
Progressive EM for Latent Tree Models and Hierarchical Topic Detection

Peixian Chen,† Nevin L. Zhang,† Leonard K. M. Poon,‡ Zhourong Chen†
†The Hong Kong University of Science and Technology {pchenac,lzhang,zchenbb@cse.ust.hk}

‡The Hong Kong Institute of Education{kmpoon@ied.edu.hk}

Abstract

Hierarchical latent tree analysis (HLTA) is recently proposed
as a new method for topic detection. It differs fundamen-
tally from the LDA-based methods in terms of topic defi-
nition, topic-document relationship, and learning method. It
has been shown to discover significantly more coherent top-
ics and better topic hierarchies. However, HLTA relies on the
Expectation-Maximization (EM) algorithm for parameter es-
timation and hence is not efficient enough to deal with large
datasets. In this paper, we propose a method to drastically
speed up HLTA using a technique inspired by the advances
in the method of moments. Empirical experiments show that
our method greatly improves the efficiency of HLTA. It is as
efficient as the state-of-the-art LDA-based method for hierar-
chical topic detection and finds substantially better topics and
topic hierarchies.

Introduction

Detecting topics and topic hierarchies from document col-
lections, along with its many potential applications, is a ma-
jor research area in Machine Learning. Currently the pre-
dominant approach to topic detection is latent Dirichlet al-
location (LDA) (Blei, Ng, and Jordan, 2003). LDA has been
developed to detect topics and to model relationships among
them, including topic correlations (Blei and Lafferty, 2007),
topic hierarchies (Blei, Griffiths, and Jordan, 2010; Paisley
et al., 2012), and topic evolution (Blei and Lafferty, 2006).
We collectively name these methods LDA-based methods.
In those methods, a topic is a probability distribution over a
vocabulary and a document is a mixture of topics. Therefore
LDA is a type of mixed membership model.

A totally different approach to hierarchical topic detec-
tion is recently proposed by Liu, Zhang, and Chen (2014).
It is called hierarchical latent tree analysis (HLTA), where
topics are organized hierarchically as a latent tree model
(LTM) (Zhang, 2004; Zhang, Wang, and Chen, 2008a) such
as the one in Fig 1. Each internal node of an LTM gives sev-
eral states, with each state being a topic and corresponding
to a collection of documents. A document can thus belong to
multiple topics from different internal nodes. HLTA is there-
fore a type of multiple membership model.
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Figure 1: Latent tree model obtained from a toy text dataset.

Empirical results from Liu, Zhang, and Chen (2014)
indicate that HLTA finds significantly better topics and
topic hierarchies than hierarchical latent Dirichlet alloca-
tion (hLDA), the first LDA-based method for hierarchical
topic detection. However HLTA is not efficient. It took, for
instance, 17 hours to process a NIPS dataset that consists of
fewer than 2,000 documents over 1,000 distinct words.

The computational bottleneck of HLTA lies in the use of
the EM algorithm (Dempster, Laird, and Rubin, 1977) for
parameter estimation. In this paper, we propose progressive
EM (PEM) as a replacement of EM so as to scale up HLTA.
PEM is motivated by a spectral technique applied in the
method of moments, which relates each equation of popula-
tion moments to at most 3 observed variables (Chang, 1996;
Anandkumar et al., 2012). Similarly, PEM works in steps
and, at each step, it focuses on a small part of the model pa-
rameters and involves only three or four observed variables.

Our new algorithm is hence named PEM-HLTA. It is dras-
tically faster than HLTA. PEM-HLTA finished processing
the aforementioned NIPS dataset within 4 minutes and is ca-
pable of analysing much larger corpus. PEM-HLTA is also
as efficient as nHDP (Paisley et al., 2012), a state-of-the-art
LDA-based method for hierarchical topic detection, and it
significantly outperforms nHDP, as well as hLDA, in terms
of the quality of topics and topic hierarchies.

