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Abstract

General zero-shot learning (ZSL) approaches exploit
transfer learning via semantic knowledge space. In this
paper, we reveal a novel relational knowledge transfer
(RKT) mechanism for ZSL, which is simple, generic
and effective. RKT resolves the inherent semantic shift
problem existing in ZSL through restoring the miss-
ing manifold structure of unseen categories via optimiz-
ing semantic mapping. It extracts the relational knowl-
edge from data manifold structure in semantic knowl-
edge space based on sparse coding theory. The extracted
knowledge is then transferred backwards to generate
virtual data for unseen categories in the feature space.
On the one hand, the generalizing ability of the seman-
tic mapping function can be enhanced with the added
data. On the other hand, the mapping function for un-
seen categories can be learned directly from only these
generated data, achieving inspiring performance. Incor-
porated with RKT, even simple baseline methods can
achieve good results. Extensive experiments on three
challenging datasets show prominent performance ob-
tained by RKT, and we obtain 82.43% accuracy on the
Animals with Attributes dataset.

Introduction
Traditional machine learning approaches for classification
presuppose the existence of a large labelled dataset to op-
timize the parameters of object classifiers. Formally, the
task of traditional supervised learning is to find a function
f : X → Y from the training dataset {(xi, yi)|1 � i � N},
where X denotes the d-dimensional input space and Y con-
tains all K labels in the training dataset. When each input
xi belongs to one class, learning f is a traditional multi-
class classification problem. From the perspective of space
geometry, it maps xi to one of the K vertices of a (K, 1)-
hypersimplex in the K-dimensional space, when yi is en-
coded as a one-hot vector. However, if xi comes from mul-
tiple classes, f becomes a multi-label (ML) classification
function (Huang, Gao, and Zhou 2014), which maps xi

to one of the 2K vertices of a unit hypercube in the K-
dimensional space.

Zero-shot learning (ZSL) aims to learn a classifier fu :
X → Z,Y ∩ Z = ∅ for unseen categories from the given
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Figure 1: The overall framework of the proposed method
for ZSL. First, it transfers the semantic correlation from S
to X ; then it uses this correlation to restore the manifold
structure of unseen categories by producing virtual labelled
data; finally, it learns semantic mapping g(x) for ZSL.

training dataset {(xi, yi)}Ni=1, where yi ∈ Y is the train-
ing class label and Z denotes the testing label space (Lam-
pert, Nickisch, and Harmeling 2009). Obviously, because
of the lack of testing data, fu can not be directly learned.
Though fs : X → Y can be obtained from the training
dataset, due to the symmetry of hypersimplex, fs has no
ability to transfer knowledge for fu to predict unseen cat-
egories in ZSL. To tackle this problem, the common prac-
tice is to introduce a sharable semantic knowledge space S ,
as is shown in Figure 1. Learning fu becomes a two stage
process fu = l(gu(x), z), i.e. first learn a semantic mapping
gu(x) : x → φ, φ ∈ S by ML methods when φ is binary or
regression models if φ is continuous. Then it learns a class
predictor l(φ) : φ → z. Likewise, we can not get gu(x) for
unseen categories. Since the semantic space S is shared be-
tween Y and Z , it is hoped that by resorting to gs(x), ZSL
could be addressed. Thereby, fu is learned as l(gs(x), z) in
existing ZSL approaches.

Nevertheless, approximating the real mapping gu(x) for
unseen categories using gs(x) suffers an inherent problem.
On one hand, gs(x) just optimize the training dataset where
labelled information of unseen classes is missing. On the
other hand, in real world situations the semantic relation-
ship between different classes in X may be different from
that in S. Therefore, gs(x) has a shift from gu(x). Direct
use of gs(x) in fu(x) instead of gu(x) will cause signifi-
cant performance degradation in ZSL. Our main goal of this
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work is to move towards this problem by taking advantage
of above-mentioned geometric structure in S.

