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Abstract

We propose a probabilistic model for non-exhaustive and
overlapping (NEO) bi-clustering. Our goal is to extract a few
sub-matrices from the given data matrix, where entries of a
sub-matrix are characterized by a specific distribution or pa-
rameters. Existing NEO bi-clustering methods typically re-
quire the number of sub-matrices to be extracted, which is
essentially difficult to fix a priori. In this paper, we extend
the plaid model, known as one of the best NEO bi-clustering
algorithms, to allow infinite bi-clustering; NEO bi-clustering
without specifying the number of sub-matrices. Our model
can represent infinite sub-matrices formally. We develop a
MCMC inference without the finite truncation, which poten-
tially addresses all possible numbers of sub-matrices. Exper-
iments quantitatively and qualitatively verify the usefulness
of the proposed model. The results reveal that our model can
offer more precise and in-depth analysis of sub-matrices.

Introduction

In this paper, we are interested in bi-clustering for matrix
data analysis. Given the data, the goal of bi-clustering is to
extract a few (possibly overlapping) sub-matrices' from the
matrix where we can characterize entries of a sub-matrix by
a specific distribution or parameters. Bi-clustering is poten-
tially applicable for many domains. Assume an mRNA ex-
pression data matrix, which consists of rows of experimen-
tal conditions and columns of genes. Given such data, biolo-
gists are interested in detecting pairs of specific conditions X
gene subsets that have different expression levels compared
to other expression entries. From a user X product purchase
record, we can extract sub-matrices of selected users X par-
ticular products that sell very good. Successful extraction of
such sub-matrices is the basis for efficient ad-targeting.

More specifically we study the non-exhaustive and over-
lapping (NEO) bi-clustering. Here we distinguish between
the exhaustive and non-exhaustive bi-clustering.

Exhaustive bi-clustering (e.g. (Erosheva, Fienberg, and
Lafferty 2004; Kemp et al. 2006; Roy and Teh 2009;
Nakano et al. 2014)) is an extension of typical clustering
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'By sub-matrix, we mean a direct product of a subset of row
indices and a subset of column indices.
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(such as k-means) for matrices: the entire matrix is parti-
tioned into many rectangle blocks, and all matrix entries are
assigned to one (or more) of these blocks (Fig. 1). However,
for knowledge discovery from the matrix, we are only inter-
ested in few sub-matrices that are essential or interpretable.
For that purpose exhaustive bi-clustering techniques require
post-processing in which all sub-matrices are examined to
identify “informative” ones, often by painful manual effort.

On the contrary, the goal of non-exhaustive bi-clustering
methods is to extract the most informative or significant
sub-matrices, not partitioning all matrix entries. Thus the
non-exhaustive bi-clustering is more similar to clique detec-
tion problems in network analysis: not all nodes in a net-
work are extracted as clique members. Non-exhaustive bi-
clustering would greatly reduce the man-hour costs of man-
ual inspections and knowledge discovery, because it ignores
non-informative matrix entries (Fig. 1).

Hereafter let us use “bi-clustering” to mean “NEO bi-
clustering”. There has been a plenty of bi-clustering re-
searches over years, e.g. (Cheng and Church 2000; Lazze-
roni and Owen 2002; Caldas and Kaski 2008; Shabalin et
al. 2009; Fu and Banerjee 2009). However, there is one fa-
tal problem that has not been solved yet: determining the
number of sub-matrices to be extracted. Most existing bi-
clustering methods assume that the number of sub-matrices
is fixed a priori. This brings two essential difficulties. First,
finding the appropriate number of sub-matrices is very diffi-
cult. Recall that determining “k” for classical k-means clus-
tering is not trivial in general. And the same holds, per-
haps more difficult (Gu and Liu 2008), for bi-clustering.
Second, sub-optimal choices of the sub-matrix number in-
evitably degrade bi-clustering performances. For example,
assume there are K = 3 sub-matrices incorporated in the
given data matrix. Solving the bi-clustering by assuming
K = 2(< 3) never recover the true sub-matrices. If we solve
with K = 5(> 3), then the model seeks for two extra sub-
matrices to fulfill the assumed K; e.g. splitting a correct sub-
matrix into multiple smaller sub-matrices.

