
Shakeout: A New Regularized Deep
Neural Network Training Scheme

Guoliang Kang, Jun Li, Dacheng Tao
Centre for Quantum Computation and Intelligent Systems

Faculty of Engineering and Information Technology, University of Technology Sydney
{Guoliang.Kang@student, Jun.Li@, Dacheng.Tao@}uts.edu.au

Abstract

Recent years have witnessed the success of deep neural net-
works in dealing with a plenty of practical problems. The
invention of effective training techniques largely contributes
to this success. The so-called "Dropout" training scheme is
one of the most powerful tool to reduce over-fitting. From the
statistic point of view, Dropout works by implicitly imposing
an L2 regularizer on the weights. In this paper, we present a
new training scheme: Shakeout. Instead of randomly discard-
ing units as Dropout does at the training stage, our method
randomly chooses to enhance or inverse the contributions of
each unit to the next layer. We show that our scheme leads to
a combination of L1 regularization and L2 regularization im-
posed on the weights, which has been proved effective by the
Elastic Net models in practice. We have empirically evaluated
the Shakeout scheme and demonstrated that sparse network
weights are obtained via Shakeout training. Our classification
experiments on real-life image datasets MNIST and CIFAR-
10 show that Shakeout deals with over-fitting effectively.

Introduction

Deep neural network has recently achieved impressive suc-
cess in a number of machine learning and pattern recogni-
tion tasks and been under intensive research. Hierarchical
neural network has been known for decades, and there are a
number of essential factors contributing to its recent rising,
such as large volume of data and powerful computational re-
sources. However, arguably the most important contributor
to the success of deep neural network is the discovery of ef-
ficient training methods (Hinton, Osindero, and Teh 2006;
Bengio 2009; Bengio, Courville, and Vincent 2013; Vincent
et al. 2008; 2010).

A particular interesting advance in this strand of research
is the invention of the Dropout training scheme (Hinton et al.
2012). At the operational level, Dropout adjusts the network
evaluation step (feed-forward) at the training stage, where a
portion of units are randomly discarded. The empirical ef-
fect of this seemingly trivial trick is impressive. Dropout en-
hances the generalization performance of neural networks
considerably, and is behind many record-holders of widely
recognized benchmarks (Krizhevsky, Sutskever, and Hinton
2012; Lin, Chen, and Yan 2013; Szegedy et al. 2014). The

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intriguing effect has drawn great attention from the research
community, and found applications in wider range of prob-
lems (Chen et al. 2014). Theoretical research from the view-
point of statistical learning has pointed out the connections
between the Dropout operations and model regularization,
which is the de facto recipe of reducing over-fitting for com-
plex models in practical machine learning. For example, Wa-
ger et al. (Wager, Wang, and Liang 2013) have shown that
Dropout implicitly imposes L2 regularization on the net-
work weights.

In this paper, we propose a new regularized deep neural
network training scheme: Shakeout. It is straightforward and
simple to implement: instead of randomly discarding units
as Dropout does at the training stage, our method randomly
chooses to enhance or inverse the contributions of each unit
to the next layer. These operations can lead to a profound
change to the regularization effect. We have proved that the
new training scheme imposes a combination of L1 regular-
ization and L2 regularization on the weights of the model.
We call our scheme “Shakeout” because of the randomly
“shaking” process and the L1 regularization effect pushing
network weights to zero. The combination of L1 and L2 reg-
ularization on the model parameters has been shown effec-
tive in statistical learning: the Elastic Net (Zou and Hastie
2005; Zhou, Tao, and Wu 2011) has the desirable properties
of producing sparse models which generalize well and have
good interpretability.

Our Shakeout scheme has been applied to training deep
neural networks for image classification. The scheme can
produce models with expected statistical attributes. Those
models generalize better than the standardly trained net-
works. In adverse training conditions, such as with scarce
data, the new training scheme outperforms Dropout training.

The organization of this paper is as follows. After review-
ing related background in the next section, we introduce our
Shakeout scheme in a simplified context of training gener-
alized linear models. We then apply Shakeout to train mul-
tilayer neural networks. In the experiment section, we show
that Shakeout can produce sparse neural network weights.
Moreover we demonstrate the results of classification ex-
periments on MNIST and CIFAR-10. Finally, our work is
concluded.

