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Abstract

This paper proposes a set of new error criteria and a
learning approach, called Adaptive Normalized Risk-
Averting Training (ANRAT) to attack the non-convex
optimization problem in training deep neural networks
without pretraining. Theoretically, we demonstrate its
effectiveness based on the expansion of the convex-
ity region. By analyzing the gradient on the convex-
ity index λ, we explain the reason why our learning
method using gradient descent works. In practice, we
show how this training method is successfully applied
for improved training of deep neural networks to solve
visual recognition tasks on the MNIST and CIFAR-
10 datasets. Using simple experimental settings with-
out pretraining and other tricks, we obtain results com-
parable or superior to those reported in recent liter-
ature on the same tasks using standard ConvNets +
MSE/cross entropy. Performance on deep/shallow mul-
tilayer perceptron and Denoised Auto-encoder is also
explored. ANRAT can be combined with other quasi-
Newton training methods, innovative network variants,
regularization techniques and other common tricks in
DNNs. Other than unsupervised pretraining, it provides
a new perspective to address the non-convex optimiza-
tion strategy in training DNNs.

Introduction

Deep neural networks (DNNs) are attracting attention
largely due to their impressive empirical performance in im-
age and speech recognition tasks. While Convolutional Net-
works (ConvNets) are the de facto state-of-the-art for visual
recognition, Deep Belief Networks (DBN), Deep Boltzmann
Machines (DBM) and Stacked Auto-encoders (SA) provide
insights as generative models to learn the full generating dis-
tribution of input data. Recently, researchers have investi-
gated various techniques to improve the learning capacity of
DNNs. Unsupervised pretraining using Restrict Boltzmann
Machines (RBM), Denoised Autoencoders (DA) or Topo-
graphic ICA (TICA) has proved to be helpful for training
DNNs with better weight initialization (Ngiam et al. 2010;
Coates and Ng 2011). Rectified Linear Unit (ReLU) and
variants are proposed as the optimal activation functions to
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better interpret hidden features Various regularization tech-
niques such as dropout (Srivastava et al. 2014) with Max-
out (Goodfellow et al. 2013b) are proposed to regulate the
DNNs to be less prone to overfitting.

Neural network models always lead to a non-convex op-
timization problem. The optimization algorithm impacts the
quality of the local minimum because it is hard to find a
global minimum or estimate how far a particular local min-
imum is from the best possible solution. The most stan-
dard approach to optimize DNNs is Stochastic Gradient
Descent (SGD). There are many variants of SGD and re-
searchers and practitioners typically choose a particular vari-
ant empirically. While nearly all DNNs optimization algo-
rithms in popular use are gradient-based, recent work has
shown that more advanced second-order methods such as
L-BFGS and Saddle-Free Newton (SFN) approaches can
yield better results for DNN tasks (Ngiam et al. 2011;
Dauphin et al. 2014). Second order derivatives can be ad-
dressed by hardware extensions (GPUs or clusters) or batch
methods when dealing with massive data, SGD still provides
a robust default choice for optimizing DNNs.

Instead of modifying the network structure or optimiza-
tion techniques for DNNs, we focused on designing a new
error function to convexify the error space. The convexifica-
tion approach has been studied in the optimization commu-
nity for decades, but has never been seriously applied within
deep learning. Two well-known methods are the graduated
nonconvexity method (Blake and Zisserman 1987) and the
LiuFloudas convexification method (Liu and Floudas 1993).
LiuFloudas convexification can be applied to optimization
problems where the error criterion is twice continuously dif-
ferentiable, although determining the weight α of the added
quadratic function for convexifying the error criterion in-
volves significant computation when dealing with massive
data and parameters.

