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Abstract

Multi-label propagation aims to transmit the multi-label in-
formation from labeled examples to unlabeled examples
based on a weighted graph. Existing methods ignore the spe-
cific propagation difficulty of different unlabeled examples
and conduct the propagation in an imperfect sequence, lead-
ing to the error-prone classification of some difficult exam-
ples with uncertain labels. To address this problem, this pa-
per associates each possible label with a “teacher”, and pro-
poses a “Multi-Label Teaching-to-Learn and Learning-to-
Teach” (ML-TLLT) algorithm, so that the entire propagation
process is guided by the teachers and manipulated from sim-
ple examples to more difficult ones. In the teaching-to-learn
step, the teachers select the simplest examples for the current
propagation by investigating both the definitiveness of each
possible label of the unlabeled examples, and the dependen-
cies between labels revealed by the labeled examples. In the
learning-to-teach step, the teachers reversely learn from the
learner’s feedback to properly select the simplest examples
for the next propagation. Thorough empirical studies show
that due to the optimized propagation sequence designed by
the teachers, ML-TLLT yields generally better performance
than seven state-of-the-art methods on the typical multi-label
benchmark datasets.

Introduction

Multi-Label Learning (MLL) refers to the problem in which
an example can be assigned a set of different labels. So
far, MLL has been intensively adopted in image annota-
tion (Wang, Huang, and Ding 2009), text categorization
(Schapire and Singer 2000), social behavior learning (Tang
and Liu 2009), and others.

By following the taxonomy presented in (Zhang and Zhou
2014), we classify the existing MLL algorithms into problem
transformation methods and algorithm adaptation methods.
Problem transformation methods cast MML into other well-
studied scenarios. Representative approaches include Cali-
brated Label Ranking (Fürnkranz et al. 2008) which trans-
forms MLL into a label ranking problem, and Binary Rele-
vance (Boutell et al. 2004) which regards MLL as a series of
binary classification tasks.

Algorithm adaptation methods extend the existing learn-
ing algorithms to multi-label cases. For example, (Zhang
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and Zhou 2007) adapt the traditional KNN classifier to
multi-label KNN, (Clare and King 2001; Bi and Kwok
2011) deploy the tree model to analyze the MLL problem,
and (Elisseeff and Weston 2001; Xu, Li, and Zhou 2013;
Xu, Tao, and Xu 2015) develop various multi-label SVMs
by introducing the ranking loss, PRO loss, and the causality
between labels, respectively.

Although the above methods differ from one another, they
all focus on how to exploit the label correlations to optimize
learning performance. Since graph is a simple yet powerful
tool to model the relationship between labels or examples,
several researchers have recently introduced graph to MLL
problem. Representative works include (Kong, Ng, and
Zhou 2013; Chen et al. 2013; Wang, Huang, and Ding 2009;
Chen et al. 2008; Jiang 2012; Kang, Jin, and Sukthankar
2006; Zha et al. 2008; Wang, Tu, and Tsotsos 2013). How-
ever, above graph-based propagation methods often suf-
fer from unsatisfactory performance due to the unexpected
noise (e,g, outliers) in the sample space and the huge label
search space (the size is 2q where q is the number of possi-
ble labels). To make matters worse, they propagate the labels
to unlabeled examples in an unfavorable sequence without
considering their individual propagation difficulty or relia-
bility. For example, (Wang, Huang, and Ding 2009; Chen et
al. 2008; Kong, Ng, and Zhou 2013) treat all the unlabeled
examples equally and conduct a one-shot label propagation
by minimizing the designed energy function. (Jiang 2012;
Wang, Tu, and Tsotsos 2013) iteratively transfer the label
information to unlabeled examples as long as these exam-
ples are directly linked to the labeled examples on a graph.

Inspired by (Gong et al. 2015), we address the above
problem by proposing a novel iterative multi-label propa-
gation scheme called “Multi-Label Teaching-to-Learn and
Learning-to-Teach” (ML-TLLT), to explicitly manipulate
the propagation sequence, so that the unlabeled examples are
logically propagated from simple to difficult. This is benefi-
cial to improving propagation quality because the previously
attained simple knowledge eases the learning burden for the
subsequent difficult examples. Generally, an example is sim-
ple if its labels can be confidently decided. Suppose we have
n= l+u examples X = {x1,· · ·,xl,xl+1,· · · ,xl+u}, where
the first l elements constitute the labeled set L and the re-
maining u examples form the unlabeled set U . Each element
xi ∈ X ⊂ R

d is associated with a set of q possible labels
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encoded in a label vector Yi = (Yi1, · · · ,Yiq) ∈ {0, 1}q ,
where Yir = 1 (r = 1, · · ·, q) means that xi has the label r,
and 0 otherwise. Our target is to iteratively propagate the la-
bels Y1, · · · ,Yl from L to U based on the established KNN
graph G= 〈V, E〉 (see Fig.1(a)). Here V is the node set cor-
responding to the total n examples, and E is the edge set
representing the similarities between these nodes.

