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Abstract

We present a simple noise-robust margin-based active learn-
ing algorithm to find homogeneous (passing the origin) linear
separators and analyze its error convergence when labels are
corrupted by noise. We show that when the imposed noise
satisfies the Tsybakov low noise condition (Mammen, Tsy-
bakov, and others 1999; Tsybakov 2004) the algorithm is able
to adapt to unknown level of noise and achieves optimal sta-
tistical rate up to polylogarithmic factors.
We also derive lower bounds for margin based active learning
algorithms under Tsybakov noise conditions (TNC) for the
membership query synthesis scenario (Angluin 1988). Our
result implies lower bounds for the stream based selective
sampling scenario (Cohn 1990) under TNC for some fairly
simple data distributions. Quite surprisingly, we show that the
sample complexity cannot be improved even if the underly-
ing data distribution is as simple as the uniform distribution
on the unit ball. Our proof involves the construction of a well-
separated hypothesis set on the d-dimensional unit ball along
with carefully designed label distributions for the Tsybakov
noise condition. Our analysis might provide insights for other
forms of lower bounds as well.

1 Introduction

Active learning is an increasingly popular setting in machine
learning that makes use of both unlabeled and selectively
sampled labeled data (Balcan, Beygelzimer, and Langford
2006; Cohn, Atlas, and Ladner 1994; Dasgupta 2005). In
general, an active learning algorithm has access to a large
number of unlabeled examples and has the capacity to re-
quest labels of specific examples. The hope is that by di-
recting label queries to the most informative examples in
a feedback-driven way, we might be able to achieve sig-
nificant improvements in terms of sample complexity over
passive learning algorithms. For instance, in the problem of
learning homogeneous (passing the origin) linear separators,
an exponential improvement in sample complexity could be
achieved under the realizable case, where the labels are con-
sistent with the optimal linear classifier (Balcan, Broder, and
Zhang 2007; Balcan and Long 2013). For noisy label distri-
butions, a polynomial improvement in sample complexity
is more typical (Castro and Nowak 2008; Balcan, Broder,
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and Zhang 2007; Balcan, Beygelzimer, and Langford 2006;
Balcan and Long 2013).

We consider two active learning scenarios in this paper:
the stream-based selective sampling scenario (Cohn 1990;
Cohn, Atlas, and Ladner 1994), under which an algorithm
has access to a large number of unlabeled data in a stream
and can decide whether to query the label of a specific
data point, and the membership query synthesis scenario
(Angluin 1988) under which an algorithm has the capac-
ity of synthesizing data points and obtaining their labels
from an oracle. For the stream-based setting, we analyze
a noise-robust margin-based active learning algorithm un-
der the Tsybakov noise condition (Mammen, Tsybakov, and
others 1999; Tsybakov 2004). We show that the algorithm
automatically adjusts to unknown noise levels in the Tsy-
bakov noise condition (TNC) while achieving the same sta-
tistical rate (up to polylogarithmic terms) as non-adaptive
algorithms. This makes margin-based active learning more
practical, as the amount of noise in label distributions is usu-
ally unknown in practice.

We also study lower bounds for the membership query
synthesis setting under Tsybakov noise conditions. Our
lower bound matches previous ones for the stream-based
selective sampling setting (Balcan and Long 2013; Han-
neke to appear). Quite surprisingly, as a consequence of our
lower bound, we show that stream-based active learning al-
gorithms cannot do better even if the underlying data distri-
bution is as simple as the uniform distribution, It also means
the previous proposed margin-based active learning algo-
rithms (Balcan, Broder, and Zhang 2007; Balcan and Long
2013) are optimal under their specific problem settings. To
the best of our knowledge, such results are not implied by
any previous lower bounds on active learning, as we discuss
in more detail below.

2 Related work

A margin-based active learning algorithm for learning ho-
mogeneous linear separators was proposed in (Balcan,
Broder, and Zhang 2007) with its sample complexity an-
alyzed under the Tsybakov low noise condition for the
uniform distribution on the unit ball. The algorithm was
later extended to log-concave data distributions (Balcan and
Long 2013). Recently (Hanneke and Yang 2014) introduced
a disagreement-based active learning algorithm that works
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for arbitrary underlying data distributions. For all of the
above-mentioned algorithms, given data dimension d and
query budget T , the excess risk ε is upper bounded by 1

Õ((d/T )1/2α), where α is a parameter characterizing the
noise level in TNC (cf. Eq. (1) in Section 3). These algo-
rithms are not noise-adaptive; that is, the selection of key al-
gorithm parameters depend on the noise level α, which may
not be available in practice.

In (Hanneke 2011) a noise-robust disagreement-based al-
gorithm was proposed for agnostic active learning. The anal-
ysis was further improved in (Zhang and Chaudhuri 2014)
by replacing the disagreement coefficient with a provably
smaller quantity. However, their error bounds are slightly
worse under our settings, as we discuss in Section 6. Also,
in both analysis the desired accuracy ε is fixed, while in
our setting the number of active queries T is fixed. Un-
der the one-dimensional threshold learning setting, (Ramdas
and Singh 2013a) proposed a noise-adaptive active learning
algorithm inspired by recent developments of adaptive al-
gorithms for stochastic convex optimization (Juditsky and
Nesterov 2014). For multiple dimensions, it was shown re-
cently in (Awasthi et al. 2014) that a noise-robust variant
of margin-based active learning achieves near optimal noise
tolerance. The authors analyzed the maximum amount of
adversarial noise an algorithm can tolerate under the con-
straints of constant excess risk and polylogarithmic sample
complexity, which is equivalent to an exponential rate of er-
ror convergence. In contrast, we study the rate at which the
excess risk (relative to Bayes optimal classifier) converges
to zero with number of samples that are not restricted to be
polylogarithmic.

In terms of negative results, it is well-known that the
Õ((d/T )1/2α) upper bound is tight up to polylogarithmic
factors. In particular, Theorem 4.3 in (Hanneke to appear)
shows that for any stream-based active learning algorithm,
there exists a distribution PXY satisfying TNC such that
the excess risk ε is lower bounded by Ω((d/T )1/2α). The
marginal data distribution PX is constructed in an adversar-
ial manner and it is unclear whether the same lower bound
applies when PX is some simple (e.g., uniform or Gaussian)
distribution. (Balcan and Long 2013) proved lower bounds
for stream-based active learning under each log-concave
data distribution. However, their proof only applies to the
separable case and shows an exponential error convergence.
In contrast, we consider Tsybakov noise settings with pa-
rameter α ∈ (0, 1), for which polynomial error convergence
is expected (Hanneke to appear).

(Castro and Nowak 2008) analyzed the minimax rate of
active learning under the membership query synthesis model
(cf. Section 3). Their analysis implies a lower bound for
stream-based setting when the data distribution is uniform
or bounded from below (cf. Proposition 1 and 2). However,
their analysis focuses on the nonparametric setting where
the Bayes classifier f∗ is not assumed to have a parametric
form such as linear. Consequently, their is a polynomial gap
between their lower bound and the upper bound for linear

1In the Õ(·) notation we omit dependency on failure probability
δ and polylogarithmic dependency on d and T .

classifiers.

3 Problem setup and notations

We assume the data points (x, y) ∈ X × Y are drawn from
an unknown joint distribution PXY , where X is the instance
space and Y is the label space. Furthermore, x are drawn in
an i.i.d. manner. In this paper we assume that X = Sd ⊆ R

d

is the unit ball in R
d and Y = {+1,−1}.

The goal of active learning is to find a classifier f :
X → Y such that the generalization error err(f) =
E(x,y)∼P [�(f(x), y)] is minimized. Here �(f(x), y) is a loss
function between the prediction f(x) and the label y. Un-
der the binary classification setting with Y = {+1,−1},
the 0/1 classification loss is of interest, where �(f(x), y) =
I[yf(x) > 0] with I[·] the indicator function. In this paper
we consider the case where the Bayes classifier f∗ is linear,
that is, f∗(x) = argmaxy∈{+1,−1}Pr(Y = y|X = x) =

sgn(w∗ · x) with w∗ ∈ R
d. Note that the Bayes classifier

f∗ minimizes the generalization 0/1 error Pr(Y �= f∗(X)).
Given the optimal classifier f∗, we define the excess risk of a
classifier f under 0/1 loss as err(f)− err(f∗). Without loss
of generality, we assume all linear classifiers f(x) = sgn(w·
x) have norm ‖w‖2 = 1. We also use Bθ(w, β) to denote
the model class {f(x) = w′ · x|θ(w′, w) ≤ β, ‖w′‖2 = 1}
consisting of all linear classifiers that are close to w with an
angle at most β. Here θ(w′, w) = arccos(w′ · w) is the an-
gle between w′ and w. We use log to denote log2 and ln to
denote the natural logarithm.

Tsybakov noise condition For the conditional label dis-
tribution PY |X , we consider a noise model characterized
by the Tsybakov low noise condition (TNC) along the op-
timal hyperplane. Various forms of the TNC condition for
the one-dimensional and multi-dimensional active learning
are explored in (Castro and Nowak 2006; Ramdas and Singh
2013a; Balcan, Broder, and Zhang 2007; Balcan and Long
2013) and have been increasingly popular in the active learn-
ing literature. In this paper, we use the following version of
the TNC condition: there exists a constant 0 < μ < ∞ such
that for all linear classifiers 2 w ∈ R

d, ‖w‖2 = 1 the follow-
ing lower bound on excess risk holds:

μ · θ(w,w∗)1/(1−α) ≤ err(w)− err(w∗), (1)

with α ∈ [0, 1) a parameter characterizing the noise level in
the underlying label distribution.

Stream-based selective sampling The stream-based se-
lective sampling scheme was proposed in (Cohn 1990;
Cohn, Atlas, and Ladner 1994). Under the stream-based set-
ting an algorithm has access to a stream of unlabeled data
points and can request labels of selected data points in a
feedback-driven manner. Formally speaking, a stream-based
active learning algorithm operates in iterations and for itera-
tion t it does the following:

2To simplify notations, we will interchangeably call w, f and
sgn(f) as linear classifiers.
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1. The algorithm obtains an unlabeled data point xt, sampled
from the marginal distribution PX .

2. The algorithm then decides, based on previous labeled
and unlabeled examples, whether to accept xt and request
its label. If a request is made, it obtains label yt sampled
from the conditional distribution p(·|xt).

Finally, after a finite number of iterations the algorithm out-
puts a hypothesis f̂(x) = sgn(ŵ ·x). We use Astr

d,T to denote
all stream-based selective sampling algorithms that operate
on X = Sd and make no more than T label requests.

The stream-based selective sampling setting is slightly
weaker than the pool based active learning setting con-
sidered in (Balcan, Broder, and Zhang 2007; Balcan and
Long 2013). For pool-based active learning, an algorithm
has access to the entire pool (x1, x2, · · · ) of unlabeled
data before it makes any query requests. We remark that
all margin-based active learning algorithms proposed in
(Balcan, Broder, and Zhang 2007; Balcan and Long 2013;
Awasthi et al. 2014) actually work under the stream-based
setting.

Membership query synthesis An alternative active learn-
ing scenario is the synthetic query setting under which an
active learning algorithm is allowed to synthesize queries
and ask an oracle to label them. The setting is introduced in
(Angluin 1988) and considered in (Castro and Nowak 2006;
2008; Ramdas and Singh 2013a). Formally speaking, a
query synthesis active learning algorithm operates in iter-
ations and for iteration t it does the following:

1. The algorithm picks an arbitrary data point xt ∈ X , based
on previous obtained labeled data.

2. The algorithm is returned with label yt sampled from the
conditional distribution p(·|xt).

Finally, after T iterations the algorithm outputs a hypothesis
f̂(x) = sgn(ŵ · x), where T is the total number of label
queries made. We use Aqs

d,T to denote all membership query
algorithms that operate on X = Sd and make no more than
T label queries.

We remark that the synthetic query setting is more power-
ful than stream-based selective sampling. More specifically,
we have the following proposition. It can be proved by sim-
ple reductions and the proof is deferred to Appendix C in
(Wang and Singh 2014).

Proposition 1. Fix d, T . For any marginal distribution PX

and family of conditional label distributions P the following
holds:

inf
A∈Aqs

d,T

sup
PY |X∈P

E[L(ŵ, w∗)]

≤ inf
A∈Astr

d,T

sup
PY |X∈P

E[L(ŵ, w∗)], (2)

where L(ŵ, w∗) = err(ŵ) − err(w∗) is the excess risk of
output hypothesis ŵ.

4 Noise-adaptive upper bounds

In this section we prove the following main theorem, which
provides an upper excess-risk bound on stream-based active
learning algorithms that adapt to different noise levels under
the TNC condition.
Theorem 1. Fix δ ∈ (0, 1), r ∈ (0, 1/2), d ≥ 4 and T ≥ 4.
Suppose PX is the uniform distribution on the unit ball Sd.
There exists a stream-based active learning algorithm A ∈
Astr

d,T such that for any label distribution PY |X that satisfies
Eq. (1) with parameters μ > 0 and 1/(1+log(1/r)) ≤ α <
1, the following holds with probability ≥ 1− δ:

err(ŵ)− err(w∗) = Õ

((
d+ log(1/δ)

T

)1/2α
)
. (3)

Here ŵ is the output decision hyperplane of A, w∗ is the
Bayes classifier and in Õ(·) we omit dependency on r, μ and
polylogarithmic dependency on T and d.

Theorem 1 shows one can achieve the same error rate
(up to polylogarithmic factors) as previously proposed algo-
rithms (Balcan, Broder, and Zhang 2007; Balcan and Long
2013) without knowing noise level in the label distribution
(characterized by μ and α). To prove Theorem 1, we explic-
itly construct an algorithm that is adaptive to unknown noise
levels (Algorithm 1). The algorithm is in principle similar
to the margin-based active learning algorithms proposed in
(Balcan, Broder, and Zhang 2007; Balcan and Long 2013),
with the setting of margin thresholds a slight generalization
of (Awasthi et al. 2014). However, we analyze it under the
noise-adaptive TNC setting, which has not been considered
before specifically for margin-based active learning algo-
rithms.

In the remainder of this section we describe the noise-
adaptive algorithm we analyzed and provide a proof sketch
for Theorem 1. Our analysis can be easily generalized to log-
concave densities, with details in Appendix A.2 in (Wang
and Singh 2014).

4.1 The algorithm

We present Algorithm 1, a margin-based active learning al-
gorithm that adapts to unknown α and μ values in the TNC
condition in Eq. (1). Algorithm 1 admits 4 parameters: d is
the dimension of the instance space X ; T is the sampling
budget (i.e., maximum number of label requests allowed); δ
is a confidence parameter; r ∈ (0, 1/2) is the shrinkage rate
of the hypothesis space for every iteration in the algorithm;
smaller r allows us to adapt to smaller α values but will re-
sult in a larger constant in the excess risk bound. The basic
idea of the algorithm is to split T label requests into E iter-
ations, using the optimal passive learning procedure within
each iteration and reducing the scope of search for the best
classifier after each iteration.

The key difference between the adaptive algorithm and
the one presented in (Balcan, Broder, and Zhang 2007) is
that in Algorithm 1 the number of iterations E as well as
other parameters (e.g., bk, βk) are either not needed or do not
depend on the noise level α, and the number of label queries
is divided evenly across the iterations. Another difference is
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Algorithm 1 A noise-adaptive margin-based active learning
algorithm

1: Parameters: data dimension d, query budget T , failure
probability δ, shrinkage rate r.

2: Initialize: E = 1
2 log T , n = T/E, β0 = π, random ŵ0

with ‖ŵ0‖ = 1.
3: for k = 1 to E do
4: W = ∅. Set bk−1 = 2βk−1√

d

√
E(1 + log(1/r)) if

k > 1 and bk−1 = +∞ if k = 1.
5: while |W | < n do
6: Obtain a sample x from PX .
7: If |ŵk−1 · x| > bk−1, reject; otherwise, ask for

the label of x, and put (x, y) into W .
8: end while
9: Find ŵk ∈ Bθ(ŵk−1, βk−1) that minimizes the em-

pirical 0/1 error
∑

(x,y)∈W I[yw · x < 0].
10: Update: βk ← r · βk−1, k ← k + 1.
11: end for
12: Output: the final estimate ŵE .

that in our algorithm the sample budget T is fixed while in
previous work the error rate ε is known. It remains an open
problem whether there exists a tuning-free active learning
algorithm when a target error rate ε instead of query budget
T is given (Ramdas and Singh 2013a).

4.2 Proof sketch of Theorem 1

In this section we sketch the proof of Theorem 1. The com-
plete proof is deferred to Appendix A in (Wang and Singh
2014).

We start by defining some notations used in the proof. Let
Fk = Bθ(ŵk−1, βk−1) be the hypothesis space considered
in the kth iteration of Algorithm 1. Let Dk be the obtained
labeled examples and S

(k)
1 = {x||ŵk−1 · x| ≤ bk−1} be the

acceptance region at the kth iteration. By definition, Dk ⊆
S
(k)
1 . Let w∗

k = argmaxw∈Fk
err(w|S(k)

1 ) be the optimal
classifier in Fk with respect to the generalization 0/1 loss in
the acceptance region S

(k)
1 . Using similar techniques as in

(Balcan, Broder, and Zhang 2007), it can be shown that with
probability ≥ 1− δ the following holds:

err(ŵk)− err(w∗
k) ≤ βk−1ε, (4)

where ε is of the order Õ(
√

d+log(1/δ)
T ).

Eq. (4) shows that if βk−1 is small then we get good
excess risk bound. However, βk−1 should be large enough
so that Fk contains the Bayes classifier w∗ (i.e., w∗

k =
w∗). In previous analysis (Balcan, Broder, and Zhang 2007;
Balcan and Long 2013) the algorithm parameters βk−1 and
bk−1 are carefully selected using the knowledge of α and
μ so that w∗

k = w∗ for all iterations. This is no longer
possible under our setting because the noise parameters α
and μ are unknown. Instead, we show that there exists a
“tipping point” k∗ ∈ {1, 2, · · · , E − 1} depending and α
and μ that divides Algorithm 1 into two phases: in the first
phase (k ≤ k∗) everything behaves the same with previ-
ous analysis for non-adaptive margin-based algorithm; that

is, we have per-iteration excess error upper bounded by Eq.
(4) and the optimal Bayes classifier w∗ is contained in the
constrained hypothesis space Fk (i.e., w∗

k = w∗) for all
k ≤ k∗. Formally speaking, we have the following two lem-
mas which are proved in Appendix A in (Wang and Singh
2014).

Lemma 1. Suppose r ∈ (0, 1/2) and 1/(1 + log(1/r)) ≤
α < 1. With probability at least 1− δ,

err(ŵk∗)− err(w∗
k∗) ≤ βk∗−1ε ≤ ε1/α

r
1+α
α μ

1−α
α

. (5)

Lemma 2. With probability ≥ 1 − δE, w∗
k = w∗ for all

k ≤ k∗.

After iteration k∗, the optimal Bayes classifier w∗ di-
verges from w∗

k and we can no longer apply Eq. (4) directly
to bound the excess risk between ŵk and w∗. However, for
k > k∗ the constrained hypothesis space Fk is quite small
and the empirical estimator ŵk cannot deviate much from
ŵk−1. In particular, we have the following lemma, which is
proved in Appendix A in (Wang and Singh 2014).

Lemma 3. Suppose r ∈ (0, 1/2). With probability at least
1− δE, we have

err(ŵE)− err(ŵk∗) ≤ r

1− r
βk∗−1ε. (6)

Combining Lemma 1,2 and 3 we can upper bound the ex-
cess risk err(ŵE)−err(w∗) by Õ(ε1/α), which corresponds
to Õ((d+log(1/δ)

T )1/2α) in Eq. (7). The complete proof is de-
ferred to Appendix A in (Wang and Singh 2014).

4.3 Extension to log-concave densities

Following recent developments in margin-based active
learning (Balcan, Broder, and Zhang 2007; Balcan and Long
2013), Theorem 1 can be further generalized to the case
when the data distribution PX has log-concave densities,
which includes the uniform data distribution. A density
function g is said to be log-concave if log g(·) is a concave
function. Many popular distributions have log-concave den-
sities, including Gaussian distribution and uniform distribu-
tion. We say the data distribution PX is isotropic if the mean
of PX is zero and the covariance matrix of PX is the identity.
Theorem 2 shows that, with slight modifications, Algorithm
1 can be generalized to the case when the data distribution
PX is log-concave and isotropic. