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Abstract

Effective training of deep neural networks suffers from
two main issues. The first is that the parameter spaces
of these models exhibit pathological curvature. Recent
methods address this problem by using adaptive pre-
conditioning for Stochastic Gradient Descent (SGD).
These methods improve convergence by adapting to
the local geometry of parameter space. A second is-
sue is overfitting, which is typically addressed by early
stopping. However, recent work has demonstrated that
Bayesian model averaging mitigates this problem. The
posterior can be sampled by using Stochastic Gradi-
ent Langevin Dynamics (SGLD). However, the rapidly
changing curvature renders default SGLD methods inef-
ficient. Here, we propose combining adaptive precondi-
tioners with SGLD. In support of this idea, we give the-
oretical properties on asymptotic convergence and pre-
dictive risk. We also provide empirical results for Logis-
tic Regression, Feedforward Neural Nets, and Convo-
lutional Neural Nets, demonstrating that our precondi-
tioned SGLD method gives state-of-the-art performance
on these models.

Introduction

Deep Neural Networks (DNNs) have recently generated sig-
nificant interest, largely due to their state-of-the-art perfor-
mance on a wide variety of tasks, such as image classifi-
cation (Krizhevsky, Sutskever, and Hinton 2012) and lan-
guage modeling (Sutskever, Vinyals, and Le 2014). Despite
this significant empirical success, it remains a challenge to
effectively train DNNs. This is due to two main problems:
(i) The function under consideration is often difficult to op-
timize and find a good local minima. It is believed that this
is in large part due to the pathological curvature and highly
non-convex nature of the function to be optimized (Dauphin
et al. 2014). (ii) Standard optimization techniques lead to
overfitting, typically addressed through early stopping (Sri-
vastava et al. 2014).

A Bayesian approach for learning neural networks in-
corporates uncertainty into model learning, and can reduce
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overfitting (MacKay 1992). In fact, it is possible to view
the standard dropout technique (Srivastava et al. 2014) as
a form of Bayesian approximation that incorporates uncer-
tainty (Gal and Ghahramani 2015; Kingma, Salimans, and
Welling 2015). Many other recent works (Blundell et al.
2015; Hernández-Lobato and Adams 2015; Korattikara et al.
2015) advocate incorporation of uncertainty estimates dur-
ing model training to help improve robustness and perfor-
mance.

While a Bayesian approach ameliorates the overfitting
issue in these complicated models, exact Bayesian infer-
ence in DNNs is generally intractable. Recently, several ap-
proaches have been proposed to approximate a Bayesian
posterior for DNNs, including a stochastic variational infer-
ence (SVI) method “Bayes by Backprop” (BBB) (Blundell
et al. 2015) and an online expectation propogation method
(OEP) “probabilistic backpropagation” (PBP) (Hernández-
Lobato and Adams 2015). These methods assume the poste-
rior is comprised of separable Gaussian distributions. While
this is a good choice for computational reasons, it can lead
to unreasonable approximation errors and underestimation
of model uncertainty.

A popular alternative to SVI and OEP is to use Stochastic
Gradient Markov Chain Monte Carlo (SG-MCMC) meth-
ods to generate posterior samples (Welling and Teh 2011;
Chen, Fox, and Guestrin 2014; Ding et al. 2014; Li et al.
2016). One of the most common SG-MCMC methods is the
Stochastic Gradient Langevin Dynamics (SGLD) algorithm
(Welling and Teh 2011). One merit of this approach is that
it is highly scalable; it requires only the gradient on a small
mini-batch of data, as in the optimization method Stochas-
tic Gradient Descent (SGD). It has been shown that these
MCMC approaches converge to the true posterior by us-
ing a slowly-decreasing sequence of step sizes (Teh, Thiéry,
and Vollmer 2014; Chen, Ding, and Carin 2015). Costly
Metropolis-Hasting steps are not required.