Following the same name employed for deriving robust
controllers and filters (Speyer, Deyst, and Jacobson 1974),
a new type of Risk-Averting Error (RAE) is proposed theo-
retically for solving non-convex optimization problems (Lo
2010). Empirically, with the proposal of Normalized Risk-
Averting Error (NRAE) and the Gradual Deconvexification
method (GDC), this error criterion is proved to be compet-
itive with the standard mean square error (MSE) in single
layer and two-layer neural networks for solving data fit-
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ting and classification problems (Gui, Lo, and Peng 2014;
Lo, Gui, and Peng 2012). Interestingly, SimNets, a gener-
alization of ConvNets that was recently proposed in (Co-
hen and Shashua 2014), uses the MEX operator (whose
name stands for Maximum-minimum-Expectation Collaps-
ing Smooth) as an activation function to generalize ReLU
activation and max pooling. We notice that the MEX opera-
tor with L2 units has exactly the same mathematical form
with NRAE. However, NRAE is still hard to optimize in
practice due to plateaus and the unstable error space caused
by the fixed large convexity index. GDC alleviates these
problems but its performance is limited and suffers from
the slow learning speed. Instead of fixing the convexity in-
dex λ, Adaptive Normalized Risk-Averting Training (AN-
RAT) optimizes NRAE by tuning λ adaptively using gradi-
ent descent. We give theoretical proofs of its optimal prop-
erties against the standard Lp-norm error. Our experiments
on MNIST and CIFAR-10 with different deep/shallow neu-
ral nets demonstrate the effectiveness empirically. Being an
optimization algorithm, our approach are not supposed to
deal specifically with the problem of over-fitting, however
we show that this can be handled by the usual methods of
regularization such as weight decay or dropout.

Convexification on Error Criterion

We begin with the definition of RAE for the Lp norm and
the theoretical justifications on its convexity property. RAE
is not suitable for real applications since it is not bounded.
Instead, NRAE is bounded to overcome the register over-
flow in real implementations. We prove that NRAE is quasi-
convex, and thus shares the same global and local optimum
with RAE. Moreover, we show the lower-bound of its per-
formance is as good as Lp-norm error when the convexity
index satisfies a constraint, which theoretically supports the
ANRAT method proposed in the next section.

Risk-averting Error Criterion

Given training samples {X, y} =
{(x1, y1), (x2, y2), ..., (xm, ym)}, the function f(xi,W )
is the learning model with parameters W . The loss function
of Lp-norm error is defined as:

lp(f(xi,W ), yi) =
1

m

m∑

i=1

||f(xi,W )− yi||p (1)

When p = 2, Eqn. 1 denotes to the standard Mean Square
Error (MSE). The Risk-Averting Error criterion (RAE) cor-
responding to the Lp-norm error is defined by

RAEp,q(f(xi,W ), yi) =
1

m

m∑

i=1

eλ
q||f(xi,W )−yi||p (2)

λ is the convexity index. It controls the size of the con-
vexity region.

Because RAE has the sum-exponential form, its Hessian
matrix is tuned exactly by the convexity index λq . The fol-
lowing theorem indicates the relation between the convexity
index and its convexity region.

Theorem 1 (Convexity). Given the Risk-Averting Error
criterion RAEp,q (p, q ∈ N+), which is twice continu-
ous differentiable. Jp,q(W ) and Hp,q(W ) are the corre-
sponding Jacobian and Hessian matrix. As λ → ±∞,
the convexity region monotonically expands to the entire
parameter space except for the subregion S := {W ∈
Rn|rank(Hp,q(W )) < n,Hp,q(W < 0)}.

Please refer to the supplementary material for the proof.
Intuitively, the use of the RAE was motivated by its em-
phasizing large individual deviations in approximating func-
tions and optimizing parameters in an exponential man-
ner, thereby avoiding such large individual deviations and
achieving robust performances. Theoretically, Theorem 1
states that when the convexity index λ increases to infinity,
the convexity region in the parameter space of RAE expands
monotonically to the entire space except the intersection of a
finite number of lower dimensional sets. The number of sets
increases rapidly as the number m of training samples in-
creases. Roughly speaking, larger λ and m cause the size of
the convexity region to grow larger respectively in the error
space of RAE.

When λ → ∞, the error space can be perfectly stretched
to be strictly convex, thus avoid the local optimum to guaran-
tee a global optimum. Although RAE works well in theory,
it is not bounded and suffers from the exponential magni-
tude and arithmetic overflow when using gradient descent in
implementations .

Normalized Risk-Averting Error Criterion

RAE ensures the convexity of the error space to find the
global optimum. By using NRAE, we relax the global op-
timum problem by finding a better local optimum to meet a
theoretically and practically reasonable trade-off in real ap-
plications.