Preliminaries

A latent tree model (LTM) is a Markov random field over
an undirected tree, where the leaf nodes represent ob-
served variables and the internal nodes represent latent vari-
ables (Zhang, 2004; Chen et al., 2012). Here we assume all
variables are discrete with finite cardinality, i.e., finite num-
ber of possible states.

Parameters of an LTM consist of potentials associated
with edges and nodes such that the product of all potentials
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is a joint distribution over all variables. We pick the poten-
tials as follows: Root the model at an arbitrary latent node,
direct the edges away from the root, and specify a marginal
distribution for the root and a conditional distribution for
each of the other nodes given its parent. Then in Fig 2(b),
if Y is the root, the parameters are the distributions P (Y ),
P (A | Y ), P (Z | Y ), P (C | Z) and so forth. Because of
the way the potentials are picked, LTMs are technically tree-
structured Bayesian networks (Pearl, 1988).

LTMs with a single latent variable are known as latent
class models (LCMs)(Bartholomew and Knott, 1999). They
are a type of finite mixture model for discrete data. For ex-
ample, the model m1 in Fig 2(a) defines the following mix-
ture distribution over the observed variables:

P (A, · · ·, E)=
∑|Y |

i=1
P (Y =yi)P (A, · · ·, E |Y =yi) (1)

where |Y | is the cardinality of Y and yi is the value of Y
at ith state. If the model is learned from a corpus, then the
documents are partitioned into |Y | soft clusters, each repre-
sented by a state of Y , and interpreted as a topic. The model
m2 in Fig 2(b) has two latent variables. It gives two different
and related mixture distributions:

P (A, · · ·, E)=
∑|Y |

i=1
P (Y =yi)P (A, · · ·, E |Y =yi),

P (A, · · ·, E)=
∑|Z|

j=1
P (Z=zj)P (A, · · ·, E |Z=zj).

The model partitions the corpus in two ways: one into |Y |
soft clusters and another into |Z| soft clusters. A document
can thus belong to yi and zj simultaneously.

A B C D E

Y

(a) m1

A B CD E

Y Z

(b) m2

Figure 2: Leaf nodes are observed while others are latent.

The Algorithm

The input to our PEM-HLTA algorithm is a collection D of
documents, each represented as a binary vector over a vo-
cabulary V . The values in the vector indicate the presence or
absence of words in the document. The output is an LTM,
where the word variables are at the bottom and the latent
variables, all assumed binary, form several levels of hier-
archy on top. Topics and topic hierarchy are then extracted
from model, as will be explained in empirical results section.

Top Level Control

The top level algorithm for PEM-HLTA is given in Algo-
rithm 1. We briefly illustrate how PEM-HLTA builds a hi-
erarchical LTM from D using Fig 1, learned from a dataset
with 30 word variables. In the first pass through the loop, the
subroutine BUILDISLANDS is called (line 3). It partitions
all variables into 11 clusters (Fig 3 bottom), which are uni-
dimensional in the sense that the co-occurrences of words

Algorithm 1 PEM-HLTA(D, τ , δ, κ)
Inputs: D—Collection of documents, τ—Upper bound on the

number of top-level topics, δ—Threshold used in UD-test, κ—
Number of EM steps on final model.

Outputs: A hierarchical LTM and a topic hierarchy.

1: D1 ← D, L ← ∅, m ← null.
2: repeat
3: L ← BUILDISLANDS(D1, δ);
4: m1 ← BRIDGEISLANDS(L, D1);
5: if m = null then
6: m ← m1;
7: else
8: m ← STACKMODELS(m1, m);
9: end if

10: D1 ← HARDASSIGNMENT(m, D);
11: until |L| < τ .
12: Run EM on m for κ steps.
13: return m and topic hierarchy extracted from m.

in each cluster can be properly modeled using a single la-
tent variable. A latent variable is introduced for each cluster
to form an LCM. We metaphorically refer to the LCMs as
islands and the latent variables in them as level-1 latent vari-
ables.