We associate each of the q labels with a “teacher” (see
Fig.1(b)). In the teaching-to-learn step of a single propaga-
tion, the r-th (r=1,· · · ,q) teachers estimate the difficulty of
xi ∈ U by evaluating the r-th label definitiveness Mr(xi)
from their own viewpoints. The correlations between labels
are also considered by the teachers and then encoded in the
variables Qrp ∈ [0, 1] (r, p = 1, · · ·, q). Based on the label-
specific definitiveness and the pairwise label correlations,
the simplest examples are determined by individual teach-
ers (recorded by the selection matrix S(1),· · · ,S(q)), after
which the overall simplest examples agreed by all the teach-
ers are placed into the curriculum set S∗. The state-of-the-
art TRAnsductive Multi-label (TRAM) algorithm (Kong,
Ng, and Zhou 2013) is adopted as a “learner” to reliably
propagate the labels to the designated curriculum S∗ (see
Fig.1(c)). In the learning-to-teach step, the learner delivers
learning feedback to the teachers to assist them in deciding
the subsequent suitable curriculum. The above ML-TLLT
process iterates with the labeled set and unlabeled set re-
spectively updated by L := L ∪ S∗ and U := U −S∗, and
terminates when U = ∅. As a result, all the original unla-
beled examples are assigned reliable labels Yl+1, · · · ,Yl+u.

Our work is different from active learning (Settles 2010)
because active learning needs a human labeler to label the
selected examples while our method does not. Our work
also differs from curriculum learning (Bengio et al. 2009;
Kumar, Packer, and Koller 2010; Jiang et al. 2015; Khan,
Mutlu, and Zhu 2011) in that ML-TLLT requires the inter-
action between a teaching committee and a learner.

Our Approach

We denote W as the adjacency matrix of G with the (i, j)-
th element Wij = exp

(
−‖xi−xj‖2/(2ξ2)

)
if xi and xj

are linked by an edge, and Wij = 0 otherwise. Here ξ is
the kernel width decided as the average Euclidean distance
between all pairs of examples (Kong, Ng, and Zhou 2013).
Based on W, we have the diagonal degree matrix Dii =∑n

j=1 Wij and graph Laplacian matrix L = D − W. We
stack Y1,· · · ,Yn into a label matrix Y=

(
Y�

1 ,· · · ,Y�
n

)�,
and the correlation between labels r and p is then com-
puted by Qrp = cos(YL,r,YL,p) =

〈YL,r,YL,p〉
‖YL,r‖‖YL,p‖ with

YL,r = (Y1r,· · · ,Ylr)
�. Similarly, we also define a label

score matrix F=
(
F�

1 ,· · ·,F�
n

)� with every element Fir≥0
denoting the possibility of xi belonging to the class r.

Teaching-to-learn Step

In each propagation, all the unlabeled examples that are di-
rectly connected to L are included in the candidate set B of
size b, and the target of the teachers is to pick up the sim-
plest curriculum examples S∗={x∗

1,· · · ,x∗
s} from B where

s is the number of selected examples. Such selection should
consider both the definitiveness of individual possible label,
and the correlation between the pairs of labels.

