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Abstract

Various sparse regularizers have been applied to machine
learning problems, among which structured sparsity has been
proposed for a better adaption to structured data. In this pa-
per, motivated by effectively classifying linked data (e.g. Web
pages, tweets, articles with references, and biological net-
work data) where a group structure exists over the whole
dataset and links exist between specific samples, we propose
a joint sparse representation model that combines group spar-
sity and graph sparsity, to select a small number of connected
components from the graph of linked samples, meanwhile
promoting the sparsity of edges that link samples from dif-
ferent groups in each connected component. Consequently,
linked samples are selected from a few sparsely-connected
groups. Both theoretical analysis and experimental results on
four benchmark datasets show that the joint sparsity model
outperforms traditional group sparsity model and graph spar-
sity model, as well as the latest group-graph sparsity model.

Introduction

Sparse representation (SR) has been proposed to do classifi-
cation due to its simple formulation and natural relationship
with the parsimony principle (Wright et al., 2009). It rep-
resents each test sample as a sparse linear combination of
the training samples and then classifies the sample accord-
ing to its coefficient vector. The �1-norm is used to promote
the sparsity of the coefficient vector. SR has been applied to
classification tasks in various domains, such as images (Ma-
jumdar and Ward, 2009; Wright et al., 2009; Gao and Zhou,
2014), texts (Sainath et al., 2010) and biological data (Li and
Ngom, 2012; Yuan et al., 2012).

For a better adaption to various classification tasks, regu-
larizers of structured sparsity were introduced. These regu-
larizers use the structure of the training data as prior knowl-
edge. For example, group sparse representation (GSR) (Je-
natton, Audibert, and Bach, 2011) imposes the sparsity
among groups of samples. It works better than SR when the
underlying samples are strongly group-sparse (Huang and
Zhang, 2009). For data with overlapping/hierarchical class
structure, overlapping group sparsity (Jacob, Obozinski, and
Vert, 2009) allows groups to be overlapped, and composite
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absolute penalties (CAPs) (Zhao, Rocha, and Yu, 2006) put a
hierarchical group structure among the samples. When sam-
ples are not grouped but linked with each other, graph struc-
ture sparsity (Huang, Zhang, and Metaxas, 2009) tends to
select a subset of connected training samples. Recently, Gao
and Zhou (2015) proposed uncertain group sparse represen-
tation to handle data with uncertain group membership.

Nowadays, linked data exist ubiquitously and are amassed
rapidly. A common feature of linked data is that a group
structure exists over the whole dataset and links exist be-
tween specific samples. For instance, Web pages are not only
naturally grouped via their semantic topics but also intercon-
nected by their hyperlinks; Tweets have topics and are also
connected in terms of the relationships between their authors
(or followers and readers). The links between samples pro-
vide complementary clues to the class labels of those sam-
ples. Exploiting the link information (i.e., the graph struc-
ture of samples) and the label information (i.e., the group
structure of samples) simultaneously can definitely facilitate
the classification tasks on linked data. As both label informa-
tion and link information may contain noise, exploring them
together can also enhance learning robustness.

Recently, Dai et al. (2015) proposed the so-called group-
graph (g2 in short) sparsity to exploit the advantages of both
group and graph structures simultaneously. g2 sparsity is ac-
tually to impose graph sparsity on groups, in stead of on
samples. They assumed that a graph structure among the
groups is given explicitly, and samples in one group are
linked with all samples in another group if these two corre-
sponding groups are connected in the graph of groups. That
is, they assumed dense connections between samples from
different groups connected in the graph. However, such as-
sumption is not always applicable. And with the given graph
of groups, detailed links between samples are not considered
any more. For linked data, explicit graph structure exists
among samples, instead of among groups, and there may not
be dense connections between samples of different groups
even though the involved groups are related. These will un-
avoidably cause performance degradation of g2 sparsity in
classifying linked data.