Given training samples {X, y} =
{(x1, y1), (x2, y2), ..., (xm, ym)}, the function f(xi,W )
is the learning model with parameters W . The Normalized
Risk-Averting Error Criterion (NRAE) corresponding to the
Lp-norm error is defined as:

NRAEp,q(f(xi,W ), yi)

=
1

λq
logRAEp,q(f(xi,W ), yi)

=
1

λq
log

1

m

m∑

i=1

eλ
q||f(xi,W )−yi||p (3)

Theorem 2 (Bounded). NRAEp,q(f(xi,W ), yi) is
bounded.

The proof is provided in the supplemental materials.
Briefly, NRAE is bounded by functions independent of λ
and no overflow occurs for λ � 1. The following theorem
states the quasi-convexity of NRAE.

Theorem 3 (Quasi-convexity). Given a parameter space
{W ∈ Rn}, Assume ∃ ψ(W ), s.t. Hp,q(W ) > 0
when |λq| > ψ(W ) to guarantee the convexity of
RAEp,q(f(xi,W ), yi). Then, NRAEp,q(f(xi,W ), yi) is
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quasi-convex and share the same local and global optimum
with RAEp,q(f(xi,W ), yi).

Proof. If RAEp,q(f(xi,W ), yi) is convex, it is quasi-
convex. log function is monotonically increasing, so the
composition logRAEp,q(f(xi,W ), yi) is quasi-convex. 1

log is a strictly monotone function and
NRAEp,q(f(xi,W ), yi) is quasi-convex, so it
shares the same local and global minimizer with
RAEp,q(f(xi,W ), yi).

The convexity region of NRAE is consistent with RAE.
To interpret this statement in another perspective, the log
function is a strictly monotone function. Even if RAE is
not strictly convex, NRAE still shares the same local and
global optimum with RAE. If we define the mapping func-
tion f : RAE → NRAE, it is easy to see that f is bijective
and continuous. Its inverse map f−1 is also continuous, so
that f is an open mapping. Thus, it is easy to prove that the
mapping function f is a homeomorphism to preserve all the
topological properties of the given space.

The above theorems state the consistent relations among
NRAE, RAE and MSE. It is proven that the greater the con-
vexity index λ, the larger is the convex region is. Intuitively,
increasing λ creates tunnels for a local-search minimiza-
tion procedure to travel through to a good local optimum.
However, we care about the justification on the advantage
of NRAE against MSE. Theorem 4 provides the theoretical
justification for the performance lower-bound of NRAE.
Theorem 4 (Lower-bound). Given training samples
{X, y} = {(x1, y1), (x2, y2), ..., (xm, ym)} and the model
f(xi,W ) with parameters W . If λq ≥ 1, p, q ∈
N+ and p ≥ 2, then both RAEp,q(f(xi,W ), yi) and
NRAEp,q(f(xi,W ), yi) always have the higher chance to
find a better local optimum than the standard Lp-norm error
due to the expansion of the convexity region.

Proof. Let hp(W ) denotes the Hessian matrix of standard
Lp-norm error (Eqn. 1), note αi(W ) = f(xi,W ) − yi we
have

hp(W ) =
p

m

m∑

i=1

{(p− 1)αi(W )p−2 ∂f(xi,W )2

∂W

+ αi(W )p−1 ∂f
2(xi,W )

∂W 2 } (4)

Since λq ≥ 1, let diageig denotes the diagonal matrix of
the eigenvalues from SVD decomposition. � here means
’element-wise greater’. When A � B, each element in A
is greater than B. Then we have

diageig[Hp,q(W )] � diageig[hp(W )+

p2

m

m∑

i=1

||αi(W )||2p−2 ∂f(xi,W )

∂W

2

}]

� diageig[hp(W )] (5)

1Because the function f defined by f(x) = g(U(x)) is quasi-
convex if the function U is quasiconvex and the function g is in-
creasing.

This indicates that the RAEp,q(f(xi,W ), yi) always has
larger convexity regions than the standard Lp-norm er-
ror to better enable escape of local minima. Because
NRAEp,q(f(xi,W ), yi) is quasi-convex, sharing the same
local and global optimum with RAEp,q(f(xi,W ), yi), the
above conclusions are still valid.

Roughly speaking, NRAE always has a larger convexity
region than the standard Lp-norm error in terms of their
Hessian matrix when λ ≥ 1. This property guarantees the
higher probability to escape poor local optima using NRAE.
In the worst case, NRAE will perform as good as standard
Lp-norm error if the convexity region shrinks as λ decreases
or the local search deviates from the ”tunnel” of convex re-
gions.