Unfortunately, DNNs often exhibit pathological curva-
ture and saddle points (Dauphin et al. 2014), which render
existing SG-MCMC methods inefficient. In the optimiza-
tion literature, numerous approaches have been proposed to
overcome this problem, including methods based on adapt-
ing a preconditioning matrix in SGD to the local geome-
try (Duchi, Hazan, and Singer 2011; Kingma and Ba 2015;
Dauphin, de Vries, and Bengio 2015). These approaches
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estimate second-order information with trivial per-iteration
overhead, have improved risk bounds in convex problems
compared to SGD, and demonstrate improved empirical per-
formance in DNNs. The idea of using geometry in SG-
MCMC has been explored in many contexts (Ahn, Korat-
tikara, and Welling 2012; Girolami and Calderhead 2011;
Patterson and Teh 2013) and includes second-order ap-
proximations. Often, these approaches use the expected
Fisher information, adding significant computational over-
head. These methods lack the scalability necessary for learn-
ing DNNs, as discussed further below.

We combine adaptive preconditioners from optimization
with SGLD, to improve SGLD efficacy. To note the dis-
tinction from SGLD, we refer to this as the Preconditioned
SGLD method (pSGLD). This procedure is simple and adds
trivial per-iteration overhead. We first show theoretical prop-
erties of this method, including bounds on risk and asymp-
totic convergence properties. We demonstrate improved ef-
ficiency of pSGLD by demonstrating an enhanced bias-
variance tradeoff of the estimator for small problems. We
further empirically demonstrate its application to several
models and large datasets, including deep neural networks.
In the DNN experiments, pSGLD outperforms the results
based on standard SGLD from (Korattikara et al. 2015), both
in terms of convergence speed and the test-set performance.
Futher, pSGLD generates state-of-the-art performance for
the examples tested.

Related Work

Various regularization schemes have been developed to pre-
vent overfitting in neural networks, such as early stopping,
weight decay, dropout (Srivastava et al. 2014), and drop-
connect (Wan et al. 2013). Bayesian methods are appeal-
ing due to their ability to avoid overfitting by capturing
uncertainty during learning (MacKay 1992). MCMC meth-
ods work by producing Monte Carlo approximations to the
posterior, with asymptotic consistency (Neal 1995). Tradi-
tional MCMC methods use the full dataset, which does not
scale to large data problems. A pioneering work in com-
bining stochastic optimization with MCMC was presented
in (Welling and Teh 2011), based on Langevin dynam-
ics (Neal 2011). This method was referred to as Stochas-
tic Gradient Langevin Dynamics (SGLD), and required only
the gradient on mini-batches of data. The per-iteration cost
of SGLD is nearly identical to SGD. Unlike SGD, SGLD
can generate samples from the posterior by injecting noise
into the dynamics. This encourages the algorithm to ex-
plore the full posterior, instead of simply converging to a
maximum a posterior (MAP) solution. Later, SGLD was
extended by (Ahn, Korattikara, and Welling 2012), (Pat-
terson and Teh 2013) and (Korattikara et al. 2015). Fur-
thermore, higher-order versions of the SGLD with momen-
tum have also been proposed, including stochastic gradi-
ent Hamiltionian Monte Carlo (SGHMC) (Chen, Fox, and
Guestrin 2014) and stochastic gradient Nose-Hoover Ther-
mostats (SGNHT) (Ding et al. 2014).

It has been shown that incoporating higher-order gradi-
ent information helps train neural networks when employing

optimization methods (Ngiam et al. 2011). However, cal-
culations of higher-order information is often cumbersome
in most models of interest. Methods such as quasi-Newton,
and those approximating second-order gradient information,
have shown promising results (Ngiam et al. 2011). An alter-
native to full quasi-Newton methods is to rescale parameters
so that the loss function has similar curvature along all di-
rections. This strategy has shown improved performance in
Adagrad (Duchi, Hazan, and Singer 2011), Adadelta (Zeiler
2012), Adam (Kingma and Ba 2015) and RMSprop (Tiele-
man and Hinton 2012) algorithms. Recently, RMSprop has
been explained as a diagonal preconditioner in (Dauphin, de
Vries, and Bengio 2015). While relatively mature in opti-
mization, these techniques have not been developed in sam-
pling methods. In this paper, we show that rescaling the pa-
rameter updates according to geometry information can also
improve SG-MCMC, in terms of both training speed and
predictive accuracy.