The example xi ∈ B is simple in terms of the r-th label
if Yir is definitely 1 or 0. Let Cr (or C̄r) as the set includ-
ing all the labeled examples with the r-th label 1 (or 0), the
definitiveness of xi’s r-th label is then modeled by

Mr(xi) = |T̃ (xi, Cr)− T̃ (xi, C̄r)|, (1)

where T̃ (xi, Cr) (or T̃ (xi, C̄r)) represents the average com-
mute time between xi and all the elements in the set Cr (or
C̄r). That is,⎧⎪⎪⎨

⎪⎪⎩

T̃ (xi, Cr) = 1

|Cr|
∑

xi′∈Cr

T (xi,xi′)

T̃ (xi, C̄r) = 1

|C̄r|
∑

xi′ /∈Cr

T (xi,xi′)
. (2)

In (2), the notation “| · |” computes the size of the corre-
sponding set, and T (xi,xi′) denotes the commute time (Qiu
and Hancock 2007) between xi and xi′ , which is

T (xi,xi′) =
∑n

k=1
h(λk)

(
uki − uki′

)2
, (3)

where 0 = λ1 ≤ · · · ≤ λn are the eigenvalues of Laplacian
matrix L, and u1,· · ·,un are the associated eigenvectors; uki

denotes the i-th element of uk; h(λk) = 1/λk if λk 
= 0 and
h(λk) = 0 otherwise. Commute time T (xi,xi′) describes
the time cost starting from xi, reaching xi′ , and then return-
ing to xi again, therefore it can be leveraged to describe the
closeness of two examples. The larger Mr(xi) is, the sim-
pler xi is in terms of the label r.

To consider the correlations between labels, we force the
two teachers of labels r and p to generate similar curricu-
lums if the two labels are highly correlated over the la-
beled examples (i.e. Qrp is large). Based on above con-
siderations, we introduce a binary example selection matrix
S(r)∈{1, 0}b×s for the r-th label (r=1,· · ·,q). The element
S
(r)
ij =1 means that the r-th teacher considers the i-th exam-

ple to be simple, and it should therefore be included as the
j-th element in the curriculum set. The final selected exam-
ples agreed by all q teachers are indicated by the matrix S∗,
which has the same definition as S(r). Therefore, the model
for the selection of examples is

min
S(1),··· ,S(q),S∗

∑q

r=1
tr
(
S(r)�M(r)−1S(r)

)

+β0

∑q

r,p=1
Qrp

∥∥∥S(r)−S(p)
∥∥∥
2

+β1

∑q

r=1

∥∥∥S(r)−S∗
∥∥∥
2

s.t. S∗ ∈ {1, 0}b×s, S∗�S∗ = Is×s,

S(r)∈{1, 0}b×s, S(r)�S(r)=Is×s, for r=1,· · ·, q

,

(4)

where M(r) is a diagonal matrix with the diagonal ele-
ments M

(r)
ii =Mr(xi) for any xi ∈ B. The first definitive-

ness term in the objective function investigates the defini-
tiveness of xi’s all q labels and regulates the i-th row of
S(r) to zeros if Mr(xi) is small. The second label corre-
lation term discovers the label dependencies to make the
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Figure 1: The framework of our algorithm. (a) illustrates the established graph, in which the red balls, blue squares and yel-
low lines represent the labeled examples, unlabeled examples and edges, respectively. In (b), each of the q possible labels
Yi1, · · ·,Yiq is associated with a teacher, who evaluates the corresponding label definitiveness Mr(xi) (r takes a value from
1, · · ·, q) on all the unlabeled xi (i= 1, 2, 3 in this figure). By incorporating the label correlations (magenta arrows) recorded
by Qrp (r, p= 1· · ·, q), the individual decisions S(1), · · ·,S(q) are made and then unified to an overall simplest curriculum set
S∗={x1,x3}. These curriculum examples are classified by the learner in (c). Lastly, a learning feedback on S∗ is generated to
help the teachers decide the next suitable curriculum.

highly correlated labels produce similar selection matrices.
The third consistency term integrates the selection matrices
decided by various teachers to a consistent result. The pos-
itive β0 and β1 are trade-off parameters. The orthogonality
constraints S(r)�S(r)= Is×s (I denotes the identity matrix)
and S∗�S∗ = Is×s ensure that every example is selected
only once in S(r) and S∗.

However, the above problem (4) is NP-hard due to the
discrete {1, 0}-constraints on S(r) and S∗. Therefore, we re-
lax these integer constraints to continuous nonnegative con-
straints to make (4) tractable as follows:

min
S(1),··· ,S(q),S∗

∑q

r=1
tr
(
S(r)�M(r)−1S(r))