The next step is to link up the 11 islands (line 4). This is
done by estimating the mutual information (MI) (Cover and
Thomas, 2012) between every pair of latent variables and
building a Chow-Liu tree (Chow and Liu, 1968) over them,
so as to form an overall model (Liu et al., 2013). The result
is the model in the middle of Fig 3.

In the subroutine HARDASSIGNMENT, inference is car-
ried out to compute the posterior distribution of each latent
variable for each document. The document is assigned to
the state with the maximum posterior probability, resulting
in a dataset over the level-1 latent variables (line 10). In the
second pass through the loop, the level-1 latent variables are
partitioned into 3 groups. The 3 islands are linked up to form
the model shown at the top of Fig 3. At line 8, the model at
the top of Fig 3 (m1) is stacked on the model in the mid-
dle (m) to give rise to the final model in Fig 1. While doing
so, the subroutine STACKMODELS cuts off the links among
the level-1 latent variables. The number of nodes at the top
level is below the threshold τ , if we set τ = 5, and hence the
loop is exited. EM is run on the final model for κ steps to
improve its parameters (line 12). In our experiments, we set
κ = 50. Intuitively, the co-occurrence of words are captured
by the level-1 latent variables, whose co-occurring patterns
are captured by higher level latent variables. Then a topic
hierarchy can be extracted, with topics on top more general
and topics at the bottom more specific.

Building Islands

The subroutine BUILDISLANDS(Algorithm 2) starts by call-
ing ONEISLAND to identify a uni-dimensional subset of ob-
served variables and builds an LCM with them, then repeats
the process on those observed variables left to create more
islands until all variables are included in these islands.
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Figure 3: Intermediate models created by PEM-HLTA on a toy dataset. Bottom: Word variables are partitioned into unidimen-
sional clusters (bottom) and a latent variable is introduced for each cluster. Middle: The latent variables are linked up to form a
global model and they turned into observed variable using hard-assignment. Top: The process is repeated on the level-1 latent
variables. Finally, the model at the top is stacked on the model in the middle to give rise to the model shown in Fig 1.

Algorithm 2 BUILDISLANDS(D, δ)
1: V ← variables in D, M ← ∅.
2: while |V| > 0 do
3: m ← ONEISLAND(D, V , δ);
4: M ← M∪ {m};
5: V ← variables in D but not in any m ∈ M;
6: end while
7: return M.

Algorithm 3 ONEISLAND(D, V , δ)
1: if |V| ≤ 3, m ← LEARNLCM(D, V), return m.
2: S ← three variables in V with highest MI,
3: V1 ← V \ S;
4: D1 ← PROJECTDATA(D, S),
5: m ← LEARNLCM(D1, S).
6: loop
7: X ← argmaxA∈V1

MI(A,S),
8: W ← argmaxA∈S MI(A,X),
9: D1 ← PROJECTDATA(D,S ∪ {X}), V1 ← V1 \ {X}.

10: m1 ← PEM-LCM(m,S, X,D1).
11: if |V1| = 0, return m1.
12: m2 ← PEM-LTM-2L(m, S \ {W}, {W,X}, D1)
13: if BIC(m2|D1)−BIC(m1|D1) > δ then.
14: return m2 with W , X and their parent removed.
15: end if
16: m ← m1, S ← S ∪ {X}.
17: end loop

Uni-Dimensionality Test We rely on the uni-
dimensionality test (UD-test) (Liu et al., 2013) to determine
whether a set S of variables is uni-dimensional. The idea
is to compare two LTMs m1 and m2, where m1 is the
best model among all LCMs for S while m2 is the best
one among all LTMs with two latent variables. The model
selection criterion used is the BIC score (Schwarz, 1978).

The set S is uni-dimensional if the following inequality
holds:

BIC(m2 | D)− BIC(m1 | D) < δ, (2)
where δ is a threshold. It means S is considered uni-
dimensional if the best two-latent variable model is not sig-
nificantly better than the best one-latent variable model. The
quantity on the left of Equation (2) is a large sample approx-
imation of the natural logarithm of Bayes factor (Raftery,
1995) for comparing m1 and m2. Based on the cut-off val-
ues for the Bayes factor, we set δ = 3 in our experiments.