There are few works on this problem. One such
work (Ben-Dor et al. 2003) suffers computational complex-
ity equivalent to the cube to the number of columns; thus it
is feasible only for matrices with very few columns. Gu and
Liu (Gu and Liu 2008) adopted the model selection approach
based on BIC. However model selection inevitably requires
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Figure 1: Exhaustive bi-clustering VS. NEO bi-clustering.
We offer the infinite bi-clustering: NEO bi-clustering with-
out knowing the exact number of distinctive sub-matrices.
Row and column indices are not consecutive: thus we do not
extract consecutive rectangles, but direct products of subsets
of rows and columns.

multiple inference trials for different choices of model com-
plexities (the number of sub-matrices, K). This consumes a
lot of computation and time resources.

The main contribution of this paper is to propose a prob-
abilistic model that allows infinite bi-clustering; NEO bi-
clustering without specifying the number of sub-matrices.
The proposed model is based on the plaid models (Lazze-
roni and Owen 2002), which are known to be one of the
best bi-clustering methods (Eren et al. 2013; Oghabian et
al. 2014). The proposed Infinite Plaid models introduce a
simple extension of the Indian Buffet Process (Griffiths and
Ghahramani 2011) and can formulate bi-clustering patterns
with infinitely many sub-matrices. We develop a MCMC in-
ference that allows us to infer the appropriate number of
sub-matrices for the given data automatically. The inference
does not require the finite approximation of typical varia-
tional methods. Thus it can potentially address all possible
numbers of sub-matrices, unlike the existing variational in-
ference method for similar prior model (Ross et al. 2014).
Experiment results show that the proposed model quantita-
tively outperforms the baseline finite bi-clustering method
both for synthetic data and for real-world sparse datasets.
We also qualitatively examine the extracted sub-matrices,
and confirm that the Infinite Plaid models can offer in-depth
sub-matrix analysis for several real-world datasets.
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Background
Baseline: (simplified) Bayesian Plaid model

Bi-clustering has been studied intensively for years. A sem-
inal paper (Cheng and Church 2000) has applied the bi-
clustering technique for the analysis of gene-expression
data. After that, many works have been developed (e.g. (Sha-
balin et al. 2009; Fu and Banerjee 2009)). Among them, the
Plaid model (Lazzeroni and Owen 2002) is recognized as
one of the best bi-clustering methods in several review stud-
ies (Eren et al. 2013; Oghabian et al. 2014). Bayesian mod-
els of the plaid model have been also proposed and reported
effective (Gu and Liu 2008; Caldas and Kaski 2008).

We adopted a simplified version of Bayesian Plaid mod-
els (Caldas and Kaski 2008) as the baseline. The observed
data is a matrix of Ny X N, continuous values, and K is the
number of sub-matrices to model interesting parts. We de-
fine the simplified Bayesian Plaid model as follows:

A1 x ~ Beta (af,bf) Ay ~ Beta (ag,bg) ,

Z1.i% ~ Bernoulli (4;4) ,

)
2
6, ~ Normal (,ue, (Te)*l) , ¢ ~ Normal (,u¢, (T¢)71) , 3)

22jx ~ Bernoulli (A2) ,

x;,j ~ Normal | ¢ + Z 21,522,140k » (T0) ™" 4)
3

In the above equations, k € {1,..., K} denotes sub-matrices,
iefl,...,Ni}and j € {l,...,N,} denote objects in the first
(row) and the second (column) domains, respectively. A
and A, (Eq. (1)) are the probabilities of assigning an object
to the kth sub-matrix in the first and the second domain. z; ; x
and z; jx in Eq. (2) represent the sub-matrix (factor) mem-
berships. If z;;x = 1(0) then the ith object of the first do-
main is (not) a member of the kth sub-matrix, and similar
for z5 ;. O and ¢ in Eq. (3) are the mean parameters for the
kth sub-matrix and the “background” factor. Eq. (4) com-
bines these to generate an observation. Note that this obser-
vation process is simplified from the original Plaid models.
Throughout the paper, however, we technically focus on the
modeling of Z thus we employ this simplified model.

As stated, existing bi-clustering methods including the
Bayesian Plaid model require us to fix the number of sub-
matrices, K, beforehand. It is very possible to choose a sub-
optimal K in practice since it is innately difficult to find the
best K by hand.