+β0

∑q

r,p=1
Qrp

∥∥∥S(r)−S(p)
∥∥∥
2

+β1

∑q

r=1

∥∥∥S(r)−S∗
∥∥∥
2

s.t. S∗ ≥ Ob×s, S
∗�S∗ = Is×s,

S(r) ≥ Ob×s, S
(r)�S(r)=Is×s, for r=1,· · ·, q

, (5)

where O denotes the all-zero matrix. We adopt alternating
minimization to sequentially update S(1), · · ·,S(q),S∗ with
the other variables fixed, and find a local solution to (5).
Updating S(r). To update S(r) where r takes a value from
1, · · ·, q, we fix S(r′) (r′ 
=r) and S∗, and solve the following
S(r)-subproblem:

min
S(r)

tr
(
S(r)�M(r)−1S(r))

+β0

∑q

p=1
Qrp

∥∥∥S(r)−S(p)
∥∥∥
2

+β1

∥∥∥S(r)−S∗
∥∥∥
2

s.t. S(r) ≥ Ob×s, S
(r)�S(r)=Is×s

. (6)

It should be noted that (6) is a nonconvex optimization
problem because of the orthogonality constraint. The feasi-
ble region falls on the Stiefel manifold, which is the set of all
m1×m2 matrices satisfying the orthogonality constraint, i.e.

St(m1,m2) =
{
X ∈ R

m1×m2 : X�X=Im2×m2

}
. Conse-

quently, we adopt the Partial Augmented Lagrangian Multi-
plier (PALM) method (Bertsekas 2014) to solve the problem
(6). Only the nonnegative constraint is incorporated into the
objective function of the augmented Lagrangian expression,
while the orthogonality constraint is explicitly retained and
imposed on the subproblem for updating S(r). By doing this,
S(r) is updated on the Stiefel manifold, which can be effec-
tively accomplished by the curvilinear search method (Wen
and Yin 2013). Therefore, the partial augmented Lagrangian
function of problem (6) is

L (S(r),Λ(r),T(r), σr)

=tr
(
S(r)�M(r)−1S(r))+ β0

∑q

p=1
Qrp

∥∥∥S(r)−S(p)
∥∥∥
2

+β1

∥∥∥S(r)−S∗
∥∥∥
2

+tr
(
Λ(r)�(S(r)−T(r))

)
+
σr

2

∥∥∥S(r)−T(r)
∥∥∥
2

,

(7)

where Λ(r) ∈ R
b×s is the Lagrangian multiplier, T(r) ∈

R
b×s is an auxiliary nonnegative matrix, and σr > 0 is the

penalty coefficient. Therefore, S(r) is updated by minimiz-
ing (7) subject to S(r)�S(r)=Is×s via the curvilinear search
method (Wen and Yin 2013) (see Algorithm 1).

In Algorithm 1, ∇L(S(r)) is the gradient of
L(S(r),Λ(r),T(r), σr) w.r.t. S(r), and L′(P̄(τ)

)
=

tr
(∇L(S(r))�P̄′(τ)

)
calculates the derivate of

L(S(r),Λ(r),T(r), σr) w.r.t. the stepsize τ , in which

P̄′(τ) =−(I+ τ
2A

)−1A
(

S(r)+P̄(τ)
2

)
. Algorithm 1 works

by finding the gradient of L in the tangent plane of the
manifold at the point S(r)(iter) (Line 4), based on which a
curve is obtained on the manifold that proceeds along the
projected negative gradient (Line 7). A curvilinear search is
then made along the curve towards the optimal S(r)(iter+1).
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The core of Algorithm 1 for preserving the orthogonal-
ity constraint lies in the skew-symmetric matrix A-based
Cayley transformation

(
I+ τ

2A
)−1

(
I− τ

2A
)
, which projects

S(r) to P̄(τ) to guarantee that P̄(τ)�P̄(τ)=I always holds.
In each iteration, the optimal stepsize τ is estimated by the
Barzilai-Borwein method (Fletcher 2005).

The auxiliary matrix T(r) in (7) is to force S(r) to be
nonnegative, which is updated by the conventional rule
in the augmented Lagrangian method, that is, T

(r)
ij :=

max(0, S
(r)
ij +Λ

(r)
ij /σr).

The entire PALM algorithm for solving the S(r)-
subproblem (6) is outlined in Algorithm 2, which is guar-
anteed to converge (Wen and Yin 2013).
Updating S∗. The S∗-subproblem is formulated as

min
S∗

∑q

r=1

∥∥∥S(r)−S∗
∥∥∥
2

s.t. S∗ ≥ Ob×s, S
∗�S∗=Is×s

. (8)

We also use PALM to solve the S∗-subproblem, which is the
same as the updating of S(r), therefore we omit the detailed
explanation for updating S∗ due to space limitations.