Building An Island ONEISLAND identifies a uni-
dimensional subset from given variables V and builds an
LCM. We illustrate this process using Fig 2. Define the
mutual information between a variable Z and a set S as
MI(Z,S) = maxA∈S MI(Z,A). ONEISLAND maintains a
working set S of observed variables. Initially, S contains
the pair of variables with the highest MI and a third vari-
able that has the highest MI with the pair (line 2), say A,
B and C. Then an LCM is learned for those three variables
using the subroutine LEARNLCM. Then other variables are
added to S one by one until the UD-test fails. Let D be the
variable that has the maximum MI with S among all other
variables. Suppose the UD-test passes on S ∪ {D}, then D
is added to S . Next let E be the variable with the maxi-
mum MI with S (line 7) and the UD-test is performed on
S ∪ E = {A,B,C,D,E} (lines 8-14). The two models
m1 and m2 used in the test is shown in Fig 2. For compu-
tational efficiency, we do not search for the best structure
for m2. Instead, the structure is determined as follows: Pick
the variable in S that has the maximum MI with E (line 8)
(let it be C), and group it with E in the model (line 12).
The model parameters are estimated using the subroutines
PEM-LCM and PEM-LTM-2L, which will be explained
in the next section. If the test fails, then C, E and Z are re-
moved from m2, and what remains in the model, an LCM,
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is returned. If the test passes, E is added to S (line 16) and
the process continues.

PEM for Model Construction

PEM-HLTA conceptually consists of a model construc-
tion phase (lines 2-11) and a parameter estimation phase
(line 12). During the first phase, many intermediate mod-
els are constructed. In this paper, we propose a fast method
for estimating the parameters of those intermediate models.

A Spectral Technique We begin by presenting a property
of LTMs that motivates our new method. A similar property
on evolutionary trees was first discovered by Chang (1996),
and Zhang, Wang, and Chen (2014) derived it in the context
of LTMs. We introduce some notation using m1 of Fig 2.
Since all variables have the same cardinality, the conditional
distribution P (A|Y ) can be regarded as a square matrix de-
noted as PA|Y . Similarly, PAC is the matrix representation
of the joint distribution P (A,C). For a value b of B, Pb|Y is
the vector presentation of P (B=b|Y ) and PAbC the matrix
representation of P (A,B=b, C).

Theorem 1 [Zhang, Wang, and Chen (2014)] Let Y be the
latent variable in an LCM and A,B,C be three of the ob-
served variables. Assume all variables have the same cardi-
nality and the matrices PA|Y and PAC are invertible. Then
we have

PA|Y diag(Pb|Y )P
−1
A|Y = PAbCP

−1
AC , (3)

where diag(Pb|Y ) is a diagonal matrix with components of
Pb|Y as the diagonal elements.

The equation implies that the model parameters
P (B=b|Y=0), · · · , P (B=b|Y=|Y |) are the eigenvalues of
the matrix on the right, and hence can be obtained from the
marginal distributions PAbC and PAC .

In the method of moments, Theorem 1 can be used to es-
timate P (B|Y ) under two conditions: (1) There is a good
fit between the data and model, and (2) the sample size is
sufficiently large. In this case, the empirical marginal dis-
tributions P̂ (A,B,C) and P̂ (A,C) computed from data
are accurate estimates of the distributions P (A,B,C) and
P (A,C) of the model. They can be used to form the matrix
PAbCP

−1
AC , and to determine PB|Y as the eigenvalues of the

matrix. Theorem 1 still applies when replacing edges like
(Y,A) with paths. For example in Fig 2(b), if P (C|Z) and
P (E|Z) are to be estimated, a third observed variable can
be chosen from (A,B,D) as long as there is path from Z to
this observed variable.