Indian Buffet Process (IBP)

Many researchers have studied sophisticated techniques for
exhaustive bi-clustering. Especially, the Bayesian Nonpara-
metrics (BNP) becomes a standard tool for the problem
of an unknown number of sub-matrices in exhaustive bi-
clustering (Kemp et al. 2006; Roy and Teh 2009; Nakano
et al. 2014; Zhou et al. 2012; Ishiguro, Ueda, and Sawada
2012). Thus it is reasonable to consider the BNP approach
for the (NEO) bi-clustering.

For that purpose, we would first consider an IBP (Grif-
fiths and Ghahramani 2011), a BNP model for binary fac-
tor matrices. Assume the following Beta-Bernoulli process
for N collections of K = oo feature factors F = {F;}i=;.. n:



B ~ BP(a, By), F; ~ BerP(B). BP(a, By) is a Beta pro-
cess with a concentration parameter @ and a base mea-
sure By. B = Y, A0y, is a collection of infinite pairs of
(A, Bk) , A € [0, 1], 6 € Q. F; is sampled from the Bernoulli
process (BerP) as F; = ;2 zix0p, using a binary variable
Zix € {0, 1}. IBP is defined as a generative process of z;4:

k
vi~Beta(a, 1), A = | | vi., zix ~ Bemoulli (1) .
=1

Z = {z;x} acts like an infinite-K extension of Z; or Z; in
Eq. (2). Assume that we observed N objects, and an object i
may involve K = oo clusters. Then z;; serves as an member-
ship indicator of the object i to a cluster k.

Proposed model

Unfortunately, a vanilla IBP cannot achieve the infinite bi-
clustering. This is because infinite bi-clustering requires to
associate a sub-matrix parameter 6 with rwo As, which cor-
respond to rwo binary variables zy;x, 22, jx (Egs.(1,2)). How-
ever, the IBP ties the parameter 6; with only one parameter
as it is built on the pairs of (A, 6;) in BP.

For example, (Miller, Griffiths, and Jordan 2009) pro-
posed to employ an IBP to factorize a square matrix. This
model and its followers (Palla, Knowles, and Ghahramani
2012; Kim and Leskovec 2013), however, cannot perform
bi-clustering on non-square matrix data, such as user X item
matrix. (Whang, Rai, and Dhillon 2013) employed a product
of independent IBPs to over-decompose a matrix into sub-
matrices, and associated binary variables over sub-matrices
to choose “extract” or “not-extract”. This is not yet optimal
because this model explicitly models the not-extract sub-
matrices, results in unnecessary model complications.

Infinite Plaid models for infinite bi-clustering

Now we propose the Infinite Plaid models, an infinite bi-
clustering model for general non-square matrices with the
plaid factor observation models:

2,2 | ay,a; ~ TIBP (a1, a2) ()
6 ~ Normal (,ue, (‘re)") , ¢ ~ Normal (u¢, (T¢)_]) , (6)

x;,j ~ Normal (fﬁ + Z 21,ik22,jk0k » (To)_l] . @)
T

In Eq. (5), the Two-way IBP (TIBP), which will be ex-
plained later, is introduced to generate two binary matrices
for sub-matrix memberships: Z; = {z1,4} € {0, 1}"** and
Z) = {2} € {0, 1}V Different from the Bayesian Plaid
models, the cardinality of sub-matrices may range to K = oo;
i.e. the Infinite Plaid models can formulate bi-cluster pat-
terns with infinitely many sub-matrices. Remaining genera-
tive processes are the same as in the Bayesian Plaid models.

Now let us explain what is TIBP and why TIBP can rem-
edy the problem of IBP. TIBP assumes triplets consists of
2 weights and an atom, instead of pairs of a weight and
an atom of IBP. Consider an infinite collection of triplets
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B = (A1 4, Aok, Ok), where Ay, Aoy € [0, 1] are the probabil-
ity of activating a sub-matrix (factor) k in the 1st domain and
the 2nd domain, respectively, and 6y is a parameter drawn
from the base measure By. Given B, we generate feature
factors for 2-domain indices (i,j): Fiijy = Yoy 21,ik22,jk00,
where two binary variables zj;; and z jx represent sub-
matrix(factor) responses.