To improve ZSL performance, several works focused on
improving the semantic expression ability of gs(x). e.g.
by jointly learning class labels and semantic embeddings
(Akata et al. 2013). While other efforts were made to adopt
novel classifiers for l(φ) to compensate for the less effec-
tiveness of gs(x), such as absorbing Markov process (Fu et
al. 2015b), label propagating (Rohrbach, Ebert, and Schiele
2013; Fu et al. 2015a) etc. However, all these above meth-
ods did not take into account the inherent problem in the
process of transferring knowledge, i.e. gs(x) is still shifted
from gu(x). In this paper, we study a relational knowledge
transfer framework called RKT that is able to align gs(x)
with gu(x) in two steps.

As illustrated in Figure 1, in the first step we extract the
semantic correlation between unseen categories and training
classes in S on sparse coding theory (Olshausen and Field
1997). Given the geometric structure, each unseen class is
considered as locally linearly related to seen classes. Then,
in the second step, we transfer this semantic correlation to
help generate the manifold structure of unseen categories in
X . Under the proposed framework, ZSL performance can
be improved in two different ways, i.e. by promoting the ap-
proximation ability of gs(x) to gu(x) or by directly learning
gu(x) for unseen categories. Extensive experiments on sev-
eral ZSL datasets show incorporating the proposed frame-
work into baselines can achieve state-of-art performance.

The remainder of the paper is organized as follows. In the
next section, we briefly review related methods for perform-
ing zero-shot learning. Then, we introduce our proposed
method, followed by experimental results on several real
world datasets. Finally, we draw conclusions.

Related Work
We briefly outline connections and differences to four re-
lated lines of research in ZSL.

Feature Spaces X . For the past few years, deep seman-
tic features have been proven effective for a variety of ma-
chine learning tasks, such as large scale image classification
(Krizhevsky, Sutskever, and Hinton 2012), object detection
(Girshick et al. 2014), attribute learning (Zhang et al. 2014;
Luo, Wang, and Tang 2013) etc. Recently, latest ZSL ap-
proaches have also adopted various deep features for predict
unseen categories. Comparing with low level features, they
obtain more compelling results. In our work, we use two
kinds of state-of-the-art deep features, extracted by VGG
(Simonyan and Zisserman 2015) and GoogLeNet (Szegedy
et al. 2014) for ZSL.

Semantic Spaces S. In ZSL, there has been a body
of work on the use of human-labelled visual attributes to
help detect unseen object categories (Lampert, Nickisch, and
Harmeling 2009; 2014). As an appealing source of informa-
tion, attributes (binary or continuous) describe well known
common properties of objects and can be acquired from do-
main experts or crowdsourced techniques (Xiao et al. 2010).
However manually defining an attribute ontology is of high
cost and long periodicity, leading to limit its application in
large scale recognition.

As an alternative to manual annotation, automatically
learning a vector representation for each class is gaining
more and more attention. They are learned from a large ex-
ternal text corpus, e.g. Wikipedia, in an unsupervised fash-
ion, based on an independent natural language modeling task
(Mikolov et al. 2013b). Comparing with human supervision,
they encode richer semantic relationships between labels
and even achieve compelling performance. In this paper, we
use both two different semantic spaces for the experiments.

Semantic Mappings gs(x). Most existing ZSL methods
focus on improving the semantic mappings gs(x) mainly
using multi-label classification methods (Hariharan, Vish-
wanathan, and Varma 2012; Mensink, Gavves, and Snoek
2014) or regression models (Norouzi et al. 2013). For exam-
ple, DAP (Lampert, Nickisch, and Harmeling 2009), learns
gs(x) independently for each attribute classifier by a Binary
Relevance method in ML (Zhang and Zhou 2014). Recently,
several papers suggest approaches for joint learning of gs(x)
with relationships between features, attributes and classes.
(Akata et al. 2015) propose a label embedding approach
that implicitly learns the instances and semantic embeddings
onto a common space. For the first time, they show purely
unsupervised semantic embeddings achieve compelling re-
sults. Following the same principle, (Romera-Paredes, OX,
and Torr 2015) further propose a simplified model called ES-
ZSL that is extremely easy and efficient. It is able to outper-
form state of the art approaches on standard datasets.