Preliminaries
Given data D = {di}Ni=1, the posterior of model parameters
θ with prior p(θ) and likelihood

∏N
i=1 p(di|θ) is computed

as p(θ|D) ∝ p(θ)
∏N

i=1 p(di|θ). In the optimization litera-
ture, the prior plays the role of a penalty that regularizes pa-
rameters, while the likelihood constitutes the loss function
to be optimized. The task in optimization is to find the MAP
estimate, θMAP = argmax log p(θ|D). Let Δθt denote the
change in the parameters at time t. Stochastic optimization
methods such as Stochastic Gradient Descent (SGD)1 up-
date θ using the following rule:

Δθt = εt

(
∇θ log p(θt) +

N

n

n∑
i=1

∇θ log p(dti |θt)
)
, (1)

where {εt} is a sequence of step sizes, and Dt =
{dt1 , · · · ,dtn} a subset of n < N data items randomly cho-
sen from D at iteration t. The convergence of SGD has been
established (Bottou 2004).

For DNNs, the gradient is calculated by backpropaga-
tion (Rumelhart, Hinton, and Williams 1986). One data item
di � (xi, yi) may consist of input xi ∈ R

D and output
yi ∈ Y , with Y being the output space (e.g., a discrete la-
bel space in classification). In the testing stage, the Bayesian
predictive estimate for input x, is given by p(y|x,D) =
Ep(θ|D)[p(y|x,θ)]. The MAP estimate simply approximates
this expectation as p(y|x,D) ≈ p(y|x,θMAP), ignoring pa-
rameter uncertainty.

Stochastic sampling methods such as SGLD incorporate
uncertainty into predictive estimates. SGLD samples θ from
the posterior distributions via a Markov Chain with steps:

Δθt∼N
(
εt
2

(
∇θ log p(θt) +

N

n

n∑
i=1

∇θ log p(dti |θt)
)
, εtI

)
,

(2)
with I denoting the identity matrix. It also uses mini-batches
to take gradient descend steps at each iteration. Rates of con-
vergence are proven rigorously in (Teh, Thiéry, and Vollmer

1For maximization, this is Stochastic Gradient Ascent. Here, we
abuse notation because SGD is a more common term.
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2014). Given a set of samples from the update rule (2), poste-
rior distributions can be approximated via Monte Carlo ap-
proximations as p(y|x,D) ≈ 1

T

∑T
t=1 p(y|x,θt), where T

is the number of samples.
Both stochastic optimization and stochastic sampling ap-

proaches have the requirement that the step sizes satisfy the
the following assumption.2

Assumption 1 The step sizes {εt} are decreasing, i.e., 0 <
εt+1 < εt, with 1)

∑∞
t=1 εt = ∞; and 2)

∑∞
t=1 ε

2
t < ∞.

If these step-sizes are not satisfied in stochastic optimization,
there is no guarantee of convergence because the gradient
estimation noise is not eliminated. Likewise, in stochastic
sampling, decreasing step-sizes are necessary for asymptotic
consistency with the true posterior, where the approximation
error is dominated by the natural stochasticity of Langevin
dynamics (Welling and Teh 2011).

Preconditioned Stochastic Gradient Langevin

Dynamics

As noted in the previous section, standard SGLD updates
all parameters with the same step size. This could lead to
slow mixing when the components of θ have different cur-
vature. Unfortunately, this is generally true in DNNs due to
the composition of nonlinear functions at multiple layers. A
potential solution is to employ a user-chosen precondition-
ing matrix G(θ) in SGLD (Girolami and Calderhead 2011).
The intuition is to consider the family of probability distri-
butions p(d|θ) parameterised by θ lying on a Riemannian
manifold. One can use the non-Euclidean geometry implied
by this manifold to guide the random walk of a sampler. For
any probability distribution, the expected Fisher informa-
tion matrix Iθ defines a natural Riemannian metric tensor.
To further scale up the method to a general online frame-
work stochastic gradient Riemannian Langevin dynamics
(SGRLD) was suggested in (Patterson and Teh 2013). At
position θt, it gives the step3:

Δθt ∼ εt
2

[
G(θt)

(
∇θ log p(θt) (3)

+
N

n

n∑
i=1

∇θ log p(dti |θt)
)
+ Γ(θt)

]
+G

1
2 (θt)N (0, εtI),

where Γi(θ) =
∑

j
∂Gi,j(θ)

∂θj
describes how the precondi-

tioner changes with respect to θt. This term vanishes in
SGLD because the preconditioner of SGLD is a constant I.
Both the direction and variance in (3) depends on the ge-
ometry of G(θt). The natural gradient in the SGRLD step
takes the direction of steepest descent on a manifold. Con-
vergence to the posterior is guaranteed (Teh, Thiéry, and
Vollmer 2014; Chen, Ding, and Carin 2015) as long as step
sizes satisfy Assumption 1.

Unfortunately, for many models of interest, the expected
Fisher information is intractable. However, we note that any

2The requirement for SGLD can be relaxed, see (Teh, Thiéry,
and Vollmer 2014; Chen, Ding, and Carin 2015) for more details.

3The update form in (Patterson and Teh 2013) is more compli-
cated and seemingly different from (3); however, they can be shown
to be equivalent.

positive definite matrix defines a valid Riemannian mani-
fold metric. Hence, we are not restricted to using the exact
expected Fisher information. Preconditioning aims to con-
stitute a local transform such that the rate of curvature is
equal in all directions. Following this, we propose to use
the same preconditoner as in RMSprop. This preconditioner
is updated sequentially using only the current gradient in-
formation, and only estimates a diagonal matrix. It is given
sequentially as,

G(θt+1) = diag
(
1� (

λ1+
√

V (θt+1)
))

, (4)

V (θt+1) = αV (θt) + (1− α)ḡ(θt;Dt)	 ḡ(θt;Dt) , (5)

where for notational simplicity, ḡ(θt;Dt) =
1
n

∑n
i=1 ∇θ log p(dti |θt), is the sample mean of the

gradient using mini-batch Dt, and α ∈ [0, 1]. Operators 	
and � represent element-wise matrix product and division,
respectively.

RMSprop utilizes magnitudes of recent gradients to con-
struct a preconditioner. Flatter landscapes have smaller gra-
dients while curved landscapes have larger gradients. Gradi-
ent information is usually only locally consistent. Therefore,
two equivalent interpretations for Eq. (3) can be reached in-
tuitively: i) the preconditioner equalizes the gradient so that
a constant stepsize is adequate for all dimensions. ii) the
stepsizes are adaptive, in that flat directions have larger step-
sizes while curved directions have smaller stepsizes.

In DNNs, saddle points are the most prevalent critical
points, that can considerably slow down training (Dauphin,
de Vries, and Bengio 2015), mostly because the parameter
space tends to be flat in many directions and ill-conditioned
in the neighborhood of these saddle points. Standard SGLD
will slowly escape the saddle point due to the typical oscil-
lations along the high positive curvature direction. By trans-
forming the landscape to be more equally curved, it is pos-
sible for the sampler to move much faster.

In addition, there are two tuning parameters: λ controls
the extremes of the curvature in the preconditioner (default
λ=10−5), and α balances the weights of historical and cur-
rent gradients. We use a default value of α=0.99 to con-
struct an exponentially decaying sequence. Our Precondi-
tioned SGLD with RMSprop is outlined in Algorithm 1.