More precisely, TIBP is defined as a generative process of
such z; ;x and z, j; that extends IBP:

k

vig~Beta(e, 1), k= 1_[ Vi, 21k ~Bernoulli (4, ) ,
=1
k

vy ~Beta(ay, 1) , Ay = 1_[ Vg, 22,k Bernoulli (/lz’k) .
=1

Repeating for all (i,j), we obtain Z; = {z1;x} € {0, 1}1*®
and Z, = {zo4) € {0,1}***. In shorthand we write:
Z\,Z, | a,az,~ TIBP(a},a,). Because of the triplets, a
parameter atom 6; and the corresponding index k are asso-
ciated between Z; and Z, for k € {1,2, ..., o0}. Therefore
the binary matrices generated from TIBP can serve as valid
membership variables for infinite bi-clustering.

TIBP is a generic BNP prior related to the marked Beta
process (Zhou et al. 2012). It would be applicable for many
other problems, not limited to the infinite bi-clustering. For
example, (Ross et al. 2014) employed a similar infinite bi-
clustering prior for a mixture of Gaussian processes to learn
clusters of disease trajectories. In this paper, we employ
TIBP for totally different problem; unsupervised infinite bi-
clustering of plaid models.

Inference without truncations

We usually use the variational inference (VI) or the MCMC
inferences to estimate unknown variables in probabilistic
models. The aforementioned work by (Ross et al. 2014) em-
ployed the VI, which utilizes a finite truncation of TIBP with
the fixed K* model in its variational approximation, where
K™ is the assumed “maximum” number of sub-matrices. To
do this, VI achieves an analytical approximation of the pos-
terior distributions.

Instead, we developed a MCMC inference combining
Gibbs samplers and Metropolis-Hastings (MH) samplers
(c.f. (Meeds et al. 2007)), which approximate the true pos-
teriors by sampling. Roughly speaking, the Gibbs samplers
infer individual parameters (0, ¢) and hidden variables (z)
while the MH samplers test drastic changes in the number
of sub-matrices such as split-merge moves and a proposal
of new sub-matrices. It is noteworthy that our MCMC in-
ference does not require finite truncations of TIBP unlike
VL. Thus it yields a posterior inference of the infinite bi-
clustering that potentially address all possible numbers of
sub-matrices, not truncated at K. In addition, we can in-
fer the hyperparameters to boost bi-clustering performances
(c.f. (Hoff 2005; Meeds et al. 2007)). Please consult the sup-
plemental material for inference details.
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Figure 2: Observations and typical bi-clustering results on
synthetic datasets. A colored rectangle indicates a sub-
matrix k ( (i, j)s.t.z1ix = 22 = 1 ). Sub-matrix over-
lapping is allowed: for example, in Panel (B), three sub-
matrices overlap each other on their corners. For better pre-
sentations we sort the rows and column so as to sub-matrices
are seen as rectangles. In experiments row and column in-
dices are randomly permuted.

Experiments
Procedure

We prepared four synthetic small datasets (Fig. 2). All data
sets are Nij(= 100) X N,(= 200) real-valued matrices, but
differ in the number of sub-matrices and the proportion of
sub-matrix overlap. For real-world datasets, we prepared the
following datasets. The Enron E-mail dataset is a collection
of E-mail transactions in the Enron Corporation (Klimt and
Yang 2004). We computed the number of monthly transac-
tions of E-mails sent/received between N; = N, = 151 em-
ployees in 2001. We used transactions of Aug., Oct., Nov.,
and Dec. when transactions were active. We also collected
a larger Lastfm dataset, which is a co-occurrence count
set of artist names and tag words. The matrix consists of
N; = 10,425 artists and N, = 4,212 tag words. All real-
world datasets are sparse: the densities of non-zero entries
are, at most, 4% for Enron, and 0.3% for Lastfm. For dataset
details, please consult the supplemental materials.

Our interest is that how good the Infinite Plaid models
can solve bi-clustering without knowing the true number
of sub-matrices, K"™¢. Thus we set the same initial hyper-
parameter values for the baseline Bayesian Plaid models
and the proposed Infinite Plaid models. For the choices of
K, the Bayesian Plaid models conduct inferences with the
fixed number of sub-matrices K. The Infinite Plaid models
are initialized with K™t sub-matrices, then adaptively infer
an appropriate number of sub-matrices through inferences.
All other hyperparameters of two models are inferred via
MCMC inferences.
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Table 1: Average NMI values on synthetic data with different
K and K™, B.P. indicates the baseline Bayesian Plaid mod-
els, and Inf. P. indicates the proposed Infinite Plaid models.
Bold faces indicate statistical significance.