Theorem 1 can be also used to estimate all the param-
eters of the model in Fig 2(a). First, we estimate P (B|Y )
using Equation 3 in the sub-model Y -{A,B,C}. By swap-
ping the roles of variables, we obtain P (A|Y ) and P (C|Y ).
Next we can consider the sub-model Y -{B,C,D} and es-
timate P (D|Y ) with P (B|Y ) and P (C|Y ) fixed. And we
do the same with the variables left. The parameters are then
estimated in steps instead of all at once. Hence we call this
scheme progressive parameter estimation.

Progressive EM By solving equations of lower-order mo-
ments, the method of moments can be drastically faster than
EM. Unfortunately, it does not produce high quality esti-
mates when the model does not fit data well and/or the sam-
ple size is not sufficiently large, as the empirical marginal
distributions P̂ (A,B,C) and P̂ (A,C) are poor estimates of
true distributions. In our experiences, the method frequently
gives negative estimates for probability values in the context
of latent tree models.

In this paper, we do not estimate parameters by solving
the equation in Theorem 1. However, we adopt a progressive
scheme combined with EM. This gives rise to progressive
EM (PEM). To estimate the parameters of m1, PEM first
estimates P (Y ), P (A|Y ), P (B|Y ), and P (C|Y ) by run-
ning EM on the sub-model Y -{A,B,C}; then it estimates
P (D|Y ) by running EM on the sub-model Y -{B,C,D}
with P (B|Y ), P (C|Y ) and P (Y ) fixed and so forth. All
the sub-models involve 3 observed variables. This is exactly
the idea behind subroutine LEARNLCM.

For m2, PEM first runs EM on sub-model Y -{A,B,D};
then it estimates P (C|Z), P (E|Z) and P (Z|Y ) by run-
ning EM on the two latent variable sub-model {B,D}-Y -
Z-{C,E}, with P (B|Y ), P (D|Y ) and P (Y ) fixed. Note
that only two of the children of Y are used here, and the
model involves only 4 observed variables.

Intuitively, the method of moments tries to fit data in a
rigid way, while PEM tries to fit data in an elastic manner.
It never gives negative probability values. Moreover, it is
still efficient because EM is run only on sub-models with
three or four observed binary variables, and multiple start-
ing points can be tried to alleviate the issues of local maxima
with much lower computational cost.

PEM for Island Building PEM can be aligned with the
subroutine ONEISLAND nicely because the subroutine adds
variables to the working set S one at a time. Consider a pass
through the loop. At the beginning, we have an LCM m for
the variables in S, whose parameters have been estimated
earlier. Then ONEISLAND finds the variable X outside S
that has the maximum MI with S, and the variable W inside
S that has the maximum MI with X (line 7, 8).

At line 11, ONEISLAND adds X to m to create a new
LCM m1, and estimates the parameters for the new vari-
able using the subroutine PEM-LCM. We illustrate how
this is done using Fig 2. Suppose the LCM m is the
model Y -{A,B,C,D} and the variable X is E. PEM-
LCM adds the variable E to m and thereby creates a new
LCM m1, which is Y -{A,B,C,D,E} (Fig 2(a)). To esti-
mate P (E|Y ), PEM-LCM creates a temporary model m′
from m1 by only keeping three observed variables: E and
two other variables with maximum MI with E. Suppose
m′ is Y -{C,D,E}. PEM-LCM estimates the distribution
P (E|Y ) by running EM on m′ with all other parameters
fixed. Finally, it copies P (E|Y ) from m′ to m1, and returns
m1.

At line 12, ONEISLAND adds X to m and learns a two-
latent variable model m2 using the subroutine PEM-LTM-
2L. We illustrate PEM-LTM-2L using the foregoing ex-
ample. Let X be E and W be C. PEM-LTM-2L cre-
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Table 1: Parts of the topic hierarchies obtained by nHDP (left) and PEM-HLTA (right) on Nips-10k.