More specifically, NRAEp,q(f(xi,W ), yi)

• approaches the standard Lp-norm error as λq → 0.
• approaches the minimax error criterion infWαmax(W )

as λq → ∞.
Please refer to the supplemental materials for the proofs.

More rigid proofs that can be generalized to Lp-norm error
are also given in (Lo 2010). In SimNets, the authors also
include quite similar discussions about the robustness with
respect to Lp-norm error (Cohen and Shashua 2014).

Learning Methods

We propose a novel learning method to training DNNs with
NRAE, called the Adaptive Normalized Risk-Avering Train-
ing (ANRAT) approach. Instead of manually tuning λ like
GDC (Lo, Gui, and Peng 2012), we learn λ adaptively in
error backpropagation by considering λ as a parameter in-
stead of a hyperparameter. The learning procedure is stan-
dard batch SGD. We show it works quite well in theory and
practice.

The loss function of ANRAT is

l(W,λ) =
1

λq
log

1

m

m∑

i=1

eλ
q||f(xi,W )−yi||p + a||λ||−r (6)

Together with NRAE, we also use a penalty term a||λ||−r

to control the changing rate of λ. While minimize the NRAE
score, small λ is penalized to regulate the convexity region.
a is a hyperparameter to control the penalty index. The first-
order derivatives on weight and λ are

dl(W,λ)

dW
=

p
∑m

i=1 e
λqαi(W )p−1 ∂f(xi,W )

∂W∑m
i=1 e

λqαi(W )p−1 (7)

dl(W,λ)

dλ
=

−q

λq+1
log

1

m

m∑

i=1

eλ
qαi(W )p (8)

+
q

λ

∑m
i=1 e

λqαi(W )pαi(W )p∑m
i=1 e

λqαi(W )p
(9)

− arλ−r−1 (10)

We make a transformation on Eqn. 10 to better un-
derstand the gradient with respect to λ. Note that ki =
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eλ
qαi(W )p

∑m
i=1 eλ

qαi(W )p is actually performing like a probability

(
∑m

i=1 ki = 1). Ignoring the penalty term, Eqn. 10 can be
formulated as follows:

dl(W,λ)

dλ
=

q

λ
(

m∑

i=1

kiαi(W )p −NRAE)

=
q

λ
(E(α(W )p)−NRAE)

≈ q

λ
(LP -norm error −NRAE) (11)

Note that as αi(W )p becomes smaller, the expectation
on αi(W )p approaches the standard Lp-norm error. Thus,
the gradient on λ is approximately the difference between
NRAE and the standard Lp-norm error. Because large λ can
incur plateaus to prevent NRAE from finding better optima
using batch SGD (Lo, Gui, and Peng 2012), they need GDC
to gradually deconvexify the NRAE to make the error space
well shaped and stable. Through Eqn. 11, ANRAT solve
this problem in a more flexible and adaptive manner. When
NRAE is larger, Eqn. 11 remains negative and makes λ in-
crease to enlarge the convexity region, facilitating the search
in the error space for better optima. When NRAE is smaller,
the learned parameters are seemingly going through the op-
timal ”tunnel” for better optima. Eqn. 11 becomes positive
to decrease λ and helps NRAE not deviate far from the man-
ifold of the standard Lp-norm error to make the error space
stable without large plateaus. Thus, ANRAT adaptively ad-
justs the convexity index to find an optimal trade-off be-
tween better solutions and stability.

This training approach has more flexibility. The gradi-
ent on λ as the weighted difference between NRAE and
the standard LP -norm error, enables NRAE to approach the
LP -norm error by adjusting λ gradually. Intuitively, it keeps
searching the error space near the manifold of the Lp-norm
error to find better optima in a way of competing with and at
the same time relying on the standard Lp-norm error space.

In Eqn. 6, the penalty weight a and index r control the
convergence speed by penalizing small λ. Smaller a empha-
sizes tuning λ to allow faster convergence speed between
NRAE and Lp-norm error. Larger a forces larger λ for a
better chance to find a better local optimum but runs the risk
of plateaus and deviating far from the stable error space. r
regulates the magnitude of λ and its derivatives in gradient
descent.