By alternately solving the S(r)-subproblem and the S∗-
subproblem, the objective value of (5) always decreases.
This objective function is lower bounded by 0 since the
diagonal matrices M(r)−1 (r = 1,· · ·, q) are positive defi-
nite. Therefore, the entire alternating minimization process
is guaranteed to converge, and the overall simplest examples
(i.e. a curriculum) agreed by all q teachers is suggested by
S∗. Based on S∗, the solution of problem (4) can be obtained
by discretizing the continuous S∗ into binary values. Specif-
ically, we find the largest element in S∗, and record its row
and column; then from the unrecorded columns and rows we
search the largest element and mark it again. This procedure
is repeated until the s largest elements have been found. The
rows of these s elements indicate the selected examples for
the current propagation.
Multi-label Propagation. By employing the normalized
graph Laplacian H= I−D−1W, and starting from FL :=
YL, Kong et al. (Kong, Ng, and Zhou 2013) suggest that the
label scores FS∗,r of the curriculum examples in S∗ on the
r-th (r=1, · · ·, q) label can be obtained by solving

HS∗,S∗FS∗,r = −HS∗,LFL,r, (9)
where HS∗,S∗ and HS∗,L are sub-matrices of H indexed
by the corresponding subscripts, and FS∗,r, FL,r are the r-
th column vectors of the label score matrices FS∗ and FL,
respectively. Since the (i, r)-th element in FS∗ conveys the
possibility of xi ∈S∗ having the r-th label, (Kong, Ng, and
Zhou 2013) propose setting xi’s label vector Yi as Yir =1
if Fir is among the θi largest elements in Fi, and Yir′ =0
otherwise. By assuming that similar examples should have
a similar number of labels, they present a linear equation to
find the suitable ΘS∗ = (θ1, · · · ,θs)�, which is

HS∗,S∗ΘS∗ = −HS∗,LΘL, (10)
where ΘL is a column vector sharing a similar definition
with ΘS∗ but recording the available numbers of labels of
labeled examples instead. The number of labels for xi ∈S∗
is then decided by rounding θi to the nearest integer.

Algorithm 1 The curvilinear search for minimizing (7)
1: Input: S(r) that satisfies S(r)�S(r) = I, ε = 10−5, τ =

10−3, ϑ = 0.2, η = 0.85, h = 1, ν = L(S(r)), iter = 0
2: repeat
3: // Compute the skew-symmetric matrix A

4: A = ∇L(S(r)) · S(r)� − S(r) ·
(
∇L(S(r))

)
�;

5: //Define search path P̄(τ) on the Stiefel manifold and find
a suitable Barzilai-Borwein (BB) stepsize τ

6: repeat

7: P̄(τ) =
(
I+ τ

2
A
)−1

(
I− τ

2
A
)
S(r);

8: τ := ϑ · τ ;
9: // Check BB condition

10: until L(P̄(τ)) ≤ ν − τL′(P̄(0))
11: // Update variables
12: S(r) := P̄(τ);

13: Q := ηh+1; ν :=
(
ηhν + L(S(r))

)
/h; iter := iter+1;

14: until

∥∥∥∇L(S(r))
∥∥∥ < ε

15: Output: S(r) that minimizes (7)

Algorithm 2 PALM for solving S(r)-subproblem (6)
1: Input: M(r), arbitrary initial S(r) satisfying S(r)�S(r) = I,

all-one matrix Λ(r), β0, β1, σr = 1, ρ = 1.2, iter = 0
2: repeat

3: // Update T(r)

4: T
(r)
ij = max(0, S

(r)
ij +Λ

(r)
ij /σr);

5: // Update S(r) by minimizing Eq. (7) using Algorithm 1
6: S(r) :=argminS(r)�S(r)=Is×s

L (S(r),Λ(r),T(r), σr);
7: // Update variables
8: Λ

(r)
ij := max(0,Λ

(r)
ij + σrS

(r)
ij ); σr := min(ρσr, 10

10);
iter := iter + 1;

9: until Convergence
10: Output: S(r) that minimizes (6)