Class Predictors l(φ). Conventional choice for class pre-
dictor l(φ) is neareast neighbor with different distance met-
rics, such as Euclidean, cosine or hamming distances. Addi-
tionally, some researchers attempt to adopt novel methods to
make up for the deficiency of gs(x). For example, (Fu et al.
2015b) adopt an absorbing Markcov process on a semantic
graph over all class labels after redefining the distance met-
ric. While, (Rohrbach, Ebert, and Schiele 2013) uses label
propagating (Zhou et al. 2004) on a graph structure over the
whole testing instances. To further improve the ZSL perfor-
mance, (Fu et al. 2015a) combines multiple semantic spaces
and propagated label predictions on multiple graphs. How-
ever, these above methods all try to solve the shift problem
after knowledge transferring, not the knowledge transferred
itself.

Existing ZSL methods mainly focus on the above four as-
pects to improve performance. Specially, many efforts have
been made to optimize gs(x) for training dataset. Whereas
how to reach the real function gu(x) with gs(x) has received
little attention, which is still a bottleneck problem in ZSL.
Contrarily, we are primarily concerned with this problem in
this paper.

Proposed Method

For unseen class prediction, using gs(x) to replace gu(x)
will lead to significant performance degradation. To solve
this problem, there are two possible choices: 1) enhance the
generalization capability of gs(x) for unseen classes predic-
tion, or 2) learn gu(x) directly. Two strategies are very use-
ful for enhancing the performance of the current zero-shot
learning algorithms.
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We propose a relational knowledge transfer (RKT)
method to take into account two cases. RKT can be used as a
common framework for any need to use gs(x) in replace of
gu(x). In the following, we start by describing basic setup
for ZSL. Then we explain how the problem can be tackled
by our proposed method in two steps.

Basic Setup and Notation

Let Y = {y1, ..., yp} denotes a set of p seen class labels
and Z = {z1, ..., zq} a set of q unseen categories with
Y ∩ Z = ∅. Zero shot learning aims to learn a classifier
fu : X → Z from a training dataset D = {(xi, yi)}Ni=1,
where xi ∈ R

d represents the i-th instance. Each class
label y (or z) corresponds to an m-dimensional vector
φ ∈ S . The vector φ can be binary semantic knowledge
A(0/1) describing absence/presence of attributes, or con-
tinuous semantic knowledge W encoding geometric mani-
fold structures. For simplicity, we denote the whole train-
ing instances as X = [X1,X2, ...,Xp] ∈ R

d×N , where
Xi = [x1, ...,xNi

] ∈ R
d×Ni are all Ni instances in class i.

The corresponding semantic knowledge representations are
Φ = [Φ1, ...,Φp],Φi = [φi, ..., φi] ∈ R

m×Ni . In addi-
tion, semantic knowledge representations of all classes are
denoted as Φ = [φ1, ..., φp, φp+1, ..., φp+q] ∈ R

m×(p+q).

RKT: Relational Knowledge Transfer for ZSL

The proposed RKT method includes two steps: 1) extract
relational knowledge by sparse coding, and 2) generate la-
belled virtual instances for unseen classes. The key idea of
RKT framework is to obtain the manifold dependence be-
tween the seen and unseen classes in the semantic knowl-
edge space by using the sparse coding method. Then the
extracted relational knowledge is transferred back to the se-
mantic feature space for the generation of labelled virtual
instances.

Without loss of generality, we assume that the function
g(x) : x → φ is a linear map from the linear feature space
X into the semantic knowledge space S. Then the following
basic properties are satisfied without any topological restric-
tions imposed on the spaces X and S.

Algebraic homomorphism: A linear map g(x) is a map-
ping of X into S. For ∀xi,xj ∈ X , it has the following
properties:

• g(xi + xj) = g(xi) + g(xj).

• g(λx) = λg(x).

Definition. Let Xs = [x1
s...,x

m
s ] and Xu = [x1

u, ...,x
n
u]

denote two subsets of data in X . Ys = [y1
s , ...,y

m
s ] and

Yu = [y1
u, ...,y

n
u ] are their corresponding sets of vectors

in Y . For ∀xi
u, assume ∃αi ∈ R

m, xi
u = Xsαi. Similarly,

for ∀yi
u, ∃βi ∈ R

m, yi
u = Ysβi. The set Kx = {αi} and

Ky = {βi} are the relational knowledge of Xu and Yu on
Xs and Ys respectively.