Experiments

We present the results from a series of experiments designed
on the MNIST and CIFAR-10 datasets to test the effective-
ness of ANRAT for visual recognition with DNNs. We did
not explore the full hyperparameters in Eqn. 6. Instead we
fix the hyperparameters at p = 2, q = 2 and r = 1 to mainly
compare with MSE. So the final loss function of ANRAT we
optimized is

l(W,λ) =
1

λ2
log

1

m

m∑

i=1

eλ
2||f(xi,W )−yi||2 + a|λ|−1 (12)

Method2 Error %

Convolutional Kernel Networks + L-BFGS-B(1) 0.39

Deeply Supervised Nets + dropout(2) 0.39

ConvNets (Lenet-5)(3) 0.95
ConvNets + MSE/CE (this paper) 0.93
large ConvNets, random feature(4) 0.89
ConvNets + L-BFGS(5) 0.69
large ConvNets, unsup pretraining(6) 0.62
ConvNets, unsup pretraining(7) 0.6
ConvNets + dropout(8) 0.55
large ConvNets, unsup pretraining(9) 0.53
ConvNets + ANRAT (This paper) 0.52
ConvNets + ANRAT + dropout (This paper) 0.39

Table 1: Test set misclassification rates of the best methods
that utilized convolutional networks on the original MNIST
dataset using single model.

This loss function is minimized by batch SGD without
complex methods, such as momentum, adaptive/hand tuned
learning rates or tangent prop. The learning rate and penalty
weight a are selected in {1, 0.5, 0.1} and {1, 0.1, 0.001}
on validation sets respectively. The initial λ is fixed at 10.
We use the hold-out validation set to select the best model,
which is used to make predictions on the test set. All exper-
iments are implemented quite easily in Python and Theano
to obtain GPU acceleration (Bastien et al. 2012).

The MNIST dataset (LeCun et al. 1998) consists of hand
written digits 0-9 which are 28x28 in size. There are 60,000
training images and 10,000 testing images in total. We use
10000 images in training set for validation to select the hy-
perparameters and report the performance on the test set. We
test our method on this dataset without data augmentation.

The CIFAR-10 dataset (Krizhevsky and Hinton 2009) is
composed of 10 classes of natural images. There are 50,000
training images in total and 10,000 testing images. Each im-
age is an RGB image of size 32x32. For this dataset, we
adapt pylearn2 (Goodfellow et al. 2013a) to apply the same
global contrast normalization and ZCA whitening as was
used by Goodfellow et. al (Goodfellow et al. 2013b). We use
the last 10,000 images of the training set as validation data
for hyperparameter selection and report the test accuracy.

Results and Discussion

Results on ConvNets

On the MNIST dataset we use the same structure of LeNet5
with two convolutional max-pooling layers but followed by
only one fully connected layer and a densely connected soft-
max layer. The first convolutional layer has 20 feature maps
of size 5×5 and max-pooled by 2×2 non-overlapping win-
dows. The second convolutional layer has 50 feature maps

2(1)(Mairal et al. 2014);(2)(Lee et al. 2014);(3)(LeCun et al.
1998);(4)(Ranzato et al. 2007);(5)(Ngiam et al. 2011);(6)(Ran-
zato et al. 2007);(7)(Poultney et al. 2006);(8)(Zeiler and Fergus
2013);(9)(Jarrett et al. 2009)
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Figure 1: (a). MNIST train, validation and test error rates throughout training with Batch SGD for MSE and ANRAT with l2
priors (left). (b). The curve of λ throughout ANRAT training (right).

with the same convolutional and max-pooling size. The fully
connected layer has 500 hidden units. An l2 prior was used
with the strength 0.05 in the Softmax layer. Trained by AN-
RAT, we can obtain a test set error of 0.52%, which is the
best result we are aware of that does not use dropout on the
pure ConvNets. We summarize the best published results on
the standard MNIST dataset in Table 1.

The best performing neural networks for pure Con-
vNets that does not use dropout or unsupervised pretrain-
ing achieve an error of about 0.69% (Ngiam et al. 2011).
They demonstrated this performance with L-BFGS. Using
dropout, ReLU and a response normalization layer, the er-
ror reduces to 0.55% (Zeiler and Fergus 2013). Prior to that,
Jarrett et. al showed by increasing the size of the network
and using unsupervised pretraining, they can obtain a better
result at 0.53% (Jarrett et al. 2009). Previous state of the art
is 0.39% (Mairal et al. 2014; Lee et al. 2014) for a single
model on the original MNIST dataset. Using batch SGD to
optimize either CE or MSE on the ConvNets descried above,
we can get an error rate at 0.93%. Replacing the training
methods with ANRAT using batch GD leads to a sharply de-
creased validation error of 0.66% with a test error at 0.52%.
With dropout and ReLU the test error rate drops to 0.39%,
which is the same with the best results without averaging or
data augmentation (Table 1) but we only use standard Con-
vnets and simple experimental settings.