Learning-to-teach Step

In the learning-to-teach step, teachers should also learn from
the learner by absorbing feedback to adjust the curricu-
lum generation in the next propagation. Specifically, if the
learner’s t-th learning performance is satisfactory, teachers
may assign more examples to it for the (t+1)-th propaga-
tion. Otherwise, teachers should allocate fewer examples to
the learner. However, the real labels of the curriculum ex-
amples are not available, so we define a learning confidence
Conf(S∗) to evaluate the learner’s performance on S∗. In-
tuitively, if xi ∈S∗ is assigned label r, namely Yir=1, the
corresponding label score Fir should be as large as possible.
This is because large Fir indicates that assigning label r to
xi is very confident. Therefore, the propagation confidence
on single xi (i.e. Conf(xi)) is defined by

Conf(xi) = minr=1,··· ,q, Yir=1
Fir, (11)

based on which we average the confidence over all xi ∈ S∗,
and define Conf(S∗) as

Conf(S∗) =
1

s

∑s

i=1
Conf(xi), xi ∈ S∗. (12)
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Figure 2: The curve of the learning feedback defined in (13)
with different choices of α. Large α leads to a steep curve.

Based on Conf(S∗), we utilize a sigmoid function to map
the Conf(S∗) to a nonlinear learning feedback, which is

Feedback =

1
1+exp(−2α(Conf(S∗)−0.5)) − 1

1+exp(α)

1
1+exp(−α) +

1
1+exp(α)

. (13)

Eq. (13) has a number of ideal properties, such as being
monotonically increasing, and Feedback = 0, 0.5 and 1
when Conf(S∗) = 0, 0.5 and 1, respectively. The parame-
ter α regulates the “steepness” of the curve of (13), and is
set to 3 throughout this paper (see Fig.2).

By utilizing the designed feedback (13), the number
of simplest examples selected for the next propagation is
s(t+1) =

⌈
b(t+1)×Feedback

⌉
where b(t+1) is the size of can-

didate set B in the (t+1)-th propagation, and “�·
” rounds
up the inside element to the nearest integer.

Experimental Results

This section first validates several critical steps in the pro-
posed ML-TLLT, and then compares ML-TLLT with seven
state-of-the-art methods on five benchmark datasets. Six
evaluation metrics for MLL are adopted, including ranking
loss, average precision, hamming loss, one error, coverage,
and Micro F1; their definitions can be found in (Zhang and
Zhou 2014). All the adopted datasets come from the MU-
LAN1 repository. The reported results of various algorithms
on all the datasets are produced by 5-fold cross validation.

Algorithm Validation

Three critical factors help to boost the performance of ML-
TLLT: 1) the simple-to-difficult propagation sequence gen-
erated by the teaching-to-learn step; 2) the label correlation
term developed in (4); and 3) the feedback (13) designed in
the learning-to-teach step. To verify their benefits, we first
replace the teaching-to-learn step by randomly selecting the
curriculum examples (termed “Random”) to highlight the
importance of 1), and then remove the label correlation term
from (4) (termed “NoCorr”) to demonstrate the contribution
of 2), and lastly set the feedback (13) to a constant value 0.5

1http://mulan.sourceforge.net/datasets-mlc.html

Table 1: The validation of key steps in our ML-TLLT model.
“↑ (↓)” denotes the larger (smaller), the better for the corre-
sponding metric. The best records are marked in bold.

Random NoCorr NoFB ML-TLLT
Ranking loss ↓ 0.260±0.020 0.260±0.022 0.261±0.020 0.255±0.019
Average precision ↑ 0.712±0.024 0.713±0.024 0.713±0.023 0.717±0.023
Hamming loss ↓ 0.292±0.021 0.291±0.025 0.290±0.019 0.289±0.022
One error ↓ 0.388±0.538 0.385±0.052 0.385±0.048 0.383±0.051
Coverage ↓ 2.185±0.128 2.194±0.136 2.199±0.119 2.172±0.109
Micro F1 ↑ 0.536±0.030 0.537±0.035 0.539±0.025 0.540±0.031

(denoted “NoFB”) to show the effect of 3). The results on
Emotions dataset presented in Table 1 clearly indicate that
the performances on all the metrics decrease without any of
the above three critical factors, therefore they are indispens-
able to ML-TLLT for achieving the improved results.

Comparison With Existing Methods

The employed baselines include Multi-Label KNN
[“MLKNN”, (Zhang and Zhou 2007)], Multi-Label SVM
(Elisseeff and Weston 2001) with linear kernel [“MLSVM
(Linear)”] and RBF Kernel [“MLSVM (RBF)”], Multi-
Label learning on Tensor Product Graph [“MLTPG”, (Jiang
2012)], Semi-supervised Multi-label learning via Sylvester
Equation (Chen et al. 2008) inherited from Harmonic
Functions (“SMSE-HF”) and Local and Global Consistency
(“SMSE-LGC”), and TRAM (Kong, Ng, and Zhou 2013)
which acts as the “learner” in our algorithm.