1. gaussian likelihood mixture density Bayesian

1.1. gaussian density likelihood Bayesian

1.2. frey hidden posterior chaining log

1.3. classifier classifiers confidence

1.4. smola adaboost onoda mika svms

1.5. speech context hme hmm experts

2. image recognition images feature features

2.1. image recognition feature images object

2.2. smola adaboost onoda utterance

2.3. object matching shape image features

2.4. nearest basis examples rbf classifier

2.5. tangent distance simard distances

3. rules language rule sequence context

3.1. recognition speech mlp word trained

3.2. rules rule stack machine examples

3.3. voicing syllable fault faults units

3.4. rules hint table hidden structure

3.5. syllable stress nucleus heavy bit

1. [0.22] mixture gaussian mixtures em covariance

1.1. [0.23] em maximization ghahramani expectation

1.2. [0.23] mixture gaussian mixtures covariance

1.3. [0.23] generative dis generafive generarive

1.4. [0.27] variance noise exp variances deviation

1.4.1. [0.28] variance exp variances deviation cr

1.4.2. [0.44] noise noisy robust robustness mean

2. [0.26] images image pixel pixels object

2.1. [0.25] images image features detection face

2.2. [0.24] camera video imaging false tracked

2.3. [0.24] pixel pixels intensity intensities

2.4. [0.17] object objects shape views plane

2.5. [0.20] rotation invariant translation

2.6. [0.26] nearest neighbor kohonen neighbors

3. [0.15] speech word speaker language phoneme

3.1. [0.16] word language vocabulary words sequence

3.2. [0.11] spoken acoustics utterances speakers

3.3. [0.10] string strings grammar symbol symbols

3.4. [0.06] retrieval search semantic searching

3.5. [0.14] phoneme phonetic phonemes waibel lang

3.6. [0.15] speech speaker acoustic hmm hmms

ates the new model m2, which is {A,B,D}-Y -Z-{C,E}
(Fig 2(b)). To estimate the parameters P (C|Z), P (E|Z)
and P (Z|Y ), PEM-LTM-2L creates a temporary model m′
which is {A,D}-Y -Z-{C,E}. Only the two of the chil-
dren of Y that have maximum MI with E remain(A and D).
PEM-LTM-2L estimates the three distributions by running
EM on m′ with all other parameters fixed. Finally, it copies
the distributions from m′ to m2 and returns m2. Similarly
in the subroutine BRIDGEDISLANDS we use this method to
estimate parameters between latent variables, but only esti-
mating P (Z|Y ) and keeping all other parameters fixed.

Empirical results

We aim at scaling up HLTA, hence we need to empiri-
cally determine how efficient PEM-HLTA is compared with
HLTA. We also compare PEM-HLTA with nHDP, the state-
of-the-art LDA-based method for hierarchical topic detec-
tion, in terms of computational efficiency and quality of re-
sults. Also included in the comparisons are hLDA and a
method named CorEx (Ver Steeg and Galstyan, 2014) that
builds hierarchical latent trees by optimizing an information-
theoretic objective function.

Two of the datasets used are NIPS1 and Newsgroup2.
Three versions of the NIPS data with vocabulary sizes 1,000,
5,000 and 10,000 were created by choosing words with high-
est average TF-IDF values, referred to as Nips-1k, Nips-5k
and Nips-10k. Similarly, two versions (News-1k and News-
5k) of the Newsgroup data were created. Note that News-
10k is not included because it is beyond the capabilities
of three of the methods. Comparisons of PEM-HLTA and
nHDP on large data will be given later. After preprocess-
ing, NIPS and Newsgroup consist of 1,955 and 19,940 doc-
uments respectively. For PEM-HLTA, HLTA and CorEx, the

1http://www.cs.nyu.edu/ roweis/data.html
2http://qwone.com/jason/20Newsgroups/

data are represented as binary vectors, whereas for nHDP
and hLDA, they are represented as bags-of-words.