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1751

Related Works

Multilayer artificial neural network has long been known
as a powerful computational model (Williams and Hinton
1986) for pattern recognition. However, in the early days,
the applications of deep neural networks were mostly lim-
ited except for the success obtained in some specialized
domains (LeCun et al. 1998). It is expected that the rep-
resentative power of the network will become stronger as
the architecture gets deeper (Bengio 2009), while train-
ing a deep neural network is a non-trivial task because of
some difficult training issues (Bengio 2009). The rise of
deep learning recently can be largely attributed to more ef-
fective training methods (Hinton, Osindero, and Teh 2006;
Bengio, Courville, and Vincent 2013; Vincent et al. 2010;
2008). The reason for the good performance of these train-
ing techniques can be ascribed to the induced regularization
effect. This kind of explanation is supported by quite a few
existing empirical and theoretical studies (Erhan et al. 2010;
Warde-Farley et al. 2013; Wager, Wang, and Liang 2013).

Dropout was first proposed by Hinton (Hinton et al. 2012)
to reduce over-fitting. Many evidences show that Dropout
may work because of its good approximation to model av-
eraging and imposing regularization on the networks. Sri-
vastava (Srivastava et al. 2014) and Warde-Farley (Wager,
Wang, and Liang 2013) exhibited through experiments that
weight scaling approximation is an accurate alternative for
geometric mean over all possible sub-networks. Dropout can
be regarded as a way of adding noise into the neural net-
work. By marginalizing the noise, Srivastava (Srivastava et
al. 2014) proved for linear regression model that the deter-
ministic version of Dropout is equivalent to adding an adap-
tive L2 regularizer on the weights. Furthermore, Wager (Wa-
ger, Wang, and Liang 2013) extended the conclusion to gen-
eralized linear models (GLMs) using a quadratic approxi-
mation to the noising penalty.

Shakeout Training

We first illustrate our Shakeout scheme for the training of
generalized linear models (GLMs). We then move on to the
more complex and practical scenario of training multilayer
neural networks which can be viewed as a hierarchical con-
struction of GLMs.

Shakeout for Generalized Linear Models

Let the input be represented as a set of features
x = [x1, x2, . . . , xP]

�, a GLM stochastically charac-
terizes a target y using the exponential family distribu-
tions p(y|x,w) = h(y)exp{yη −A(η)} where η = 〈w,x〉.
The h(y) is a quantity which is independent of x and
w. A is the log-partition function. The w is typically
learned from a set of independent and identically distributed
(i.i.d.) data by minimizing the negative log-likelihood
loss function �(w;X,y) = − log{p(y|X,w)}: w∗ ←
argminw �(w;X,y) so that the observed data is the most
plausible under the learned model.

The procedure of Shakeout operations is as follows(which
applies for each training example, and we omit the example
subscripts for clearer math symbols):

Step 1: Generate r =[r1, r2, · · · , rP]�. First, sample r̂j
independently from Bernoulli(1−τ), τ ∈ [0, 1]. Then, rj ←
r̂j/(1− τ), ∀j ∈ {1, 2, · · · , P} .

Step 2: η̃ ← ∑P
j=1 xj{rj(wj + csj)− csj} where sj =

sgn(wj), ∀j ∈ {1, 2, · · · , P}. sgn(·) is a signum function
that extracts the sign of a real number. c is a constant and
c ∈ R, c > 0.

The Shakeout operation is indeed to alter each input fea-
ture to a noisy version, where the noise is injected by a ran-
dom “shaking” process. Formally, let x̃j represent the noisy
version of feature xj . η̃ in Step 2 can be written as η̃ =∑P

j=1 x̃jwj , where x̃j = εjxj with εj = rj+c(rj−1)/|wj |.
Then

εj =

{
1

1−τ + c τ
(1−τ)|wj | rj = 1/(1− τ)

−c/|wj | rj = 0
(1)

Shakeout randomly chooses to enhance (if rj ← 1/(1− τ),
εj > 1/(1 − τ)) or inverse (if rj ← 0, εj < 0) the contri-
bution of original feature xj to η̃. However, in expectation,
Erj [x̃j] = xj .