Five datasets Emotions, Yeast, Scene, Corel5K and Bibtex
in MULAN are leveraged to test the performance of all the
methods. For fair comparison, we build the same graph for
MLKNN, SMSE-HF, SMSE-LGC, TRAM and ML-TLLT
on every dataset, and the number of neighbors K is set to
10, 10, 10, 35, 35 on Emotions, Yeast, Scene, Corel5K and
Bibtex, respectively. In ML-TLLT, the trade-off parameters
β0 and β1 are set to 1 for all the experiments. As suggested
by (Chen et al. 2008), we set u=1, v=0.15 in SMSE-HF,
and β= γ =1 in SMSE-LGC. The weighting parameter C
in MLSVM (Linear) and MLSVM (RBF) is tuned to 1.

The results are shown in Table 2. We do not conduct
MLSVM on Corel5K and Bibtex because MLSVM is not
scalable to these two datasets. The hamming loss and Micro
F1 of SMSE are also not reported because (Chen et al. 2008)
do not provide an explicit solution for deciding the number
of assigned labels. Table 2 suggests that ML-TLLT generally
outperforms other baselines on all the datasets. Specifically,
it can be observed that ML-TLLT performs better than the
plain “learner” TRAM in almost all situations, therefore the
effectiveness of our TLLT strategy is demonstrated.

Conclusion

This paper proposes a novel framework for multi-label
propagation, termed “Multi-Label Teaching-to-Learn and
Learning-to-Teach” (ML-TLLT). As a result of the inter-
actions between teachers and learner, all the unlabeled ex-
amples are elaborately propagated from simple to difficult.
They are consequently assigned trustable and accurate la-
bels, leading to the superior performance of ML-TLLT over
existing state-of-the-art methods.
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Table 2: Experimental results of the compared methods on benchmark datasets. “↑ (↓)” denotes the larger (smaller), the better.
The best records are marked in bold. “

√
(×)” indicates that TLLT is significantly better (worse) than the corresponding method.

Ranking loss ↓
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 0.294± 0.035
√

0.167± 0.005 0.080± 0.005
√

- -
MLSVM (RBF) 0.415± 0.023

√
0.195± 0.007

√
0.302± 0.020

√
- -

MLKNN 0.262± 0.016 0.170± 0.006 0.076± 0.009 0.278± 0.003 0.137± 0.003
√

MLTPG 0.439± 0.037
√

0.239± 0.002
√

0.116± 0.008
√

0.335± 0.004
√

0.192± 0.003
√

SMSE-HF 0.262± 0.015 0.166 ± 0.007 0.080± 0.004
√

0.265± 0.004 × 0.127± 0.004
SMSE-LGC 0.273± 0.026

√
0.180± 0.007

√
0.080± 0.007

√
0.251 ± 0.003 × 0.139± 0.003

√
TRAM 0.263± 0.022

√
0.178± 0.008

√
0.080± 0.006

√
0.297± 0.009

√
0.133± 0.003

√
ML-TLLT 0.255 ± 0.019 0.169± 0.006 0.073 ± 0.007 0.271± 0.004 0.126 ± 0.003

Average precision ↑
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 0.678± 0.023
√

0.761± 0.005 0.852± 0.005
√

- -
MLSVM (RBF) 0.573± 0.012

√
0.713± 0.006

√
0.606± 0.016

√
- -

MLKNN 0.702± 0.021
√

0.762± 0.008 0.868 ± 0.013 × 0.111± 0.005
√

0.583 ± 0.003 ×
MLTPG 0.580± 0.034

√
0.683± 0.006

√
0.831± 0.009

√
0.073± 0.001

√
0.529± 0.003

√
SMSE-HF 0.711± 0.019 0.765 ± 0.006 0.864± 0.007 × 0.117± 0.004

√
0.576± 0.004

SMSE-LGC 0.707± 0.034
√

0.746± 0.005
√

0.861± 0.011 0.119± 0.003
√

0.571± 0.003
TRAM 0.700± 0.025

√
0.752± 0.013

√
0.858± 0.012 0.115± 0.004

√
0.561± 0.006

√
ML-TLLT 0.717 ± 0.023 0.765 ± 0.005 0.859± 0.012 0.123 ± 0.002 0.575± 0.005

Hamming loss ↓
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 0.289± 0.022 0.202± 0.005 0.131± 0.005
√