Algorithm 1 Preconditioned SGLD with RMSprop

Inputs: {εt}t=1:T , λ, α
Outputs: {θt}t=1:T

Initialize: V0 ← 0, random θ1

for t ← 1 : T do
Sample a minibatch of size n, Dt

n = {dt1 , . . . ,dtn}
Estimate gradient ḡ(θt;X

t) = 1
n

∑n
i=1 ∇ log p(dti |θt)

V (θt) ← αV (θt−1) + (1− α)ḡ(θt;Dt)� ḡ(θt;Dt)

G(θt) ← diag
(
1� (λ1+

√
V (θt)

))
θt+1 ← θt +

εt
2

[
G(θt)

(
∇θ log p(θt) + Nḡ(θt;Dt)

)
+

Γ(θt)
]
+N (0, εtG(θt))

end for
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Preconditioned SGLD Algorithms in Practice

This section first analyzes the finite-time convergence prop-
erties of pSGLD, then proposes a more efficient variant for
practical use. We note that prior work gave similar theoreti-
cal results (Chen, Ding, and Carin 2015), and we extend the
theory to consider the use of preconditioners.

Finite-time Error Analysis

For a bounded function φ(θ), we are often interested in its
true posterior expectation φ̄ =

∫
X φ(θ)p(θ|D)dθ. For ex-

ample, the class distribution of a data point in DNNs. In
our SG-MCMC based algorithm, this intractable integra-
tion is approximated by a weighted sample average φ̂ =
1
ST

∑T
t=1 εtφ(θt) at time ST =

∑T
t=1 εt, with stepsizes

{εt}. These samples are generated from an MCMC algo-
rithm with a numerical integrator (e.g., our pSGLD algo-
rithm) that discretizes the continuous-time Langevin dy-
namics. The precision of the true posterior average and its
MCMC approximation is characterized by the expected dif-
ference between φ̄ and φ̂. We analyze the pSGLD algorithm
by extending the work of (Teh, Thiéry, and Vollmer 2014;
Chen, Ding, and Carin 2015) to include adaptive precondi-
tioners. We first show the asymptotic convergence proper-
ties of our algorithm in Theorem 1 by the mean of the mean
squared error (MSE)4. To get the convergence result, some
mild assumptions on the smoothness and boundness of ψ,
the solution functional of Lψ = φ(θt)− φ̄, is needed, where
L is the generator of corresponding stochastic differential
equation for pSGLD. We discuss these conditions and prove
the Theorem in Appendix A.

Theorem 1 Define the operator ΔVt = (Nḡ(θt;Dt) −
g(θt;Dt))�G(θt)∇θ . Under Assumption 1, for a test func-
tion φ, the MSE of the pSGLD at finite time ST is bounded,
for some C > 0 independent of {εt}, as:

MSE :E

[(
φ̂− φ̄

)2
]
≤ Bmse (6)

� C

(∑
t

ε2t
S2
T

E ‖ΔVt‖2 + 1

ST
+

(
∑T

t=1 ε
2
t )

2

S2
T

)
.

MSE is a common measure of quality of an estima-
tor, reflecting the precision of an approximate algorithm. It
can be seen from Theorem 1 that the finite-time approx-
imation error of pSGLD is bounded by Bmse, consisting
of two factors: (i) estimation error from stochastic gradi-
ents,

∑
t

ε2t
S2
T
E ‖ΔVt‖2, and (ii) discretization error inherited

from numerical integrators, 1
ST

+
(
∑T

t=1 ε2t )
2

S2
T

. These terms
asymptotically approach 0 under Assumption 1, meaning
that the decreasing-step-size pSGLD is asymptotically con-
sistent with true posterior expectation.

4This is different from the optimization literature where the re-
gret is studied, which is not straightforward in the MCMC frame-
work.

Practical Techniques

Of interest when considering the practical issue of limited
computation time, we now interpret the above finite-time er-
ror using the framework of risk of an estimator, which pro-
vides practical guidance in implementation. From (Korat-
tikara, Chen, and Welling 2014), the predictive risk, R, of
an algorithm is defined as the MSE above, and can be de-
composed as R = E[(φ̄ − φ̂)2] = B2 + V , where B is the
bias and V is the variance. Denote φ̄η =

∫
X φ(θ)ρη(θ)dθ

as the ergodic average under the invariant measure, ρη(θ),
of the pSGLD. After burnin, it can be shown that

Bias : B = φ̄η − φ̄ (7)