From the viewpoint of semantic representation, the rela-
tional knowledge set Kx encodes a kind of dependence of
manifold structure Xu on Xs in space X , as well as Ky en-
codes that in space Y .

Lemma. If ∀j, αj = βj , the linear map gs(x) : xs → ys

learned from training data set {(xi
s,y

i
s)} can be used as

gu(x) : xu → yu to make predictions for testing data set
{(xi

u,y
i
u)}.

Proof. Let xi
u =

∑m
j=1 α

(j)
i xj

s, then gs(x
i
u) =

gs(
∑m

j=1 α
(j)
i xj

s) =
∑m

j=1 α
(j)
i gs(x

j
s) =

∑m
j=1 β

(j)
i yj

s =

gu(x
i
u).

Most existing ZSL approaches implicitly assume that the
relational knowledge Kx of the feature space X is consis-
tent with that of the attribute space (or word2vec knowledge
space) S, and directly use gs(x) instead of gu(x) for unseen
class prediction. In practice, the consistency assumption is
often violated due to the following possible factors: 1) fea-
ture representations Xs, Xu in X are lack of semantic struc-
ture, 2) g(x) is not a linear mapping, and 3) the instances
xi
s, i ∈ c of one class c in X are variant.
For the first case, the more semantic feature representa-

tions, such as deep features, are required. For the second
case, we can decompose g(x) into local linear functions by
sparse coding. Then the sparse coding coefficients can be
used as the relational knowledge K instead of α and β. For
the last case, we consider putting a probability noise model
on the instances of each class in X .

Corollary. Suppose xi∈c
s ∼ N (μc, σcI), and a linear

mapping gs(x) : xi∈c
s → yc

s is learned from the training
dataset {(xi∈c

s ,yc
s)}. Then for xj∈cu

u , its mapping vector
ycu
u in Y is a probability distribution instead of one point.
Proof. Let xj∈cu

u , xk∈cu
u be two instances of one

class cu, their relational knowledge representations in X
are αj and αk, αj 	= αk. By linear assumption of
gs(x), their corresponding projected points in S are yj

u =

gs(
∑m

c=1 α
(c)
j yc

s) 	= gs(
∑m

c=1 α
(c)
k yc

s) = yk
u. So different

instances xj∈cu
u , xk∈cu

u that come from same unseen class
don’t project into the same point yu in Y , instead a proba-
bility distribution around it.

Obviously, simply using gs(x) as gu(x) will lead to the
serious manifold divergence for unseen classes. But if we in-
ject the xj∈cu

u with its mapping vector yu into original train-
ing data {(xi∈c

s ,yc
s)} for the optimization of gs(x), we can

avoid the manifold divergence in the mapping process. This
inspires us to consider using the relational knowledge Ks

in S to generate the labelled virtual data {(x̂j∈cu
u ,ycu

u )} for
unseen classes. Then, we can use the generated virtual data
to optimize gs(x) for unseen data or directly learn gu(x).
In this process, a reverse knowledge transfer mechanism is
adopted. The detailed descriptions of our RKT framework
are given in the following contents.

Step 1: Relational Knowledge Extraction by Sparse Cod-
ing The set {φ1, ..., φp+q} is bound by the geometric dis-
tribution of all classes in the semantic knowledge space. The
specific geometric distribution not only express the manifold
structures of the seen and the unseen classes separately, but
also encode the geometric dependence between them. We
propose extracting this linear geometric dependence as rela-
tional knowledge for RKT framework.

For a semantic vector φi of i-th class in S, its relational
knowledge is represented as a coefficient vector wi in sparse
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coding. Following this idea, the relational knowledge of
each unseen class can be extracted by linearly relating to
the seen classes. In the standard learning paradigm, it is for-
mulated as follows,

min
W

||Φts −ΦtrW||2F + λΩ(W), (1)

where the parameter matrix W is composed of {wi}qi=1
columns, describing the semantic correlation between i-th
unseen class and training classes. and Ω is a regularizer.
Φtr = [φ1, ...φp] and Φts = [φp+1, ..., φp+q]. Problem (1)
encompasses several approaches, depending on the choice
of Ω. In this paper, we consider Ω as �1 norm on each wi,
i.e. Ω(W) =

∑q
i=1 ||wi||1.