In this paper, motivated by the significance of classify-
ing the increasing linked data and the limitations of exist-
ing structured sparsity models in linked data classification,
we propose a new joint regularizer to nontrivially combine
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group sparsity and graph sparsity at sample level for ef-
fectively classifying linked data. Our regularizer selects a
small number of connected components of the graph of sam-
ples, while the edges between different groups in each con-
nected component should be sparse. That is, our regularizer
exploits the advantage of graph structure by selecting con-
nected components of samples as in graph sparsity, and the
advantage of group structure by restraining the connections
across groups to be sparse. Contributions of this paper are: 1)
We propose a new joint sparse regularizer that exploits group
and graph structures simultaneously for effectively classify-
ing linked data; 2) We design an efficient algorithm to solve
the new sparsity model and theoretically show the advantage
of the new sparsity model over the existing ones; 3) We carry
out extensive experiments on real datasets, which show that
the new joint sparsity outperforms traditional group sparsity
and graph sparsity, as well as the latest g2 sparsity.

Major Existing Structured-Sparsity Models

Here we briefly introduce group sparsity, graph sparsity and
group-graph sparsity (g2 sparsity in short) in the context of
representation. Assume we have a dataset such that: 1) there
are M training samples D1...M in Rd that fall into G dif-
ferent classes, where each training sample i has a label in
{1..G}; and 2) the M training samples are linked by the
edges of a given graph W ∈ {0, 1}M×M . Given a test sam-
ple y, we are to represent it using a dictionary D ∈ Rd×M

constituted by all the training samples.
Group sparsity or group sparse representation (GSR) (Je-

natton, Audibert, and Bach, 2011) relates the test sample
with a small number of groups of training samples. GSR
requires the coefficients of different groups to be sparse:

min
x∈RM

{
1

2
‖y −Dx‖22 + λΩGroup(x)

}
with ΩGroup(x) =

G∑
g=1

√∑
i∈Gg

x2
i =

G∑
g=1

∥∥xGg

∥∥
2
.

(1)

Above, Gg is the set of indices of training samples with label
g ∈ {1..G}, λ > 0 is a tradeoff parameter, and each class is
considered to be a group. The first term is the regression er-
ror for linear representation and the second term is the group
sparse regularizer. If we define a group function σ(x) as in
(Dai et al., 2015):

σ(x) = (‖xG1‖2 , ‖xG2‖2 , . . . , ‖xGG
‖2) , (2)

then the group sparse regularizer is a composition of �1
sparse norm and the group function σ:

ΩGroup(x) = ‖σ(x)‖1 = 1� |σ(x)| . (3)

Graph sparsity (Huang, Zhang, and Metaxas, 2009) se-
lects a small number of connected components of the graph
to represent the test sample. Let P be the set of all paths in
graph W and ηp > 0 be the weight of each path p ∈ P .
The representation process with the graph sparse regularizer
is defined as follows:

min
x∈RM

{
1

2
‖y −Dx‖22 + λΩGraph(x)

}

with ΩGraph(x) = min
J⊂P

{∑
p∈J

ηp s.t. Supp(x) ⊆
⋃
p∈J

p

}
,

(4)

where Supp(·) finds the index set of non-zero elements for a
vector. The path weight ηp is usually set to the sum of edge
weights in path p (Dai et al., 2015). If the relationship be-
tween any two samples is assumed to be similar importance,
the edge weights are constant.
g2 sparsity (Dai et al., 2015) is a combination of group

sparsity and graph sparsity by imposing graph structure over
groups, which selects a small number of connected groups of
samples to represent the test sample. Here, vertices of graph
are groups and a path in the graph consists of groups and
edges between them. It is formulated as below:

min
x∈RM

{
1

2
‖y −Dx‖22 + λΩg2(x)

}

with Ωg2(x) = min
J⊂P

{∑
p∈J

ηp s.t. Supp(σ(x)) ⊆
⋃
p∈J

p

}
,

(5)

Group and Graph Joint Sparsity

Here, we first give a motivation example to illustrate the lim-
itations of the existing sparsity models in handling linked
data, and the differences between our model and the existing
models. Then we present the new model and an optimization
algorithm to solve the model. Finally, we theoretically show
the advantage of our model over the existing models.

A motivation example

We consider a 2-class classification problem. Fig. 1(a)
shows the training data that fall into two classes (group-
1/2) corresponding to the upper and lower dashed rectangles.
The training samples are locally interlinked (graph struc-
ture). There is also noisy label/link information: the yellow
squares located in the bottom-right corner of the upper rect-
angle are noisy samples (belonging to group-2 but incor-
rectly labeled to group-1) and the red dotted edges across the
two groups are noisy links (error links). Given a test sample
(the purple star) located in the upper rectangle, we are to
find its class label by different models: group sparsity, graph
sparsity, g2 sparsity and our new sparsity, respectively.

Different models tend to select different collections of
training samples to represent the test sample. For group spar-
sity, as shown in Fig. 1(b), it selects exactly the samples
in group-1, including the noisy samples. Here, all selected
samples are red colored. Fig. 1(b) shows no links between
samples because group sparsity considers no graph struc-
ture. For graph sparsity, it selects the samples in a connected
component of the graph, including the samples in group-2
connected by the noisy links, as shown in Fig. 1(c). The
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(a) Samples with group & graph structures (b) Selecting samples by group sparsity (c) Selecting samples by graph sparsity

(d) Selecting samples by g2 sparsity (e) Selecting samples by our new sparsity (f) Comparing different sparsity models

Figure 1: A motivation example for illustrating the limitations of three existing structured sparsity models and the differences
between them and our group & graph joint sparsity model. (a) shows the training samples falling to two classes. (b), (c), (d)
and (e) show the samples selected by the four models respectively. All selected samples are in red color. (f) shows how the four
models exploit group structure and/or graph structure differently.

noisy samples are not selected because they are not reach-
able to the test sample. For g2 sparsity, there are links be-
tween the two groups, which makes it believe that the two
groups are connected, thus it selects all the samples in the
two groups, as shown in Fig. 1(d). Here links between sam-
ples are not shown as g2 does not consider them. Instead,
we draw a link between the two groups as they are regarded
“connected”. In summary, all the three models have selected
inappropriate samples to represent the test sample, which is
unfavorable to the classification task.

Intuitively, the ideal result is to select only the blue sam-
ples in group-1, as shown in Fig. 1(e). So we have to leave
out the unlinked noisy samples (the yellow squares) in the
upper rectangle, and try to cut off the connections across
groups. For this end, our new sparsity model is designed to
select samples in a small number of connected components
(graph sparsity) while requiring that each connected compo-
nent contains as few edges interlinking samples of different
groups as possible (group sparsity). Consequently, our se-
lected samples are connected, and cover fewer groups than
those selected by graph sparsity and g2 sparsity. In the se-
quel, we call edges across different groups border edges.

Fig. 1(f) further illustrates how the four models ex-
ploit group structure and/or graph structure differently.
Group/graph sparsity imposes only group/graph structure di-
rectly on samples. Though both g2 sparsity and our sparsity
exploit the advantages of group and graph structures simul-
taneously, g2 sparsity imposes graph structure on groups, in
other words, it embeds groups into the graph structure, while
our sparsity nontrivially imposes group and graph structures

simultaneously on samples. So we call our sparsity group &
graph joint sparsity, simply GGJ sparsity.

Regularizer formulation and optimization

Let Q be the set of all border edges. We use a vector
η ∈ R|P|

+ as a weight vector for all paths in P . Let N be a
binary matrix in {0, 1}|P|×M where each column indicates
if a certain sample is in each path or not. Similarly, let E
be a binary matrix in {0, 1}|Q|×|P| where each column indi-
cates if a certain path contains each border edge or not. We
penalize the number of selected border edges as follows:

ΩGGJ(x) = min
w∈{0,1}|P|

{
η�w + γ ‖Ew‖0

}
s.t. w ≥ Supp(N · Supp(x)).

(6)

Here, w indicates whether each path is selected or not, ‖·‖0
counts the number of border edges contained by each se-
lected path, and γ is the trade-off parameter. Minimizing the
term η�w equals to finding a small number of paths. The
two terms in the objective function together are for finding
the desirable samples: they are in a small number of con-
nected components and those connected components con-
tain as few border edges as possible. This constraint is dif-
ferent from that in (Dai et al., 2015), still, it replaces the
original constraint Supp(x) ⊆ ⋃

p∈J p in graph sparsity
by requiring w to cover the paths containing all the vertices
corresponding to the non-zeros elements in x.
Convex relaxation One drawback of the regularizer in
Eq. (6) is that the objective is difficult to optimize because
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‖·‖0 is not convex. In the literature, ‖·‖0 is usually approxi-
mated by its convex relaxation �1-norm. We follow the same
routine and approximate our regularizer as follows:

ΩGGJ(x) ≈ min
w∈{0,1}|P|

{
η�w + γ ‖Ew‖1

}
= min

w∈{0,1}|P|

{
η�w + γ1�(Ew)

}
= min

w∈{0,1}|P|

{
η�w + γ(1�E)w

}
= min

w∈{0,1}|P|

{
η�w + γe�w

}
s.t. w ≥ Supp(N · Supp(x)).

(7)

Here e is a vector whose elements are the number of border
edges in each path. As we have relaxed the non-convex term
in Eq. (6), we do not penalize the number of border edges,
instead, we penalize the number of paths containing border
edges, by using the number of border edges on each path.

In real applications, we need not count the border edges
for each path, since the vector e can be further approximated
as ẽ whose elements are the number of groups in each path.
ẽ is much simpler and more “group-sparse”:

ΩGGJ(x) = min
w∈{0,1}|P|

{
η�w + γẽ�w

}
s.t. w ≥ Supp(N · Supp(x)).

(8)

Therefore, the objective function of our sparsity model is:

min
x∈RM

{
1

2
‖y −Dx‖22 + λΩGGJ(x)

}
(9)

Smoothing discrete functions and variables It is easy to
see that the Eq. (8) is still non-convex due to its non-convex
constraint. We use a convex and derivable function δ(x) to
replace N ·Supp(x) and use a convex function |·| to replace
the outer Supp(·), and have

ΩGGJ(x) ≈ min
w∈R|P|

+

{
η�w + γẽ�w

}
s.t. w ≥ |δ(x)| ,

(10)

where the group function δ(x) is defined as follows:

δ(x) =
(
‖xp1‖2 , ‖xp2‖2 , . . . ,

∥∥xp|P|

∥∥
2

)
, pi ∈ P. (11)

The reason is:{ ‖xpi‖2 = 0 ⇐⇒ Ni · Supp(x) = 0;

‖xpi
‖2 > 0 ⇐⇒ Ni · Supp(x) 	= 0.

(12)

In Eq. (10), η ≥ 0 and γẽ ≥ 0. Thus according to (Bert-
simas and Tsitsiklis, 1997), the optimum of the linear pro-
gramming is w = |δ(x)|. Substituting this into the repre-
sentation model (9), we have:

min
x∈RM

{
1

2
‖y −Dx‖22 +

(
λη + λγẽ�

) |δ(x)|} (13)

Optimization The model (13) can be solved using the prox-
imal method. The regression error term is a smooth differ-
entiable function and can be linearized around the current

point xt at each iteration as in (Bach et al., 2012):

min
x∈RM

{
1

2

∥∥∥∥x− (xt − 1

L
∇f(xt))

∥∥∥∥2
2

+
λ

L
ΩGGJ(x)

}
,

(14)
where f is the regression error function and L is the upper
bound of

∥∥D�D
∥∥
2

(Baldassarre et al., 2012).
Recall that the proximity operator introduced by

Moreau (Moreau, 1962) can be defined as follows:
Definition 1. ϕ is a real-valued convex function on RM , its
proximity operator Proxϕx(u) is defined as:

argmin
x

{
1

2
‖u− x‖22 + ϕ(x) : u ∈ RM

}
. (15)

Employing the notation of proximity operator, the update
rule for Eq. (14) is

x = Prox λ
LΩGGJ

(xt − 1

L
∇f(xt)). (16)

Now we try to compute Prox λ
LΩGGJ

by relating the
computation of Prox λ

LΩGGJ
with the computation of

ProxΩGroup
as in (Micchelli, Shen, and Xu, 2011):

Prox λ
LΩGGJ

(u) = u− cB�v. (17)

Here, B ∈ R(|P|M)×M is a projection matrix defined as:

B =
[
B�

1 B�
2 · · ·B�

|P|
]�

,

Bi ∈ RM×M and (Bi)
j
j = 1 if j ∈ pi,

(18)

and v ∈ R|P|M is a fixed-point of H defined as follows:

H(v) =
(
I − Prox λ

cLΩGroup

) ((
I − cBB�)v +Bu

)
.

(19)
Here, each group corresponds to a path in P . As the proxim-
ity operator of ΩGroup can be computed directly as in (Bach
et al., 2012), Prox λ

LΩGGJ
(u) is computed by first finding a

fixed-point and then using Eq. (17). This algorithm is guar-
anteed to converge (Micchelli, Shen, and Xu, 2011).

Theoretical analysis

We give the following proposition to indicate the advantage
of our regularizer over the two existing graph-based regular-
izers: graph sparsity regularizer and g2 sparsity regularizer.
Proposition 1. Give a dataset D whose samples fall into
2 groups G1,G2 and there are edges connects them. Let
xGGJ ,xG,xg2

be the optimums for Eq. (9), Eq. (4) and
Eq. (5) respectively, where the test sample is supported by
G1. If ΩGGJ = ΩG = Ωg2 and

∥∥xGGJ
∥∥
2
=

∥∥xG
∥∥
2
=∥∥∥xg2

∥∥∥
2
= T , then ∃γ such that

∥∥xGGJ
G2

∥∥
2
≤ ∥∥xG

G2

∥∥
2

and∥∥xGGJ
G2

∥∥
2
≤

∥∥∥xg2

G2

∥∥∥
2
.

Proof. We prove the above proposition in a smoothed sit-
uation by substituting the smoothed w = |δ(x)| into the
objective of our sparse regularizer in Eq. (7):

ΩGGJ = η� ∣∣δ(xGGJ)
∣∣+ γ

∥∥E ∣∣δ(xGGJ)
∣∣∥∥

1
. (20)
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Samples in G1 can be divided into two sets C1 and C2, where
only samples in C2 connect samples in G2. Without loss of
generality, we simply assume that there is only one path in
each of C1, C2 and G2 and η = 1. Thus |Q| = 1 and the
second term becomes γ

∥∥xGGJ
C2∪G2

∥∥
2
. Hence,

ΩGGJ =
∥∥xGGJ

C1

∥∥
2
+
∥∥xGGJ

C2

∥∥
2
+
∥∥xGGJ

G2

∥∥
2

+ (1 + γ)
∥∥xGGJ

C2∪G2

∥∥
2
,

ΩG =
∥∥xG

C1

∥∥
2
+
∥∥xG

C2

∥∥
2
+
∥∥xG

G2

∥∥
2
+
∥∥xG

C2∪G2

∥∥
2
.

(21)

For a vector x, we consider two norms defined as

‖x‖a = ‖xC1‖2 + ‖xC2‖2 + ‖xG2‖2 + ‖xC2∪G2‖2 ,
‖x‖2b = ‖xC1‖22 + ‖xC2‖22 + ‖xG2‖22 + ‖xC2∪G2‖22 .

(22)

They can be restricted by each other due to the property of
the norm in a finite dimensional Hilbert space:

clow ‖x‖b ≤ ‖x‖a ≤ chigh ‖x‖b . (23)

Hence, for a fixed vector x, we can find a corresponding c ∈
[clow, chigh] such that ‖x‖a = c ‖x‖b. Back to our proof,
from the above equation, we have:

ΩGGJ =
∥∥xGGJ

∥∥
a
= c1

∥∥xGGJ
∥∥
b
,

ΩG =
∥∥xG

∥∥
a
= c2

∥∥xG
∥∥
b
.

(24)

As C1, C2 and G2 are non-overlapping sets, they become:

Ω2
GGJ = c21

(∥∥xGGJ
∥∥2

2
+ (1 + γ)

(∥∥xGGJ
C2

∥∥2

2
+

∥∥xGGJ
G2

∥∥2

2

))
,

Ω2
G = c22

(∥∥xG
∥∥2

2
+
∥∥xG

C2

∥∥2

2
+

∥∥xG
G2

∥∥2

2

)
.

(25)

By letting ΩGGJ = ΩG and
∥∥xGGJ

∥∥
2
=

∥∥xG
∥∥
2
= T we

have:

(1 + γ)

(∥∥∥xGGJ
G2

∥∥∥2

2
−

∥∥∥xG
G2

∥∥∥2

2

)
=

(
c22
c21

− 1

)
T +

c22
c21

∥∥∥xG
C2

∥∥∥2

2

−
(
1 + γ − c22

c21

)∥∥∥xG
G2

∥∥∥2

2
− (1 + γ)

∥∥∥xGGJ
C2

∥∥∥2

2
.

(26)

Since the test sample is supported by G1,
∥∥xGGJ

C2

∥∥
2
> 0.

Thus there exists a γ such that the right hand side of the
above equation is less than 0, namely,

∥∥xGGJ
G2

∥∥
2
≤ ∥∥xG

G2

∥∥
2
.

Similarly, we can show
∥∥xGGJ

G2

∥∥
2
≤

∥∥∥xg2

G2

∥∥∥
2
.

The above proposition indicates that our model works
better than the two graph sparsity models when there are
edges connecting two different groups, because our regu-
larizer puts smaller coefficients on the samples of the other
group. Also, the approximated sparse regularizer in Eq. (13)
looks similar to the formulation of group sparsity in Eq. (1),
the difference is that our regularizer uses paths instead of
groups, thus it finds more connected samples than group
sparsity. Comparing with traditional group sparsity, the use
of graph structure makes our model more robust.

Table 1: Details of datasets
Cora Twitter Gene Protein

# of Samples 2708 6000 1243 3185
# of Features 1433 6367 461 8000

# of Links 5278 6943 1326 6378
# of Classes 7 6 2 5

Table 2: Accuracy results on the four datasets (%)
Cora Twitter Gene Protein

Group 90.8065 84.8921 67.9839 83.1668
Graph 90.9225 85.2146 69.3669 82.9579
g2 91.3548 85.5314 67.4597 83.4779

GGJ 91.9135 85.8850 76.1694 84.4239

Classification rule

After the coefficient vector x is computed, we can decide
which is the most suitable label for a test sample y. The
maximum �2 support rule (Sainath et al., 2010) classifies a
test sample y as follows:

label∗ = arg max
g∈{1..G}

∥∥xGg

∥∥
2
. (27)