It has been pointed out by a number of studies that by
carefully injecting artificial noises into the input features,
taking expectation of the original loss function over the
noises will lead to an altered deterministic one with an ad-
ditional regularization term (Wager, Wang, and Liang 2013;
Rifai et al. 2011; Bishop 1995), i.e. Enoise[�(w; X̃,y)] =

�(w;X,y) + π(w); where X̃ consists of the noisy feature
vectors. The regularization term π(w) is determined by the
characteristics of the noise and is independent of the target
y. For example, Wager et al. (Wager, Wang, and Liang 2013)
showed that the Dropout scheme, corresponding to inducing
blackout noise x̃j ← xjrj helps introduce a L2 regularizer
π(w). From the viewpoint of regularizing the training objec-
tive, we can show that the feature noise injected by Shakeout
implicitly induces L1 regularization and L2 regularization
on w.
Theorem 1. For the generalized linear models, in expecta-
tion, Shakeout is equal to introducing a combination of L1

regularization and L2 regularization on the weights w.

Proof. Let �̃(w;X,y) denote the loss function for Shake-
out scheme, which equals to the expectation of the
original loss function over noises, i.e. �̃(w;X,y) =∑N

i=1 Eri�(w; x̃i, yi). Note that Eri η̃i = ηi= w�xi , then
we can easily get

�̃(w;X,y) = �(w;X,y) + π(w) (2)

where

π(w) =
∑N

i=1
Eri [A(η̃i)−A(ηi)]

Using quadratic approximation, A(η̃i) − A(ηi) ≈

A
′
(ηi)(η̃i − ηi) +

1
2A

′′
(ηi)(η̃i − ηi)

2, then

π(w) =
1

2

N∑
i=1

A
′′
(ηi)V ar(η̃i) (3)

1752

�

�� � � ��

� ��

�

��

�

�

�
�������

	
��
���

�

��������	�

� � ����������	��

�
��

��

Figure 1: Shakeout and Dropout in the feed-forward compu-
tation of a neural network. This figure shows how Shakeout
and Dropout affect a unit x contributing to a higher layer
unit x

′
in a neural network. In the original network, the con-

nections are weighted by w. In Dropout and Shakeout, a ran-
dom switch r̂ controls how w is modified. The manipulation
of w is illustrated within the amplifier icons (the red curves,
best seen with colours). The coefficients are α = 1/(1− τ)
and β(w) = cτs(w), where s(w) extracts the sign of w and
c > 0, τ ∈ [0, 1]. Note the sign of β(w) is always the same
with that of w. See equations (1) and (5) for more details.

For each training example xi, the variation of η̃i is

V ar[η̃i] =
τ

1− τ

P∑
j=1

(w2
jX

2
ij + 2c|wj |X2

ij) + Ω

The term Ω = τ
1−τ

∑P
j=1 X

2
ijc

2 has nothing to do with w,
so we can ignore this term. From (3), the penalty term can
be written as

π(w) =
τ

2(1− τ)
||Γw||22 + c

τ

1− τ
||Γ2w||1 (4)

where Γ is a diagonal matrix with diagonal entries equal
to the square roots of corresponding ones in XTVX. V ∈
R

N×N is a diagonal matrix with diagonal entries A
′′
(ηi) .

So from Eq. (4), we can see that for the generalized lin-
ear models, in expectation, Shakeout is equal to introducing
regularization penalizing the L1-norm and L2-norm of the
weights w.

In Shakeout scheme, hyper-parameters τ and c relate to
the strength of regularization effect. In particular, when τ =
0, the noise is eliminated and the model becomes a standard
GLM. Moreover, the Dropout is the special case of Shakeout
when c = 0, and a higher value of τ means a stronger L2

regularization imposed on the weights. Generally, when τ
is fixed (τ �= 0), a higher value of c means a stronger L1

regularization effect imposed on the weights and is expected
to lead to much sparser weights of the model. We will verify
this property in our experiment section later.

Shakeout for Multilayer Neural Networks

The Shakeout is readily applicable to the training of mul-
tilayer neural networks. Specifically, units in one layer are

taken as the input features during the feed-forward compu-
tation of the units in the next higher layer, and the Shakeout
noises are introduced to the lower layer of units.

The Shakeout feed-forward computation is as follows

u
(l+1)
i =

P (l)∑
j=1

x
(l)
j [r

(l)
j W

(l+1)
ij + c(r

(l)
j − 1)S

(l+1)
ij] + b

(l+1)
i

(5)

x
(l+1)
i = f(u

(l+1)
i) (6)

where the superscript l represents the hidden layer of the
network, and i = 1, 2, · · · , P (l+1), j = 1, 2, · · · , P (l). The
output unit of layer l is represented by x(l). The connection
between unit x(l)

j and unit x(l+1)
i is represented as W (l+1)

ij .

And the bias for unit i of layer l+1 is denoted by b
(l+1)
i . By

extracting the signs of corresponding weights, S(l+1)
ij is set

as sgn(W (l+1)
ij) . After Shakeout operations, the linear com-

bination u
(l+1)
i of the noisy output units of layer l will be

sent to the activation function f(·) to obtain the correspond-
ing output of layer l + 1, i.e. x(l+1)

i .
During the back-propagation process, we should compute

the gradients with respect to each unit in order to propagate

the error. In Shakeout scheme, ∂u
(l+1)
i

∂x
(l)
j

takes a new form

∂u
(l+1)
i

∂x
(l)
j

= r
(l)
j (W

(l+1)
ij + cS

(l+1)
ij)− cS

(l+1)
ij (7)

And the weights are updated following

∂u
(l+1)
i

∂W
(l+1)
ij

= x
(l)
j [r

(l)
j (1 + c

∂S
(l+1)
ij

∂W
(l+1)
ij

)− c
∂S

(l+1)
ij

∂W
(l+1)
ij

] (8)

where S
(l)
ij is approximated by tanh, for the convenience of

computing the gradients.
The operations of Shakeout are illustrated in Fig. 1, with

a comparison to those of Dropout.
It is worth noting that, the Shakeout operations are ap-

plied to the feed-forward process at the training stage for
the beneficial effect of regularization, while at test stage, it
is not necessary to disturb the evaluation of a given neural
network with any noise, i.e. we adopt the resulting network
without any Shakeout operation.

Experiments

In this section, we report empirical evaluation of the Shake-
out scheme in training deep neural networks on real-life
datasets. We first demonstrate that the Shakeout training
leads to sparse models as our theoretical analysis implies.
Then we show that the sparse models have desirable gen-
eralization properties. All the experiments are implemented
based on the modifications of Caffe library (Jia et al. 2014).

1753

Shakeout Training and Weight Sparsity

Since Shakeout training implicitly imposes L1 penalty on
the weights, we expect the weights of neural networks
learned by Shakeout contain more zeros than those learned
by standard back-propagation(BP) (Williams and Hinton
1986) and Dropout (Hinton et al. 2012). This experiment
verifies the effect of sparsity by examining an autoen-
coder model (Baldi 2012) trained on the hand-written im-
age dataset MNIST (LeCun et al. 1998). The autoencoder
adopted contains one hidden layer of 256 units, each of
which is connected to the 28×28 image pixels and followed
by a hyperbolic tangent (i.e. tanh) activation function. The
weights talked in this section all refer to those of hidden lay-
ers.

To verify the regularization effect, we compare four au-
toencoders trained under different settings which correspond
to standard BP, Dropout(τ = 0.5), and Shakeout (τ = 0.5,
c = {1, 10}). All the training methods aim to produce hid-
den units which can capture good visual features of the
handwritten digits. The statistical traits of these different re-
sulting weights are shown in Fig. 2. Moreover, Fig. 3 shows
the features captured by each hidden unit of the autoen-
coders.

As shown in the Fig. 2, the probability density of weights
around the zero obtained by standard BP training is quite
small compared to the one obtained either by Dropout train-
ing or Shakeout training. This indicates the strong regular-
ization effect induced by Dropout and Shakeout training.
Furthermore, the sparsity level of weights obtained from
training by Shakeout is much higher than the one obtained
from training by the Dropout. And under the same τ , in-
creasing c makes the weights much sparser, which is consis-
tent with the characteristic of L1 penalty induced by Shake-
out training (Eq. (4)). Moreover, we can find that due to
the induced L2 regularization, the distribution of weights
obtained from training by the Dropout is like a Gaussian,
while the one obtained from training by Shakeout is more
like a Laplacian because of the additional induced L1 regu-
larization. Fig. 3 shows that features captured by the hid-
den units via standard BP training are not directly inter-
pretable, corresponding to insignificant variants in the train-
ing data. Both Dropout and Shakeout suppressed irrelevant
weights by their regularization effects, where Shakeout pro-
duces much sparser and more global features thanks to the
combination of L1 penalty and L2 penalty.

Classification Experiments

Sparse models often indicate lower complexity and bet-
ter generalization (Tibshirani 1996; Zou and Hastie 2005;
Olshausen and Field 1997). To verify the induced L1 regu-
larization and subsequent effect of sparse models of the pro-
posed Shakeout scheme, we have applied Shakeout, along
with Dropout and standard BP, on training deep neural
networks for classification tasks. The tests are performed
on two real-life image datasets: the hand-written image
dataset MNIST that are used above and the CIFAR-10 im-
age dataset (Krizhevsky and Hinton 2009). MNIST con-
sists of 60k+10k (training+testing) 28×28 images of hand-

−0.1 −0.05 0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

standard BP

Shakeout: τ=0.5, c=10.0

Dropout: τ=0.5

Shakeout: τ=0.5, c=1.0

Figure 2: Distributions of the weights of the autoencoder
models learned by different training methods. Each curve
in the figure shows the frequencies of the weights of an au-
toencoder taking particular values, i.e. the empirical popu-
lation densities of the weights. The four curves correspond
to four autoencoders learned by standard back-propagation,
Dropout (τ = 0.5) and Shakeout (τ = 0.5, c = {1, 10}).
The sparsity of the weights obtained via Shakeout can be
seen by comparing the curves.

written digits. CIFAR-10 contains 50k+10k (training +test-
ing) 32×32 images of 10 object classes. In all of our clas-
sification experiments, the important hyper-parameters in
each training scheme, including (i.e. c and τ in Shakeout, τ
in Dropout) are determined by validation. After validation,
we train 5 independent networks for each optimal hyper-
parameter setting. Once the 5 networks are trained, we report
the mean and standard deviation of the classification errors
produced by the 5 independent networks. To show the ef-
fect against over-fitting, we perform experiments on training
sets with different sizes. These training sets are constructed
by randomly choosing examples from the original training
dataset.

MNIST We have trained two different neural networks, a
shallow fully connected one and a deep convolutional one.
For the fully-connected neural network, a big hidden layer
size is adopted with its value at 4096. The non-linear acti-
vation unit adopted is the rectifier linear unit (ReLU). The
deep convolutional neural network employed contains two
convolutional layers and two fully connected layers. The de-
tailed architecture information of this convolutional neural
network is described in Tab. 1.

We separate 10,000 training samples from original train-
ing dataset for validation. The results are shown in Tab.
2 and Tab. 3. We can see from the results that when the
training data is not sufficient enough, due to over-fitting,
all the models perform worse. However, the model trained
by Dropout and Shakeout consistently perform better than
the one trained by standard BP. Moreover, when the train-
ing data is scarce, Shakeout leads to superior model perfor-
mance compared to the Dropout. Fig. 4 shows the results in

1754

Figure 3: Features captured by the hidden units of the autoencoder models learned by different training methods. The features
captured by a hidden unit are represented by a group of weights that connect the image pixels with this corresponding hidden
unit. One image patch in a sub-graph corresponds to the features captured by one hidden unit. Left: trained by standard BP.
Middle: trained by Dropout with τ = 0.5. Right: trained by Shakeout with τ = 0.5, c = 0.5.

Layer 1 2 3 4
Type conv. conv. FC FC

Channels 20 50 500 10
Filter size 5× 5 5× 5 - -

Conv. stride 1 1 - -
Pooling type max max - -
Pooling size 2× 2 2× 2 - -

Pooling stride 2 2 - -
Non-linear ReLU ReLU ReLU Softmax

Table 1: The architecture of convolutional neural network
adopted for MNIST classification experiment. Layer 1 and
layer 2 are convolutional layers followed by ReLU non-
linear activation and max-pooling. Layer 3 and layer 4 are
fully-connected layers.

a more intuitive way.

Size std-BP Dropout Shakeout
500 13.66±0.66 11.76±0.09 10.81±0.32
1000 8.49±0.23 8.05±0.05 7.19±0.15
3000 5.54±0.09 4.87±0.06 4.60±0.07
8000 3.57±0.14 2.95±0.05 2.96±0.09

20000 2.28±0.09 1.82±0.07 1.92±0.06
50000 1.55±0.03 1.36±0.03 1.35±0.07

Table 2: Classification on MNIST using training sets of dif-
ferent sizes: fully-connected neural network. Dropout and
Shakeout are applied on the hidden units. The table com-
pares the errors of the networks trained by standard back-
propagation, Dropout and Shakeout. The mean and standard
deviation of the classification errors are obtained by 5 runs
of the experiment and are shown in percentage.

CIFAR-10 We use the simple convolutional network fea-
ture extractor described in cuda-convnet (layers-80sec.cfg)
(Krizhevsky 2012). A 64 unit fully connected layer is im-

posed on the top of the 3-layer feature extractor. And we ap-
ply Dropout and Shakeout operations on this layer. In this
experiment, 10,000 colour images are separated from the
training dataset for validation and no data augmentation is
utilized except that the per-pixel mean computed over the
training set is subtracted from each image. We first train for
100 epochs with an initial learning rate of 0.001 and then
another 50 epochs with the learning rate of 0.0001.

Size std-BP Dropout Shakeout
500 9.76±0.26 6.16±0.23 4.83±0.11

1000 6.73±0.12 4.01±0.16 3.43±0.06
3000 2.93±0.10 2.06±0.06 1.86±0.13
8000 1.70±0.03 1.23±0.13 1.31±0.06

20000 0.97±0.01 0.83±0.06 0.77±0.001
50000 0.78±0.05 0.62±0.04 0.58±0.10

Table 3: Classification on MNIST using training sets of
different sizes: convolutional neural network. Dropout and
Shakeout are applied on the hidden units of the fully-
connected layer. The table compares the errors of the net-
works trained by standard back-propagation, Dropout and
Shakeout. The mean and standard deviation of the classifi-
cation errors are obtained by 5 runs of the experiment and
are shown in percentage.

As shown in Tab. 4, the performance of models trained by
Dropout and Shakeout is consistently superior than the one
trained by standard BP. Furthermore, the model trained by
Shakeout also outperforms the one trained by Dropout when
the training data is scarce. Fig. 5 show the results in a more
intuitive way.

Conclusions

We have proposed Shakeout, which is a new regularized
training scheme for deep neural networks. We theoretically
prove that this training scheme is equivalent to introduc-
ing the Elastic Net-like regularization on the weights of the

1755

102 103 104 1050

0.03

0.06

0.09

0.12

0.15

Training Dataset Size (log−space)

Te
st

 E
rro

r

MNIST: Fully−connected Neural Network

standard BP
Dropout
Shakeout

102 103 104 1050

0.03

0.06

0.09

0.12

0.15

Training Dataset Size (log−space)

Te
st

 E
rro

r

MNIST: Convolutional Neural Network

standard BP
Dropout
Shakeout

Figure 4: Classification of two kinds of neural networks on MNIST using training sets of different sizes. The curves show the
performances of the models trained by standard BP, and those by Dropout and Shakeout applied on the hidden units of the
fully-connected layer. Left: fully-connected neural network. Right: convolutional neural network.

Size std-BP Dropout Shakeout
300 68.26±0.57 65.34±0.75 63.71±0.28
700 59.78±0.24 56.04±0.22 54.66±0.22
2000 50.73±0.29 46.24±0.49 44.39±0.41
5500 41.41±0.52 36.01±0.13 34.54±0.31

15000 32.53±0.25 27.28±0.26 26.53±0.17
40000 24.48±0.23 20.50±0.32 20.56±0.12

Table 4: Classification on CIFAR-10 using training sets of
different sizes. Dropout and Shakeout are applied on the
hidden units of the fully-connected layer. The table com-
pares the errors of the networks trained by standard back-
propagation, Dropout and Shakeout. The mean and devia-
tion of the classification errors are obtained by 5 runs of the
experiment and are shown in percentage.

model, which contains a combination of L1 regularization
and L2 regularization. It is expected that the weights ob-
tained from training by Shakeout is much sparser than the
ones obtained by standard back-propagation training and
Dropout training, and thus beneficial to the generalization
performance of neural network. We experimentally demon-
strate the sparsity of the network weights induced by Shake-
out. The classification experiments on MNIST and CIFAR-
10 show that Shakeout and Dropout help deal with over-
fitting, where Shakeout outperforms Dropout.

Acknowledgments

This research is supported by Australian Research Council
Projects DP-140102164 and FT-130101457.

References

Baldi, P. 2012. Autoencoders, unsupervised learning, and
deep architectures. Unsupervised and Transfer Learning
Challenges in Machine Learning, Volume 7 43.
Bengio, Y.; Courville, A.; and Vincent, P. 2013. Repre-
sentation learning: A review and new perspectives. Pattern

102 103 104 1050.2

0.3

0.4

0.5

0.6

0.7

Training Dataset Size (log−space)

Te
st

 E
rro

r

CIFAR−10: Convolutional Neural Network

standard BP
Dropout
Shakeout

Figure 5: Classification on CIFAR-10 using training sets of
different sizes. The curves show the performances of the
models trained by standard BP, and those by Dropout and
Shakeout applied on the hidden units of the fully-connected
layer.

Analysis and Machine Intelligence, IEEE Transactions on
35(8):1798–1828.
Bengio, Y. 2009. Learning deep architectures for AI. Foun-
dations and trends R© in Machine Learning 2(1):1–127.
Bishop, C. M. 1995. Training with noise is equivalent to
tikhonov regularization. Neural computation 7(1):108–116.
Chen, N.; Zhu, J.; Chen, J.; and Zhang, B. 2014. Dropout
training for support vector machines. In Twenty-Eighth
AAAI Conference on Artificial Intelligence.
Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.-A.; Vin-
cent, P.; and Bengio, S. 2010. Why does unsupervised pre-
training help deep learning? The Journal of Machine Learn-
ing Research 11:625–660.
Hinton, G. E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.;
and Salakhutdinov, R. R. 2012. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

1756

Hinton, G. E.; Osindero, S.; and Teh, Y.-W. 2006. A fast
learning algorithm for deep belief nets. Neural computation
18(7):1527–1554.
Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
Proceedings of the ACM International Conference on Mul-
timedia, 675–678. ACM.
Krizhevsky, A., and Hinton, G. 2009. Learning multiple
layers of features from tiny images. Technical report, Uni-
versity of Toronto.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Krizhevsky, A. 2012. cuda-convnet. https://code.google.
com/p/cuda-convnet/.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11):2278–2324.
Lin, M.; Chen, Q.; and Yan, S. 2013. Network in network.
arXiv preprint arXiv:1312.4400.
Olshausen, B. A., and Field, D. J. 1997. Sparse coding
with an overcomplete basis set: A strategy employed by v1?
Vision research 37(23):3311–3325.
Rifai, S.; Glorot, X.; Bengio, Y.; and Vincent, P. 2011.
Adding noise to the input of a model trained with a regu-
larized objective. arXiv preprint arXiv:1104.3250.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2014. Going deeper with convolutions. arXiv preprint
arXiv:1409.4842.
Tibshirani, R. 1996. Regression shrinkage and selection via
the lasso. Journal of the Royal Statistical Society. Series B
(Methodological) 267–288.
Vincent, P.; Larochelle, H.; Bengio, Y.; and Manzagol, P.-
A. 2008. Extracting and composing robust features with
denoising autoencoders. In Proceedings of the 25th interna-
tional conference on Machine learning, 1096–1103. ACM.
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; and Man-
zagol, P.-A. 2010. Stacked denoising autoencoders: Learn-
ing useful representations in a deep network with a local
denoising criterion. The Journal of Machine Learning Re-
search 11:3371–3408.
Wager, S.; Wang, S.; and Liang, P. S. 2013. Dropout training
as adaptive regularization. In Advances in Neural Informa-
tion Processing Systems, 351–359.
Warde-Farley, D.; Goodfellow, I. J.; Courville, A.; and Ben-
gio, Y. 2013. An empirical analysis of dropout in piecewise
linear networks. arXiv preprint arXiv:1312.6197.

Williams, D. R. G. H. R., and Hinton, G. 1986. Learn-
ing representations by back-propagating errors. Nature 323–
533.
Zhou, T.; Tao, D.; and Wu, X. 2011. Manifold elastic net:
a unified framework for sparse dimension reduction. Data
Mining and Knowledge Discovery 22(3):340–371.
Zou, H., and Hastie, T. 2005. Regularization and variable
selection via the elastic net. Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 67(2):301–320.

1757