Step 2: Generate Labelled Virtual Instances for Unseen
Classes In this step, we use W to generate labelled virtual
instances for unseen classes. These generated data inherit
the geometric dependence in the semantic knowledge space
and enrich the manifold structures in the feature space.

We assume that all instances of j-th class constitute a
Gaussian distribution N (μj ,Σj) within the feature space
X . Then μj ∈ R

d and Σj ∈ R
d×d can be computed as

the empirical mean vector and covariance matrix of data in
j-th class.

Using the relational knowledge W, the mean vector of
the Gaussian distribution for unseen class i is generated
as μi =

∑C
j=1 Wj,iμj . While its covariance matrix is

Σi = σI, where σ is a predefined prior knowledge. For
each unseen class, we randomly generate M points from
its Gaussian distribution, denoted as Xaug , with semantic
knowledge representations denoted as Φaug .

Application of RKT in ZSL Provided with the generated
data Xaug , we consider two strategies to improve recogni-
tion accuracy in ZSL. One is to enhance the generalization of
gs(x) for unseen categories by learning from the augmented
datasets X̃ = [X,Xaug] and Φ̃ = [Φ,Φaug]. The other is
to directly learn the semantic mapping gu(x) just using the
generated data Xaug and Φaug . These two strategies can be
incorporated in any ZSL approaches using mid-level seman-
tic space.

Experiments

In order to assess our approach and the validity of the state-
ments we make, we conduct a set of experiments.

Experimental Setup

Datasets We evaluate our work on three real-world
ZSL datasets: Animals with Attributes (AwA) (Lampert,
Nickisch, and Harmeling 2009), Caltech UCSD Birds
(CUB) (Wah et al. 2011) and Stanford Dogs (Dogs) (Khosla
et al. 2011). They consist of images belonging to cat-
egories in different scopes: coarse-grained animals, fine-
grained birds and dogs respectively. AwA and CUB con-
tain attribute-labelled categories, containing 85 and 312 at-
tributes respectively. Dogs dataset has no attributes avail-
able. For each dataset, we learn Word2Vec (Mikolov et al.
2013a) category representations from Wikipedia.

Features For comparative purposes, we use 2 types of
deep features, extracted from 2 popular CNN architectures,
i.e. VGG (Simonyan and Zisserman 2015) and GoogLeNet
(Szegedy et al. 2014). For GoogLeNet, we use the 1024-
dim activations of last layer but one as features, denoted as
Goog. While for VGG, we choose the 1000-dim last fully
connected layer activations as features, denoted as fc8. They
are both low-dimension (relative to the website offered fea-
tures) and high-semantic features.

Baselines We compare with two baseline methods, i.e.
DAP (Lampert, Nickisch, and Harmeling 2009) and ES-
ZSL (Romera-Paredes, OX, and Torr 2015). DAP is the
earlier-proposed and widely-used standard single-task learn-
ing baseline, in which each attribute is learned separately.
Proposed in 2015, ESZSL is a latest multi-label learning al-
gorithm for zero-shot learning. It has three nice properties:
effectiveness, efficiency and easy to implement. In contrast
to DAP, it plays a more important role in ZSL when φ is
continuous.

Evaluation on the Ability of RKT to Boost gs(x)

To evaluate the ability of RKT, we consider 4 different se-
mantic knowledge: manual binary attributes (A(0/1)), con-
tinuous attributes (A[0,1]), word vectors (W) and a combina-
tion of continuous attributes and word vectors (A[0,1]+W).
We follow the general protocol for learning Word2Vec us-
ing Wikipedia. On AwA, we testify the efficacy of 2 deep
features. For Dogs and CUB, we use only the Goog feature,
for fair comparison. Experimental results are shown in Ta-
ble 1. Excitingly, we find our proposed method boosts ALL
the results of the baselines in all different settings.

On AwA dataset, we obtain the inspiring accuracy
82.43%, even higher than the state-of-the-art result 80.5%
by (Fu et al. 2015a) to the best of our knowledge. Notably,
in the binary attribute space, ZSL recognition accuracy im-
proves by 2.5% while attribute prediction accuracy is risen
by only 1.1%.