Experiments

Four datasets are used: Cora, Twitter, Gene and Protein. The
details of these datasets are summarized in Table 1.
Cora is a publication dataset (Mccallum et al., 2000) that
contains 2708 machine learning papers falling to 7 classes:
“Case Based”, “Genetic Algorithms”, “Neural Networks”,
“Probabilistic Methods”, “Reinforcement Learning”, “Rule
Learning” and “Theory”. The features consist of 1433 words
with document frequency no less than 10 after stemming and
stop word removal. The links are the citations of all papers.
Twitter is a collection of 6000 tweets with 6 meaningful
hash tags: “redsox”, “jobs”, “IranElection”, “tlot”, “Twit-
ter” and “music”. Hash tags are used as class labels, each
of which is related to 1000 tweets. We add links between
tweets that contain the same URLs as in (Duan et al.).
Gene is a protein interaction network data from KDD cup
2001. The task is to label the proteins with “nucleus” or
“non-nucleus”. Each protein is represented as a 461 di-
mensional binary vector using categorical features including
Essential, Class, Complex, Phenotype, Motif and Chromo-
some. The links are the interactions between those proteins
and 1326 remains after removing negative weighted links.
Protein is a dataset extracted from the databases Yeast1
and STRING2. We are to predict the functions of proteins.

1http://genomics.stanford.edu
2http://string-db.org/

Table 3: F1 results on the four datasets (%)
Cora Twitter Gene Protein

Group 68.8353 69.1360 74.3656 67.3633
Graph 69.2303 69.3564 75.0093 67.1941
g2 70.4479 71.0746 73.5754 68.2048

GGJ 72.0636 72.3564 78.7931 69.5269
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Figure 2: Accuracy results of different structured sparsity models on the four datasets with varying noise level.
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Figure 3: F1 results of different structured sparsity models on the four datasets with varying noise level.

Function labels are extracted from Yeast and protein interac-
tions are extracted from STRING. All the combinations of 3
amino acids out of 20 are used to represent the proteins.

We compare our regularizer with three existing regulariz-
ers: group sparsity, graph sparsity and the latest group-graph
(g2) sparsity. Performance metrics are Accuracy and F1. F1
is a combined measure of precision and recall, which is de-
fined as F1=2*precision*recall/(precision+recall). For
each dataset, we perform 10-fold cross-validation by sep-
arating the dataset into 10 subsets and each time we draw 1
subset out as test samples and then average the performance.
For group sparsity, graph sparsity and our GGJ sparsity, the
structures are directly adopted from classes and links. For
g2 sparsity, the groups are the classes and we connect two
groups if the number of links between them is > 25% times
that of the corresponding complete graph.
Classification performance We first evaluate our regular-
izer on the four datasets and compare it with the other three
models. The accuracy and F1 of each method on each dataset
are shown in Table 2 and Table 3 respectively. We can see
that our model clearly outperforms the other three models.
The reason is twofold: 1) group/graph sparsity makes use
of only group/graph structure, i.e., label/link information; 2)
Though both g2 sparsity and GGJ sparsity explore group and
graph structures simultaneously, the former uses the graph
structure of groups based on some assumption that is not ap-
plicable to all data, while the latter uses directly the group
and graph structures of samples. Note that linked data usu-
ally have no explicit graph structure of groups, while infer-
ring graph structure of groups from sample links cannot keep

all useful information, thus is not reliable.
Robustness against noisy labels We then test the robust-
ness of our regularizer and the other three models on the four
datasets. We add noise to the labels of training samples, be-
cause in the real world, labels are often annotated manually
and might be inconsistent because different persons partici-
pate the work. We uniformly select 1% to 10% training sam-
ples and give them random labels, and present the perfor-
mance in Fig. 2 and Fig. 3. Though the curves of all the four
models show down trends, the performance of our model
keeps the best and decreases slower than the other three
models. Group sparsity and g2 sparsity do not work well
because the noisy labels impair the consistency with the un-
derlying group/graph structure of samples/groups. The per-
formance of graph sparsity is neither good because it selects
many samples with unreliable labels and thus the predictions
are not trustable. Our regularizer selects much sparser sam-
ples where there are fewer samples with unreliable labels,
due to the sparse constraint on border edges.

Conclusion

In this paper, we propose a group & graph joint sparse reg-
ularizer for effectively classifying linked data where both
group structure and graph structure exist. The regularizer
finds a small number of connected components while requir-
ing those connected components contain as few border edges
as possible. Both theoretical analysis and experimental re-
sults on four datasets validate the advantage of our model
over three existing structured sparsity models.
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