Variance : V = E[(φ̄η − φ̂)2] ≈ A(0)

Mη
(8)

where A(0) is the variance of φ with respect to ρη(θ) (i.e.,
Eρη(θ)[(φ − φ̂)2]) , which is a constant (further details are
given in Appendix D). Mη is the effective sample size (ESS),
defined as

ESS : Mη =
T

1 + 2
∑∞

t=1
A(t)
A(0)

=
T

2τ
(9)

where A(t) = E[(φ̄η − φ(θ0))(φ̄η − φ(θt))] is the autoco-
variance function, manifesting how strong two samples with
a time lag t are correlated. The term τ = 1

2 +
∑∞

t=1
A(t)
A(0) is

the integrated autocorrelation time (ACT), which measures
the interval between independent samples.

In practice, there is always a tradeoff between bias and
variance. In the case of infinite computation time, the tra-
ditional MCMC setting can reduce the bias and variance to
zero. However, in practice, time is limited. Obtaining more
effective samples can reduce the total risk (Eq. (6)), even if
bias is introduced. In the following, we provide two model-
independent practical techniques to further speed up the pro-
posed pSGLD.

Excluding Γ(θt) term Though the evaluation of Γ(θt) in
our case is manageable due to its diagonal nature, we pro-
pose to remove it during sampling to reduce the computa-
tion. It is interesting that in our case ignoring Γ(θt) produces
a bias controlled by α on the MSE.
Corollary 2 Assume the 1st-order and 2nd-order gradients
are bounded. With the same assumptions as Theorem 1, the
MSE when ignoring the Γ(θt) term in the algorithm can be

bounded as E

[(
φ̂− φ̄

)2
]

≤ Bmse + O
(

(1−α)2

α3

)
, where

Bmse is the bound defined in Theorem 1.
Omitting Γ(θt) introduces an extra term in the bound that

is controlled by the parameter α. The proof is in Appendix
B. Since α is always set to a value that is very close to 1, the
term (1− α)2/α3 ≈ 0, the effect of Γ(θt) negligible. In ad-
dition, more samples per unit time are generated when Γ(θt)
is ignored, resulting in a smaller variance on the prediction.
Note that the term Γ(θt) is heuristically ignored in (Ahn,
Korattikara, and Welling 2012), but is only able to approxi-
mate the true posterior in the case of infinite data, which is
not required in our algorithm.
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Thinning samples Making predictions using a whole en-
semble of models is cumbersome and may be too computa-
tionally expensive to allow deployment for a large number
of users, especially when models are large neural nets. One
practical technique is to average models using a thinned ver-
sion of samples. By thinning the samples in pSGLD, the to-
tal number of samples is reduced. However, these thinned
samples have a lower autocorrelation time and a similar
ESS. We can guarantee the MSE remains the same form un-
der the thinning schema. The proof is in Appendix C.

Corollary 3 By thinning samples from our pSGLD algo-
rithm, the MSE remains the same form as in Theorem 1, and
asymptotically approaches 0.

Experiments

We present results in four parts: a simple simulation,
Bayesian Logistic Regression (BLR), and two widely used
DNN models, Feedforward Neural Networks (FNN) and
Convolutional Neural Networks (CNN).

The proposed algorithm that uses the discussed practical
techniques is denoted as pSGLD. The prior on the param-
eters is set to p(θ) = N (0, σ2I). If not specifically men-
tioned, the default setting for DNN experiments is shared as
follows. σ2 = 1, minibatch size is 100, thinning interval is
100, burn-in is 300. We employ a block decay strategy for
stepsize; it decreases by half after every L epochs.

Simulation

We first demonstrate pSGLD on a simple 2D Gaussian ex-
ample, N

( [
0
0

]
,

[
0.16 0
0 1

] )
. Given posterior samples, the

goal is to estimate the covariance matrix. A diagonal co-
variance matrix is used to show the algorithm can adjust the
stepsize at different dimension.