On CUB and Dogs, the performance is not as good as in
AwA. The best result is 43.12% on CUB. However, the im-
provements are still promising. We ascribe this performance
reduction to two possible reasons. One is that there are much
more attributes in CUB, leading to a more complex seman-
tic manifold. Another reason is the much finer granularity in
their classes, which can hardly be reached by these general
deep features. Accordingly, the more consistent semantics
are in X and S, the more stronger it can boost the ZSL per-
formance, as we have discussed.

Evaluation on Directly-Learned gu(x) with Only
Augment Data

As we state that the shift between the semantic mapping
gs(x) from the training dataset and the real mapping gu(x)
for unseen categories leads to performance degradation. One
solution we propose is to learn directly gu(x) for unseen cat-
egories. To validate this solution, we further conduct a set of
experiments.

In these experiments, the only data we get for training
classes are their average vectors. We perform ZSL only on
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Table 1: Average zero-shot recognition accuracy (%) obtained by DAP, ESZSL and our proposed method RKT on AwA, CUB
and Dogs. RKT denotes incorporating RKT into DAP or ESZSL. Values on the left side of the DAP column denote the attribute
recognition accuracy. Notations A(0/1), A[0,1] and W represent binary attribute knowledge, continuous attribute knowledge
and Word2Vec knowledge, respectively. ’–’ means no result reported.

A(0/1) A[0,1] W A[0,1]+W
Datasets Feature Dim DAP RKT ESZSL RKT ESZSL RKT ESZSL RKT

AwA Goog 1024 77.57/53.96 79.77/58.69 67.07 71.59 54.43 59.05 74.84 79.40
fc8+Goog 2024 77.78/55.23 80.30/62.91 72.44 75.99 53.72 58.12 79.03 82.43

CUB Goog 1024 87.19/27.03 88.98/33.83 32.24 33.48 22.24 23.21 42.14 43.12

Dogs Goog 1024 – – – – 20.49 22.51 – –

the generated data of unseen classes. We denote this strat-
egy as RKT AO. In all cases, we use the same model pa-
rameters and Goog features as the ones adopt in baselines,
but a smaller size of virtual data than RKT. We use continu-
ous attribute knowledge for clarity. Two main formulations
of Word2Vec for object classes are learned, i.e. skip-gram
and continuous bag-of-words (cbow) (Mikolov et al. 2013b).
For AwA and Dogs, we use 200-dim and 500-dim skip-
gram vectors respectively. While for CUB, we adopt 500-
dim cbow representation. According to the results shown in
Table 2, we see RKT AO significantly outperforms RKT in
all cases, which shows that the directly learned gu(x) with
augment data only is more fit for the unseen classes.

Table 2: Average classification accuracy (%) using RKT and
RKT AO methods, where RKT AO means using only aug-
mented data for ZSL.

Methods RKT RKT AO Increase

AwA
A 71.59 72.49 +0.9
W 59.05 76.36 +17.31

A+W 79.40 81.31 +1.91

CUB
A 33.48 39.62 +6.14
W 23.21 25.62 +2.41

A+W 43.12 46.24 +3.12
Dogs W 22.51 28.29 +5.78

We further display directly the performance improvement
over baselines in Figure 2. Values in this figure denote in-
crease of the absolute accuracy. We can see that RKT per-
forms better no matter what the semantic knowledge is used
for these datasets. Spectacularly, the accuracy improvement
over baselines reaches the highest 21.9%. This result also
shows a meaningful point that the improvement using W
is very high, which proves unsupervised-learned word vec-
tors have the potential of boosting performance, while at the
same time avoiding the cost of manual attribute knowledge.

In another experiment, we test how the number of synthe-
sised instances affects the performance. Figure 3 illustrates
the performance of RKT on a varying number of generated
data, where the divisor in the x-axis denotes average number
of instances per class. We observe that RKT outperforms the
baselines with just a small number of data. The performance
drops down as a result of over-fitting. For reason of space-
saving, here we only show 4 configurations (different word

Figure 2: Accuracy improvement over baselines. Results are
obtained through using original and augmented data (shown
in yellow bars) and only augmented data (in red).

vectors and dimensions), and they exhibit the same trend.