K, Kinit — Klrue K, Kinil =5 K, Kinit =10

B.P. [Inf.P. | B.P. [Inf.P. | B.P. | In.P.
Synth 1 | 0.848 | 0.970 | 0.791 | 0.860 | 0.700 | 0.791
Synth2 | 0.782 | 0.976 | 0.754 | 0.924 | 0.659 | 0.823
Synth 3 | 0.938 | 0.973 | 0.777 | 0.972 | 0.660 | 0.971
Synth 4 | 0.975 | 0.981 | 0.754 | 0.963 | 0.647 | 0.940

Table 2: Two additional criteria scores on synthetic and real
data. B.P. indicates the baseline Bayesian Plaid models, and
Inf. P. indicates the proposed Infinite Plaid models. Bold
faces indicate statistical significance.

Distinctiveness F-measure

B.P [ Inf.P. | B.P. [ Inf. P.
Synth 1 2.8 35 0.94 0.94
Synth 2 2.6 3.7 0.94 0.94
Synth 3 0.4 1.8 0.79 0.84
Synth 4 0.1 14 0.69 0.72
Enron Aug. 1.1 1.2 032 | 0.42
Enron Oct. 0.98 0.96 0.47 0.54
Enron Nov. 1.1 1.0 0.38 0.53
Enron Dec. 0.93 1.1 0.35 0.48
Lastfm 1.3 0.89 0.11 0.18

For quantitative evaluations, we employed the Normal-
ized Mutual Information (NMI) for overlapping cluster-
ing (Lancichinetti, Fortunato, and Kertesz 2009). NMIs take
the maximum value of 1.0 if and only if the two clustering
are completely the same, including the number of clusters.
NMIs yield a precise evaluation of bi-clustering but require
ground truth sub-matrix assignments, which are unavailable
in general. Thus we also consider two generic criteria that
work without ground truth information. First, we want sub-
matrices that have remarkably different 6, compared to the
background ¢. For that purpose, we compute a distinctive-
ness: miny |6, — ¢|. Next, we expect the sub-matrices include
many informative entries but less non-informative entries.
Fortunately, it is relatively easy to define (non-)informative
entries without the ground truth for sparse datasets: the dom-
inant “zero” entries might be non-informative while non-
zero entries are possibly informative. Let us denote E as the
set of all entries extracted by K sub-matrices and [ as the set
of all non-zero entries. Then we compute the F-measure by:
Recall Precision y here Recall = % and Precison = HED,
Larger values of these criteria imply distinct and clean sub-
matrices.

Synthetic Data Experiments

Table 1 presents averages of NMIs on synthetic datasets with
several K and K™, We see that the proposed Infinite Plaid
models achieved significantly better NMIs against the base-
line Bayesian Plaid models. Also the proposed model ob-
tained NMI = 1.0 i.e. the perfect bi-clustering in many cases,
regardless of K" values. This makes contrast with Bayesian



Plaid models suffer sharp falls in NMIs as K increases. This
is what we expect: we designed the Infinite Plaid model so
that it is capable of inferring a number of sub-matrices, while
the baseline model and many existing bi-clustering methods
cannot perform such inference.

We observe that the first two synthetic data (synthl,
synth2) are more difficult than the later two data (synth3,
synth4). This is reasonable since all the sub-matrices of the
first two data were designed to have the same value 6; while
the later two data were designed with different ;. values (6;s
are illustrated in Fig. 2 as the color depth of rectangles). We
also observe that Bayesian Plaid model does not necessar-
ily obtain the perfect recovery even if K = K™¢. This may
be explained by the fact that the MCMC inferences on BNP
exhaustive bi-clustering models are easily trapped at local
optimum in practice (Albers et al. 2013). We expect the per-
formance will be improved with more MCMC iterations.

The upper half of Table 2 presents the additional two crite-
ria (K, K™= 10). The Infinite Plaid models are significantly
better than the baseline for many cases in both of the dis-
tinctiveness and the F-measure. Combining the NMI results,
we can safely say that the proposed model is superior to the
fixed-K bi-clustering.