Fig. 1 (a) shows the progression of training, validation and
test errors over 160 training epochs. The errors trained on
MSE plateau as it can not train the ConvNets sufficiently
and seems like underfit. Using ANRAT, the validation and
test errors remain decreasing along with the training error.
During training, λ sharply decrease, regulating the tunnel
of NRAE to approach the manifold of MSE. Afterward the
penalty term becomes significant, force λ to grow gradually
while expanding the convex region for higher chance to find
the better optimum (Figure 1 (b)).

Our next experiment is performed on the CIFAR-10
dataset. We observed significant overfitting using both MSE
and ANRAT with the fixed learning rate and batch SGD,
so dropout is applied to prevent the co-adaption of weights
and improve generalization. We use a similar network lay-
out as in (Srivastava et al. 2014) but with only two convo-
lutional max-pooling layers. The first convolutional layer

Method3 Acc %

ConvNets + Stochastic pooling + dropout(1) 84.87
ConvNets + dropout +Bayesian hyperopt(2) 87.39
ConvNets + Maxout + dropout(3) 88.32
Convolutional NIN + dropout(6) 89.6
Deeply Supervised Nets + dropout(7) 90.31

ConvNets + MSE + dropout (this paper) 80.58
ConvNets + CE + dropout(4) 80.6
ConvNets + VQ unsup pretraining(5) 82
ConvNets + ANRAT + dropout (This paper) 85.15

Table 2: Test accuracy of the best methods that utilized
convolutional framework on CIFAR-10 dataset without data
augmentation.

has 96 feature maps of size 5 × 5 and max-pooled by
2 × 2 non-overlapping windows. The second convolutional
layer has 128 feature maps with the same convolutional and
max-pooling size. The fully connected layer has 500 hid-
den units. Dropout was applied to all the layers of the net-
work with the probability of retaining a hidden unit being
p = (0.9, 0.75, 0.5, 0.5, 0.5) for the different layers of the
network. Using batch SGD to optimize CE on the simple
configuration of ConvNets + dropout, a test accuracy of 80.6
% is achieved (Krizhevsky, Sutskever, and Hinton 2012). We
also reported the performance at 80.58% with MSE instead
of CE with the similar network layout. Replacing the train-
ing methods with ANRAT using batch SGD gives a test ac-
curacy of 85.15%. This is superior to the results obtained by
MSE/CE and unsupervised pretraining. In Table. 2, our re-
sult with simple setting is shown to be competitive to those
achieved by different ConvNet variants.

Results on Multilayer Perceptron

On the MNIST dataset, MLPs with unsupervised pretrain-
ing has been well studied in recent years, so we select

3(1)(Zeiler and Fergus 2013);(2)(Srivastava et al.
2014);(3)(Goodfellow et al. 2013b);(4)(Zeiler and Fergus
2013);(5)(Coates and Ng 2011);(6)(Min Lin 2014);(7)(Lee et al.
2014)
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this dataset to compare ANRAT in shallow and deep MLPs
with MSE/CE and unsupervised pretraining. For the shal-
low MLPs, we follow the network layout as in (Gui, Lo,
and Peng 2014; LeCun et al. 1998) that has only one hidden
layer with 300 neurons. We build the stacked architecture
and deep network using the same architecture as (Larochelle
et al. 2009) with 500, 500 and 2000 hidden units in the first,
second and third layers, respectively. The training approach
is purely batch SGD with no momentum or adaptive learn-
ing rate. No weight decay or other regularization technique
is applied in our experiments.

Experiment results in Table. 3 show that the deep MLP
classifier trained by the ANRAT method has the lowest
test error rate (1.45%) of benchmark MLP classifiers with
MSE/CE under the same settings. It indicates that ANRAT
has the ability to provide reasonable solutions with differ-
ent initial weight vectors. This result is also better than deep
MLP + supervised pretraining or Stacked Logistic Regres-
sion networks. We note that the deep MLP using unsuper-
vised pretraining (auto-encoders or RBMs) remains to be
the best with test error at 1.41% and 1.2%. Unsupervised
pretraining is effective in initializing the weights to obtain
a better local optimum. Compared with unsupervised pre-
training + fine tuning, ANRAT sometimes still fall into the
sightly worse local optima in this case. However, ANRAT is
significantly better than MSE/CE without unsupervised pre-
training.