Figure 3: ZSL average accuracy obtained with only the aug-
mented data for unseen categories. The x-axis denotes differ-
ent number of instances per class (NPC), where the divisor
is the average number per class.

These results provide strong evidence for our statement
that relational knowledge in the semantic space benefits ZSL
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Figure 4: Performance (%) w.r.t. different λ in sparse coding.

a lot. Testing instances synthesised using this knowledge are
able to cover the real manifold structure for unseen cate-
gories. It is worth mentioning that, we only need the mean
vector of training class in X and its semantic descriptions in
S. With just a little semantic information of a new instance,
it can perform well. Therefore, the proposed strategy would
benefit large scale or online zero-shot recognition, which is
our future work.

Table 3: Comparisons with the state-of-the-art ZSL meth-
ods. ’–’ means no result reported. (*: Method uses word vec-
tors learned from a specific corpus.)

Methods φ AwA CUB Dogs
SJE A/W 66.7 50.1* 33.0*
HAP A 45.6 17.5 –

ZSLwUA A 43.01 – –
PST A 42.7 – –

TMV-HLP A+W 80.5 47.9 –
AMP A+W 66 – –

RKT
A 75.99 39.62 –
W 76.36 25.62 28.29

A+W 82.43 46.24 –

Comparison with state of the art

To better show the ability of our proposed method, we
compare RKT with 6 state-of-the-art ZSL methods, i.e.
SJE (Akata et al. 2015), HAP (Huang et al. 2015), PST
(Rohrbach, Ebert, and Schiele 2013), ZSLwUA (Jayaraman
and Grauman 2014), AMP (Fu et al. 2015b) and TMV-
HLP (Fu et al. 2015a). All methods use CNN features ex-
cept PST. For simple comparison, we use same settings and
author-provided results. From the results in Table 3 we can
see RKT significantly outperforms other methods on AwA
dataset. While on CUB and Dogs, the best performances
are given by SJE, which uses specific word vectors, mak-
ing S more semantic than ours. However, when adopting the
same Word2Vec as ours, their recognition accuracy falls off.
TMV-HLP’s work on CUB is higher than ours, because they

improve the classifier l(φ), while we focus on gu(x) and use
the simple cosine distance for l(φ). Since our results are ob-
tained based on the baselines, we expect the result to be fur-
ther improved when incorporated with other ZSL methods
in this table, which is also a work in the future.

Further evaluations

In the first RKT experiment, we evaluate how the sparse cod-
ing coefficient affects the performance. Larger λ makes the
semantic relation w more sparse. The NPC is set to the aver-
age size of training classes. The result in Figure 4 shows that,
when log(λ) is about −0.4, the performance is the highest.
This result makes sense for the use of sparse coding.

In the second experiment, we assess how the approach
performs on varying number of augmented data in training
dataset. From the results on AwA displayed in Figure 5, we
can see our method outperforms the baselines and improves
with more instances. This is because the Goog features are
more semantic. This result further validates our statement
about the semantic geometric structure in S.

Figure 5: Improved ZSL performance on AwA when vary-
ing NPC are added. A denotes attribute knowledge, while W
represents word vector knowledge.

Discussion and Conclusion

In this paper, we propose a relational knowledge transfer
(RKT) mechanism for zero-shot learning (ZSL) that is gen-
eral to boost most existing ZSL approaches and show good
performance on three real world datasets. It resolves the in-
herent semantic shift problem and achieves ZSL through
restoring the missing manifold structure of unseen cate-
gories in feature space by synthesising instances via rela-
tional knowledge from the semantic space.

Since we focus on optimizing semantic mapping g(x), the
joint optimization of g(x) and l(φ) is still encouraged in the
future work.

Acknowledgments

This research was supported by the National Natural Science
Foundation of China (No. 61473256) and China Knowledge
Center for Engineering Sciences and Technology.