Fig. 2 shows examples of bi-clustering results (K, K"t =
10). The Bayesian Plaid models often extract noisy back-
ground factors, or divide sub-matrices into multiple blocks
unnecessarily. Those are exactly the outcomes we were
afraid of, induced by the sub-optimal K. In contrast, Infi-
nite Plaid models achieved perfect bi-clusters, as expected
from the NMI scores.

Real-world Datasets Experiments

For the real-world datasets, we rely on the distinctiveness
and F-measure as there are no ground truth sub-matrix as-
signments. Evaluations are presented in the lower half of
Table 2 (because we do not know K‘“‘e,Awe presented the
best scores among several choices of K, K™, in terms of the
distinctiveness). We confirmed that the Infinite Plaid models
always outperform the baseline in terms of the F-measure.
This effectively demonstrates the validity of our infinite bi-
clustering model for sparse real-world datasets.

Enron dataset Next, we qualitatively examine the results
of the Infinite Plaid models on Enron datasets. Please refer
to the supplemental material for the results of Enron Aug.
and Enron Nov. datasets.

Fig. 3 presents an example of sub-matrices from En-
ron Oct. data. The k¥ = 2nd sub-matrix (orange colored)
highlights the event in which the COO sent many mails
to Enron employees. This pattern is also found by exist-
ing exhaustive bi-clustering works (Ishiguro et al. 2010;
Ishiguro, Ueda, and Sawada 2012) but our model reveals that
there are a few additional employees who behaved like the
COO. We also find two VIP sub-matrices (k = 8, 10). We
may distinguish these two by the presence of legal experts
and the founder. The k = 8th sub-matrix (light-blue colored)
includes these people, but the £ = 10th sub-matrix (dark-
blue colored) does not. A few people join both sub-matrices,
thus two sub-matrices may be exchanging e-mails about a
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Figure 3: Results on Enron Oct. data.

similar topic, but from different viewpoints concerning legal
issues. Interestingly, members in these two sub-matrices are
grouped in one sub-matrix in August data (presented in the
supplement).

Fig. 4 presents an example of sub-matrices from Enron
Dec., the final days of the bankruptcy. As the Enron became
bankrupt, human resources mattered a lot. The k = 3rd sub-
matrix (green colored) may capture this factor. The main
sender of the sub-matrix is the Chief of Staff. The receivers
were CEOs, Presidents and directors of several Enron group
companies. In this month, we found another interesting pair
of the sub-matrices: the k = 1st and the k = 6th sub-matrices
(red and sky-blue colored). In the k = Ist sub-matrix, the
President of Enron Online sent many mails to VIPs. We
don’t know the content of these e-mails, but they may be
of significant interest as they were sent by the president of
one of the most valuable Enron group companies. Interest-
ingly, in the 6th sub-matrix the president is the sole receiver
of e-mails and the number of senders (the 1st domain mem-
bership) is smaller than that of receivers (the 2nd domain
membership) of the k = 1st sub-matrix. This may imply that
the k = 6th sub-matrix captured the responses to the e-mails
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Figure 4: Results on Enron Dec. data.

in the k = 1st sub-matrix.

Lastfm dataset Fig. 5 shows an example of the results
of applying the Infinite Plaid models to the Lastfm dataset.
The k = 3rd sub-matrix consists of black metal bands (1st
domain objects). This sub-matrix selects only one tag (2nd
domain object): “black metal”, which might be appropriate
for these bands. The £k = 8th sub-matrix is a sub-matrix
of relatively pop music. This sub-matrix has tags such as
“alternative rock”, “pop punk”, and “grunge”. Indeed, there
are some alternative rock bands such as “Coldplay”, popular
punk bands such as “Green Day”, while ‘“Nirvana” is one of
the best grunge bands. We also found a sub-matrix of older
rock artists at k = 4. Included classical artists are: “Beatles”,
“John Lennon”, “Deep Purple” (Hard Rock), “Judas Priest”
(Metal), and others.

Finally we present slight strange but somewhat reasonable
assignments. The k = 2nd sub-matrix consists of various top
female artists. Chosen tags are “electronic”, “pop”, “dance”,
“female vocalist”, and “rnb” (R&B). Among the chosen
artists, however, there are two male artists; “Michael Jack-
son” and “Justin Timberlake”. These choices have somewhat
reasonable aspects: both are very famous pop and dance mu-
sic grandmasters, and both are characterized by their high-
tone voices like some female singers.