Interestingly, we do not observe significant advantages
with ANRAT in shallow MLPs. Although in early literature,
the error rate on shallow MLPs were reported as 4.7% (Le-
Cun et al. 1998) and 2.7% with GDC (Gui, Lo, and Peng
2014), both recent papers using CE (Larochelle et al. 2009)
and our own experiments with MSE can achieve error rate
of 1.93% and 2.02%, respectively. Trained by ANRAT, we
can have a test rate at 1.94%. This performance is slightly
better than MSE, but it is statistically identical to the per-
formance obtained by CE. 4. One possible reason is that
in shallow networks which can be trained quite well by
standard back propagation with normalized initializations,
the local optimum achieved with MSE/CE is quite nearly
a global optimum or good saddle point. Our result is also
corresponding to the conclusion in (Dauphin et al. 2014), in
which Dauphin et al. extend previous findings on networks
with a single hidden layer to show theoretically and empir-
ically that most badly suboptimal critical points are saddle
points. Even with better convexity property, ANRAT is as
good as MSE/CE in shallow MLPs. However, we find that
the problem of poor local optimum becomes more manifest
in deep networks. It is easier for ANRAT to find a way to-
wards the better optimum near the manifold of MSE. For the
sake of space, please refer to supplemental materials for the
results on the shallow Denoised Auto-encoder. The conclu-
sion is consistent that ANRAT performs better when attack-
ing more difficult learning/fitting problems. While ANRAT
is slightly better than CE/MSE + SGD on DA with uniform

4in (Larochelle et al. 2009), the author do not report their net-
work settings of the shallow MLP + CE, which may differ from
784-300-10.

Method5 Error %

Deep MLP + supervised pretraining(1) 2.04
Stakced Logistic Regression Network(1) 1.85
Stacked Auto-encoder Network(1) 1.41
Stacked RBM Network(1) 1.2

Shallow MLP + MSE(2) 4.7
Shallow MLP + GDC(3) 2.7 ± 0.03
Shallow MLP + MSE (this paper) 2.02
Shallow MLP + ANRAT (this paper) 1.94
Shallow MLP + CE(1) 1.93

Deep MLP + CE(1) 2.4
Deep MLP + MSE (this paper) 1.91
Deep MLP + ANRAT (this paper) 1.45

Table 3: Test error rate of deep/shallow MLP with different
training techniques.

masking noise, it achieves a significant performance boost
when Gaussian block masking noise is applied.

Conclusions and Outlook

In this paper, we introduce a novel approach, Adaptive
Normalized Risk-Averting Training (ANRAT), to help train
deep neural networks. Theoretically, we prove the effective-
ness of Normalized Risk-Averting Error on its arithmetic
bound, global convexity and local convexity lower-bounded
by standard Lp-norm error when convexity index λ ≥ 1.
By analyzing the gradient on λ, we explained the reason
why using back propagation on λ works. The experiments
on deep/shallow network layouts demonstrate comparable
or better performance with the same experimental settings
among pure ConvNets and MLP + batch SGD on MSE and
CE (with or without dropout). Other than unsupervised pre-
training, it provides a new perspective to address the non-
convex optimization strategy in DNNs.

Finally, while these early results are very encouraging,
clearly further research is warranted to address the questions
that arise from non-convex optimization in deep neural net-
works. It is preliminarily showed that in order to generalize
to a wide array of tasks, unsupervised and semi-supervised
learning using unlabeled data is crucial. One interesting
future work is to take advantage of unsupervised/semi-
supervised pretraining with the non-convex optimization
methods to train deep neural networks by finding the nearly
global optimum. Another crucial question is to guarantee
the generalization capability by preventing overfitting. Fi-
nally, we are quite interested in generalizing our approach
to recurrent neural networks. We leave as future work any
performance improvement on benchmark datasets by con-
sidering the cutting-edge approach to improve training and
generalization performance.

5(1)(Larochelle et al. 2009);(2)(LeCun et al. 1998);(3)(Gui, Lo,
and Peng 2014)
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