2150



References

Akata, Z.; Perronnin, F.; Harchaoui, Z.; and Schmid, C.
2013. Label-embedding for attribute-based classification. In
CVPR, 819–826. IEEE.
Akata, Z.; Reed, S.; Walter, D.; Lee, H.; and Schiele, B.
2015. Evaluation of output embeddings for fine-grained im-
age classification. In CVPR, 2927–2936.
Fu, Y.; Hospedales, T.; Xiang, T.; and Gong, S. 2015a.
Transductive multi-view zero-shot learning. PAMI 1–1.
Fu, Z.; Xiang, T.; Kodirov, E.; and Gong, S. 2015b. Zero-
shot object recognition by semantic manifold distance. In
CVPR, 2635–2644.
Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 580–587. IEEE.
Hariharan, B.; Vishwanathan, S.; and Varma, M. 2012. Ef-
ficient max-margin multi-label classification with applica-
tions to zero-shot learning. Machine learning 88(1-2):127–
155.
Huang, S.; Elhoseiny, M.; Elgammal, A.; and Yang, D. 2015.
Learning hypergraph-regularized attribute predictors. arXiv
preprint arXiv:1503.05782.
Huang, S.-J.; Gao, W.; and Zhou, Z.-H. 2014. Fast multi-
instance multi-label learning. In AAAI.
Jayaraman, D., and Grauman, K. 2014. Zero-shot recogni-
tion with unreliable attributes. In NIPS, 3464–3472.
Khosla, A.; Jayadevaprakash, N.; Yao, B.; and Fei-Fei, L.
2011. Novel dataset for fine-grained image categorization.
In First Workshop on Fine Grained Visual Categorization,
CVPR. Citeseer.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In NIPS, 1097–1105.
Lampert, C. H.; Nickisch, H.; and Harmeling, S. 2009.
Learning to detect unseen object classes by between-class
attribute transfer. In CVPR, 951–958. IEEE.
Lampert, C. H.; Nickisch, H.; and Harmeling, S. 2014.
Attribute-based classification for zero-shot visual object cat-
egorization. Pattern Analysis and Machine Intelligence,
IEEE Transactions on 36(3):453–465.
Luo, P.; Wang, X.; and Tang, X. 2013. A deep sum-product
architecture for robust facial attributes analysis. In ICCV,
2864–2871. IEEE.
Mensink, T.; Gavves, E.; and Snoek, C. G. 2014. Costa: Co-
occurrence statistics for zero-shot classification. In Com-
puter Vision and Pattern Recognition (CVPR), 2014 IEEE
Conference on, 2441–2448. IEEE.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013b. Distributed representations of words and
phrases and their compositionality. In NIPS, 3111–3119.
Norouzi, M.; Mikolov, T.; Bengio, S.; Singer, Y.; Shlens, J.;
Frome, A.; Corrado, G. S.; and Dean, J. 2013. Zero-shot

learning by convex combination of semantic embeddings.
arXiv preprint arXiv:1312.5650.
Olshausen, B. A., and Field, D. J. 1997. Sparse coding
with an overcomplete basis set: A strategy employed by v1?
Vision research 37(23):3311–3325.
Rohrbach, M.; Ebert, S.; and Schiele, B. 2013. Transfer
learning in a transductive setting. In NIPS, 46–54.
Romera-Paredes, B.; OX, E.; and Torr, P. H. 2015. An
embarrassingly simple approach to zero-shot learning. In
ICML, 2152–2161.
Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. ICLR.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2014. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset. Technical
Report CNS-TR-2011-001, California Institute of Technol-
ogy.
Xiao, J.; Hays, J.; Ehinger, K.; Oliva, A.; Torralba, A.; et al.
2010. Sun database: Large-scale scene recognition from
abbey to zoo. In CVPR, 3485–3492. IEEE.
Zhang, M.-L., and Zhou, Z.-H. 2014. A review on multi-
label learning algorithms. Knowledge and Data Engineer-
ing, IEEE Transactions on 26(8):1819–1837.
Zhang, N.; Paluri, M.; Ranzato, M.; Darrell, T.; and Bour-
dev, L. 2014. Panda: Pose aligned networks for deep at-
tribute modeling. In CVPR, 1637–1644. IEEE.
Zhou, D.; Bousquet, O.; Lal, T. N.; Weston, J.; and
Schölkopf, B. 2004. Learning with local and global con-
sistency. NIPS 16(16):321–328.

2151