A large range of stepsizes are used. 2 × 105 samples
are collected. Reconstruction errors and autocorrelation time
are shown in Fig. 1 (a). We see that pSGLD dominates the
“vanilla” SGLD in that it consistently shows a lower error
and autocorrelation time, particularly with larger stepsize.
When the stepsize is small enough, the sampler does not
move much, and the performances of the two algorithms
become similar. The first 600 samples of both methods for
ε = 0.3 are shown in Fig. 1 (b). Because step sizes in pS-
GLD can be adaptive, it implies that even if the covariance
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Figure 1: Simulation results on a 2D Gaussian.
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Figure 2: BLR on Australian dataset.

matrix of a target distribution is mildly rescaled, a new step-
size is unnecessary for pSGLD. Meanwhile, the stepsize of
the vanilla SGLD needs to be fine-tuned in order to obtain
decent samples. See Appendix E for further details.

Bayesian Logstic Regression

We demonstrate pSGLD on BLR. A small Australian
dataset (Girolami and Calderhead 2011) is first used with
N = 690 and dimension D = 14. We choose a minibatch
size of 5, σ2 = 100, T = 5×103. We test stepsize ε ranging
from 1×10−7 to 1×10−4, with 50 runs for each algorithm.
Following (Girolami and Calderhead 2011), we report the
time per minimum Effective Sample (∝ 1/EES) in Fig. 2
(a), which is proportional to the variance. pSGLD gener-
ates much larger ESS compared to SGLD, especially when
the stepsize is large. Meanwhile, Fig. 2 (b) shows that pS-
GLD provides smaller error in estimating weights, where the
“ground truth” is obtained by 106 samples from HMC with
Metroplis-Hastings. Therefore, the overall risk is reduced.

We then test BLR on a large-scale Adult dataset, a9a (Lin,
Weng, and Keerthi 2008), with Ntrain = 32561, Ntest =
16281, and D = 123. Minibatch size is set to 50, σ2 =
10. The thinning interval is 50, burn-in is 500, and T =
1.5 × 104. Stepsize ε = 5 × 10−2 for pSGLD and SGLD.
The test errors are compared in Table 1, and learning curves
are shown in Fig. 3. Both SG-MCMC methods outperform
the recently proposed doubly stochastic variational Bayes
(SDVI) (Titsias and Lázaro-Gredilla 2014), and higher-
order variational autoencoder methods (L-BFGS-SGVI, HF-
SGVI) (Fan et al. 2015). Furthermore, pSGLD converges in
less than 4× 103 iterations, while SGLD at least needs dou-
ble the time to reach this accuracy.

Method Test error
pSGLD 14.85%
SGLD 14.85%

DSVI 15.20%
L-BFGS-SGVI 14.91%

HFSGVI 15.16%

Table 1: BLR on a9a.
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Figure 3: Learning curves.

Feedforward Neural Networks

The first DNN model we study is the FNN. The activation
function is rectified linear unit (ReLU). A two-layer model is
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Table 2: Classification error of FNN on MNIST. [ � ] indi-
cates results taken from (Blundell et al. 2015)

Method Test Error
400-400 800-800 1200-1200

pSGLD (σ2 = 100) 1.40% 1.26% 1.14%

pSGLD (σ2 = 1) 1.45% 1.32% 1.24%
distilled pSGLD 1.44% 1.40% 1.41%
SGLD 1.64% 1.41% 1.40%
RMSprop 1.59% 1.43% 1.39%
RMSspectral 1.65% 1.56% 1.46%
SGD 1.72% 1.47% 1.47%
BPB, Gaussian� 1.82% 1.99% 2.04%
BPB, Scale mixture� 1.32% 1.34% 1.32%
SGD, dropout� 1.51% 1.33% 1.36%

employed. 100 epochs are used, with L = 20. We compare
our propose method, pSGLD, with representative stochas-
tic optimization methods: SGD, RMSprop and RMSspec-
tral (Carlson et al. 2015). After tuning, we set the optimal
stepsize for each algorithm as: for pSGLD and RSMprop as
ε=5×10−4, while for SGLD and SGD as ε= 5×10−1.

