounds
over each instance and each class. We provide efficient nu-
merical algorithms that demonstrate the improved perfor-
mance over state-of-the-art methods on benchmark datasets.

Moreover, more useful prior knowledge, such as seman-
tic hierarchy and mutual exclusion, can be naturally incor-
porated into the proposed linear programming framework as
linear constraints, without any changes of the current algo-
rithm. This will be explored in our future work.
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W.; and Hüllermeier, E. 2013. Optimizing the f-measure in
multi-label classification: Plug-in rule approach versus struc-
tured loss minimization. In ICML, 1130–1138.
Duygulu, P.; Barnard, K.; de Freitas, J. F.; and Forsyth, D. A.
2002. Object recognition as machine translation: Learning
a lexicon for a fixed image vocabulary. In ECCV. Springer.
97–112.
Elisseeff, A., and Weston, J. 2001. A kernel method for multi-
labelled classification. NIPS 14:681–687.
Ghadimi, E.; Teixeira, A.; Shames, I.; and Johansson, M.
2013. Optimal parameter selection for the alternating direc-
tion method of multipliers (admm): quadratic problems.
Goldberg, A. B.; Zhu, X.; Recht, B.; Xu, J.-M.; and Nowak,
R. D. 2010. Transduction with matrix completion: Three birds
with one stone. In NIPS, 757–765.
Guillaumin, M.; Mensink, T.; Verbeek, J.; and Schmid, C.
2009. Tagprop: Discriminative metric learning in nearest
neighbor models for image auto-annotation. In ICCV, 309–
316.
Johnson, C. R. 1990. Matrix completion problems: a sur-
vey. In Proceedings of Symposia in Applied Mathematics, vol-
ume 40, 171–198.

Kapoor, A.; Viswanathan, R.; and Jain, P. 2012. Multilabel
classification using bayesian compressed sensing. In NIPS,
2654–2662.
Li, X.; Zhao, F.; and Guo, Y. 2015. Conditional restricted
boltzmann machines for multi-label learning with incomplete
labels. In AISTATS, 635–643.
Petterson, J., and Caetano, T. S. 2010. Reverse multi-label
learning. In NIPS, 1912–1920.
Raghunathan, A. U., and Di Cairano, S. 2014. Optimal step-
size selection in alternating direction method of multipliers for
convex quadratic programs and model predictive control,. In
Proceedings of Symposium on Mathematical Theory of Net-
works and Systems, 807–814.
Sahare, M., and Gupta, H. 2012. A review of multi-class
classification for imbalanced data. International Journal of
Advanced Computer Research 2(3):160–164.
Sorower, M. S. 2010. A literature survey on algorithms for
multi-label learning. Oregon State University, Corvallis.
Sun, Y.; Zhang, Y.; and Zhou, Z.-H. 2010. Multi-label learn-
ing with weak label. In AAAI, 593–598.
Trohidis, K.; Tsoumakas, G.; Kalliris, G.; and Vlahavas, I. P.
2008. Multi-label classification of music into emotions. In
ISMIR, volume 8, 325–330.
Turnbull, D.; Barrington, L.; Torres, D.; and Lanckriet, G.
2008. Semantic annotation and retrieval of music and sound
effects. IEEE Transactions on Audio, Speech, and Language
Processing 16(2):467–476.
Vasisht, D.; Damianou, A.; Varma, M.; and Kapoor, A. 2014.
Active learning for sparse bayesian multilabel classification.
In SIGKDD, 472–481. ACM.
Wang, Q.; Shen, B.; Wang, S.; Li, L.; and Si, L. 2014. Bi-
nary codes embedding for fast image tagging with incomplete
labels. In ECCV. Springer. 425–439.
Wang, Q.; Si, L.; and Zhang, D. 2014. Learning to hash with
partial tags: Exploring correlation between tags and hashing
bits for large scale image retrieval. In ECCV. Springer. 378–
392.
Wu, B.; Liu, Z.; Wang, S.; Hu, B.-G.; and Ji, Q. 2014. Multi-
label learning with missing labels. In ICPR.
Wu, B.; Lyu, S.; Hu, B.-G.; and Ji, Q. 2015. Multi-label learn-
ing with missing labels for image annotation and facial action
unit recognition. Pattern Recognition 48(7):2279–2289.
Wu, B.; Lyu, S.; and Ghanem, B. 2015. ML-MG: Multi-label
learning with missing labels using a mixed graph. In ICCV.
IEEE.
Xu, M.; Jin, R.; and Zhou, Z.-H. 2013. Speedup matrix
completion with side information: Application to multi-label
learning. In NIPS, 2301–2309.
Yu, H.-F.; Jain, P.; Kar, P.; and Dhillon, I. S. 2014. Large-scale
multi-label learning with missing labels. In ICML.
Zhang, X., and Hu, B.-G. 2014. A new strategy of cost-free
learning in the class imbalance problem. IEEE Transactions
on Knowledge and Data Engineering 26(12):2872–2885.
Zhang, M.-L.; Li, Y.-K.; and Liu, X.-Y. 2015. Towards class-
imbalance aware multi-label learning. In IJCAI.

2236