- -
MLSVM (RBF) 0.330± 0.013

√
0.227± 0.002

√
0.171± 0.002

√
- -

MLKNN 0.264 ± 0.004 × 0.194 ± 0.003 × 0.087± 0.006 0.016 ± 0.000 × 0.033 ± 0.000
MLTPG 0.333± 0.034

√
0.300± 0.005

√
0.124± 0.006

√
0.016 ± 0.000 × 0.044± 0.001

√
SMSE-HF - - - - -
SMSE-LGC - - - - -
TRAM 0.306± 0.018

√
0.211± 0.009

√
0.092± 0.007 0.030± 0.000 0.037± 0.001

√
ML-TLLT 0.289± 0.022 0.204± 0.006 0.086±0.007 0.029± 0.001 0.033 ± 0.001

One error ↓
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 0.481± 0.041
√

0.229± 0.013 0.253± 0.004
√

- -
MLSVM (RBF) 0.555± 0.066

√
0.249± 0.018

√
0.596± 0.019

√
- -

MLKNN 0.407± 0.050
√

0.236± 0.019
√

0.222± 0.020 0.870± 0.018
√

0.085± 0.003
MLTPG 0.553± 0.068

√
0.249± 0.018

√
0.269± 0.015

√
0.931± 0.009

√
0.088± 0.004

√
SMSE-HF 0.398± 0.038

√
0.234± 0.012 0.228± 0.013

√
0.857± 0.007 0.080± 0.006

SMSE-LGC 0.386± 0.064 0.251± 0.019
√

0.232± 0.019
√

0.867± 0.009
√

0.078 ± 0.004 ×
TRAM 0.415± 0.049

√
0.268± 0.024

√
0.239± 0.022

√
0.857± 0.006 0.104± 0.004

√
ML-TLLT 0.383 ± 0.051 0.228 ± 0.011 0.220 ± 0.021 0.853 ± 0.006 0.083± 0.003

Coverage ↓
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 2.284± 0.202
√

6.306± 0.112
√

0.448± 0.058
√

- -
MLSVM (RBF) 2.970± 0.283

√
6.608± 0.136

√
1.577± 0.099

√
- -

MLKNN 2.266± 0.113
√

6.340± 0.137
√

0.448± 0.058
√

226.031± 2.620
√

74.259± 1.434
√

MLTPG 3.102± 0.113
√

8.072± 0.037
√

0.647± 0.044
√

246.253± 1.359
√

89.830± 1.196
√

SMSE-HF 2.208± 0.137
√

6.223± 0.152 × 0.470± 0.030
√

215.497± 1.695 71.533± 1.957
√

SMSE-LGC 2.259± 0.142
√

6.213 ± 0.136 × 0.464± 0.037
√

209.655 ± 0.956 × 74.935± 1.441
√

TRAM 2.202± 0.151 6.341± 0.122
√

0.460± 0.027
√

226.254± 2.552
√

70.123± 1.840
√

ML-TLLT 2.172 ± 0.109 6.265± 0.139 0.423 ± 0.044 217.511± 2.032 68.539 ± 1.298

Micro F1 ↑
Emotions Yeast Scene Corel5K Bibtex

MLSVM (Linear) 0.510± 0.047
√

0.651± 0.008
√

0.632± 0.019
√

- -
MLSVM (RBF) 0.310± 0.039

√
0.596± 0.006

√
0.591± 0.013

√
- -

MLKNN 0.453± 0.035
√

0.642± 0.010
√

0.734± 0.020
√

0.004± 0.001
√

0.460± 0.005
√

MLTPG 0.368± 0.026
√

0.520± 0.018
√

0.645± 0.015
√

0.002± 0.000
√

0.482 ± 0.007 ×
SMSE-HF - - - - -
SMSE-LGC - - - - -
TRAM 0.513± 0.023

√
0.650± 0.013

√
0.735± 0.021

√
0.099± 0.003

√
0.445± 0.007

√
ML-TLLT 0.540 ± 0.031 0.663 ± 0.007 0.753 ± 0.021 0.107 ± 0.003 0.476± 0.004
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