We test on MNIST dataset, consisting of 28 × 28 images
from 10 classes with 60, 000 training and 10, 000 test sam-
ples. The test classification errors for network size 400-400,
800-800 and 1200-1200 are shown in Table 2. The results
of stochastic sampling methods are better than their corre-
sponding optimization counterparts. This indicates that in-
corporating weight uncertainty can improve performances.
By increasing the variance σ2 of pSGLD from 1 to 100,
more uncertainty is introduced into the model from the prior,
and higher performance is obtained. Figure 4 (a) displays
the histograms of weights in the last training iteration of
the 1200-1200 model. We observe that smaller variance in
the prior imposes lower uncertainty, by making the weights
concentrate to 0; while larger variance in the prior leads to a
wider range of weight choices, thus higher uncertainty.

We also compare to other techniques developed to prevent
overfitting (dropout) and weight uncertainty (BPB, Gaussian
and scale mixtures). pSGLD provides state-of-the-art perfor-
mance for FNN on test accuracy. We further note that pS-
GLD is able to give increasing performance with increasing
network size, whereas BPB and SGD dropout do not.

Finally, learning curves of network configuration 1200-
1200 are plot in Fig. 4 (b)5. We empirically find that pSGLD
and SGLD take fewer iterations to converge. Moreover, pS-
GLD consistently converges faster and to a better point than
SGLD. Learning curves for other network sizes are provided
in Appendix F. While the ensemble of samples requires more
computation than a single FNN in testing, it shows signifi-
cantly improved test set performance. As well, (Korattikara
et al. 2015) showed that learning a single FNN that approx-
imates the model average result gave nearly the same per-
formance. We employ this idea, and suggest a fast version,
distilled pSGLD. Its results for σ2 = 1 show it maintains
good performances.

5RMSspectral is not shown because it uses larger batch sizes
and so is difficult to compare on this scale.
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Figure 4: FNN of size 1200-1200 on MNIST.

Convolutional Neural Networks

Our next DNN is the popular CNN model. We use a standard
network configuration with 2 convolutional layers followed
by 2 fully-connected layers (Jarrett et al. 2009). Both convo-
lutional layers use 5× 5 filter size with 32 and 64 channels,
respectively; 2 × 2 max pooling is used after each convolu-
tional layer. The fully-connected layers have 200-200 hid-
den nodes with ReLU, 20 epochs are used, and L is set to
10. Additional results with CNNs are in Appendix G.

The same MNIST dataset is used. A comparison of test
errors is shown in Table 3, with the corresponding learn-
ing curves in Fig. 5. We emphasize that the purpose of
this experiment is to compare methods on the same model
architecture, not to achieve overall state-of-the-art results.
The CNN trained with traditional SGD gives an error of
0.82%. pSGLD shows significant improvement, with an er-
ror of 0.45%. This result is also comparable with some re-
cent state-of-the-art CNN based systems, which have much
more complex architectures. These include the stochas-
tic pooling (Zeiler and Fergus 2013), Network in Net-
work (NIN) (Lin, Chen, and Yan 2014) and Maxout Net-
work(MN) (Goodfellow et al. 2013).

Method Test error
pSGLD 0.45%
SGLD 0.71%

RMSprop 0.65%
RMSspectral 0.78%

SGD 0.82%
Stochastic Pooling 0.47%

NIN + Dropout 0.47%
MN + Dropout 0.45%

Table 3: Test error.
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Figure 5: Learning curves.

Conclusion

A preconditioned SGLD is developed based on the RM-
Sprop algorithm, with controllable finite-time approxima-
tion error. We apply the algorithm to DNNs to overcome
their notorious problems of overfitting and pathological cur-
vature. Extensive experiments show that our pSGLD can
adaptive to the local geometry, allowing improved effective
sampling rates and performance. It provides sample-based
uncertainty in DNNs, and achieves state-of-the-arts perfor-
mances on FNN and CNN models. Interesting future direc-
tions include exploring applications to latent variable mod-
els or recurrent neural networks (Gan et al. 2015).
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