These deep analyses of sub-matrices would cost much
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k=2: “female vocals” k=3: “black metals”

Domain 1 objects Domain 1 objects

Kylie Minogue  Black eyed Peas Moonspell
Madonna Avril Lavigne Cradle of Filth
Lady Gaga Taylor Swift Satyricon
Janet Jackson  Bjork Drak Funeral
Jennifer Lopez Michael Jackson Ulver
Plnk Jastin Timberlake Celtic Frost
Domain 2 objects Domain 2 objects
“electronic” “female vocalists” “dance” “black metal”
“pop” “rmb” (only one tag)
k=4: “Older HR/HM and rocks” | | k=8: “alternative, punks, grunge”
Domain 1 objects
' ) Domain 1 objects
The Beatles Led Zeppelin
The Who Jimi Hendrix Coldplay Green Day
Radiohead Sex Pistols
The Doors Queen Soundgard The Offspri
John Lennon  Van Halen oundgarden © tspring
Deep Purple  Judas Priest Pearl Jam e Clash
AC/DC Metallica Nirvana
Rainbow Guns N’ Roses Domain 2 objects
) S “rock’ “grunge’
Domain 2 objects “alternative rock” “punk”
“rock” “classick rock” “alternative” “punk rock”
“hard rock” “heavy metal” “pop punk”

Figure 5: Results on Lastfm data.

with existing exhaustive bi-clustering methods which re-
quire manual checking of all partition blocks, or with exist-
ing NEO bi-clustering methods which require model selec-
tion. The Infinite Plaid models reduced the cost of knowl-
edge discovery by extracting remarkably different sub-
matrices automatically.

Conclusion and Future Works

We presented an infinite bi-clustering model that solves the
NEO bi-clustering without knowing the number of sub-
matrices. We proposed the Infinite Plaid models, which ex-
tend the well-known Plaid models to represent infinite sub-
matrices by a BNP prior. Our MCMC inference allows the
model to infer an appropriate number of sub-matrices to
describe the given matrix data. Our inference does not re-
quire the finite truncation as it is required in the previ-
ous method (Ross et al. 2014); thus the inference algo-
rithm correctly addresses all possible patterns of the infinite
bi-clusters. We experimentally confirmed that the proposed
model quantitatively outperforms the baseline method fixing
the number of sub-matrices a priori. Qualitative evaluations
showed that the proposed model allows us to conduct more
in-depth analysis of bi-clustering in real-world datasets.
Plaid models have been intensively employed in gene ex-
pression data analysis, and also we are interested in the
purchase log bi-clustering and social data analyses as dis-
cussed in the introduction. In addition, infinite bi-clustering
can be used for multimedia data such as images and au-
dios. For example, it is well known that the nonnegative
matrix factorization can extract meaningful factors from im-
age matrices (Cichocki et al. 2009), such as eyes, mouths,
and ears from human face images. The infinite bi-clustering
may improve in finding meaningful parts by just focusing
on distinctive sub-images. Some audio signal processing
researchers are interested in audio signals with the time-



frequency domain representations that are real- or complex-
valued matrix data. We can apply the infinite bi-clustering
to those matrices to capture time-depending acoustic har-
monic patterns of music instruments, which are of inter-
est of music information analysis( (Sawada et al. 2013;
Kameoka et al. 2009)).

Finally we list a few open questions. First, explicitly cap-
turing relationships between sub-matrices would be of inter-
est for further deep bi-clustering analysis. Second, it is im-
portant to verify the limitation of the Infinite Plaid models
against the number of hidden sub-matrices, the noise toler-
ance, and overlaps. Finally, computational scalability mat-
ters in today’s big data environment. We are considering
stochastic inferences (e.g (Hernandez-Lobato, Houlsby, and
Ghahramani 2014; Wang and Blei 2012)) for larger matri-
ces.

A supplemental material and information for a MAT-
LAB demo program package can be found at: http://
www.kecl.ntt.co.jp/as/members/ishiguro/index.html

The part of research results have been achieved by “Re-
search and Development on Fundamental and Utilization
Technologies for Social Big Data”, the Commissioned Re-
search of National Institute of Information and Communica-
tions Technology (NICT), Japan.
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