PEM-HLTA determines the height of hierarchy and the
number of nodes at each level automatically. On the NIPS
and Newsgroup datasets, it produces hierarchies with be-
tween 4 to 6 levels. For nHDP and hLDA, the height of
hierarchy needs to be manually set and is usually set at 3.
We set the number of nodes at each level in such way that
nHDP and hLDA would yield roughly the same total num-
ber of topics as PEM-HLTA. CorEx is configured similarly.
PEM-HLTA is implemented in Java. The parameter settings
are described along algorithm description. Implementations
of other algorithms are provided by their authors and ran
at their default parameter settings. All experiments are con-
ducted on the same desktop computer.3

Topic Hierarchies for Nips-10k

Table 1 shows parts of the topic hierarchies obtained by
nHDP and PEM-HLTA. The left half displays 3 top-level
topics by nHDP and their children. Each nHDP topic is rep-
resented using the top 5 words occurring with highest prob-
abilities in the topic. The right half show 3 top-level topics
yielded by PEM-HLTA and their children. The topics are ex-
tracted from the model learned by PEM-HLTA as follows:
For a latent binary variable Z in the model, we enumerate
the word variables in the sub-tree rooted at Z in descending
order of their MI values with Z. The leading words are those
whose probabilities differ the most between the two states of
Z and are hence used to characterize the states. The state of
Z under which the words occur less often overall is regarded
as the background topic and is not reported, while the other
state is reported as a genuine topic. Values in [] show the
percentage of the documents belonging to the genuine topic.

3The code for HLTA algorithm can be found at
http://www.cse.ust.hk/∼lzhang/topic/index.htm, along with
the datasets used in the papers and the results.
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Let us examine some of the topics. We refer to topics on
the left using the letter L followed by topic numbers and
those on the right using R. For PEM-HLTA, R1 consists of
probability terms: R1.1 is about EM algorithm; R1.2 about
Gaussian mixtures and R1.3 about generative distributions.
R1.4 is a combination of variance and noise, which are sep-
arated at the next lower level. For nHDP, the topic L1 and
its children L1.1, L1.2 and L1.5 are also about probability.
However, L1.3 and L1.4 do not fit in the group well.

The topic R2 is about image analysis, while its first
four subtopics are about different aspects of image analy-
sis: sources of images, pixels, objects. R2.5 and R2.6 are
also meaningful and related, but do not fit in well. They are
placed in another subgroup by PEM-HLTA. In nHDP, the
subtopics of L2 do not give a clear spectrum of aspects of
image analysis. The topic R3 is about speech recognition.
Its subtopics are about different aspects of speech recogni-
tion. Only R3.4 does not fit in the group well. In contrast,
L3 and its subtopics do not present a clear semantic hierar-
chy. Some of them are not meaningful. Another topic related
to speech recognition L1.5 is placed elsewhere. Overall, the
topics and topic hierarchy obtained by PEM-HLTA are more
meaningful than those by nHDP.

Topic Coherence and Model Quality

To quantitatively measure the quality of topics, we use the
topic coherence score proposed by Mimno et al. (2011). The
metric depends on the number M of words used to charac-
terize a topic. We set M = 4. Then held-out likelihood is
used to assess the quality of the models. Each dataset was
randomly partitioned into a training set with 80% of the data,
and a test set with the 20% left.

Table 2 shows the average topic coherence scores of the
topics produced by the five algorithms. The sign “-” indi-
cates running time exceeded 72 hours. The quality of topics
produced by PEM-HLTA is similar to those by HLTA on
Nips-1k and News-1k, and better on Nips-5k. In all cases,
PEM-HLTA produced significantly better topics than nHDP
and the other two algorithms. The held-out per-document
loglikelihood statistics are shown in Table 3. The likelihood
values of PEM-HLTA are similar to those of HLTA, show-
ing that the use of PEM to replace EM does not influence
model quality much. They are significantly higher than those
of CorEx. Note that the likelihood values in Table 3 for the
LDA-based methods are calculated from bag-of-words data.
They are still lower than the other methods even calculated
from the same binary data as for the other three methods.
It should be noted that, in general, better model fit does not
necessarily imply better topic quality (Chang et al., 2009).
In context of hierarchical topic detection, however, PEM-
HLTA not only leads to better model fit, but also gives better
topics and better topic hierarchies.

Running times

Table 4 shows the running time statistics. PEM-HLTA dras-
tically outperforms HLTA, and the difference increases with
vocabulary size. On Nips-10k and News-5k, HLTA did not
terminate in 3 days, while PEM-HLTA finished the computa-
tion in about 6 hours. PEM-HLTA is also faster than nHDP,

Table 2: Average topic coherence scores.

Nips-1k Nips-5k Nips-10k News-1k News-5k
PEM-HLTA -6.25 -8.04 -8.87 -12.30 -13.07
HLTA -6.23 -9.23 — -12.08 —
hLDA -6.99 -8.94 — — —
nHDP -8.08 -9.55 -9.86 -14.26 -14.51
CorEx -7.23 -9.85 -10.64 -13.47 -14.51

Table 3: Per-document loglikelihood
Nips-1k Nips-5k Nips-10k News-1k News-5k

PEM-HLTA -390 -1,117 -1,424 -116 -262
HLTA -391 -1,161 — -120 —
hLDA -1,520 -2,854 — — —
nHDP -3,196 -6,993 -8,262 -265 -599
CorEx -442 -1,226 -1,549 -140 -322

although the difference decreases with vocabulary size as
nHDP works in a stochastic way (Paisley et al., 2012). More-
over, PEM-HLTA is more efficient than hLDA and CorEx.

Stochastic EM

Conceptually PEM-HLTA has two phases: hierarchical
model construction and parameter estimation. In the sec-
ond phase, EM is run a predefined number of steps from
the initial parameter values from the first phase. It is time-
consuming if the sample size is large. Paisley et al. (2012)
faced a similar problem with nHDP. They solve the prob-
lem using stochastic inference. We adopt the same idea for
the second phase of PEM-HLTA and call it stochastic EM.
We sample the whole dataset into subsets and process the
subsets one by one. Model parameters are updated after pro-
cessing each data subset and overall one goes through the
entire dataset. We tested the idea on the New York Times
dataset4, which consists of 300,000 articles. To analyze the
data, we picked 10,000 words using TF-IDF and then ran-
domly sampled the dataset into 50 smaller but equal-sized
subsets with each containing 6,000 articles. We used only
one subset for the first phase of PEM-HLTA. For the second
phase, we ran EM on current model once using each subset
in turn until all the subsets are utilized.

On New York Times data, we only compare PEM-HLTA
with nHDP since other methods are not amenable to pro-
cessing large datasets as we can observe from Table 4. We
still trained nHDP model using documents in bag-of-words
form and PEM-HLTA using documents as binary vectors of
words. Table 5 reports the running times and topic coher-
ence. PEM-HLTA took around 11 hours which is a little bit
slower than nHDP (10.5 hours). However, PEM-HLTA pro-
duced more coherent topics, which is not only testified by
the coherence score, but also the resulting topic hierarchies.

Conclusions

We have proposed and investigated a method to scale up
HLTA — a newly emerged method for hierarchical topic de-
tection. The key idea is to replace EM using progressive EM.

4http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
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Table 4: Running times.
Time(min) Nips-1k Nips-5k Nips-10k News-1k News-5k

PEM-HLTA 4 140 340 47 365
HLTA 42 2,020 — 279 —
hLDA 2,454 4,039 — — —
nHDP 359 382 435 403 477
CorEx 43 366 704 722 4,025

Table 5: Performances on the New York Times data.
Time (min) Average topic coherence

PEM-HLTA 670 -12.86
hHDP 637 -13.35

The resulting algorithm PEM-HLTA reduces the computa-
tion time of HLTA drastically and can handle much larger
datasets. More importantly, it outperforms nHDP, the state-
of-the-art LDA-based method for hierarchical topic detec-
tion, in terms of both quality of topics and topic hierarchy,
with comparable speed on large-scale data. Though we only
showed how PEM works in HLTA, it can possibly be used in
other more general models. PEM-HLTA can also be further
scaled up through parallelization and used for text classifi-
cation. We plan to investigate these directions in the future.
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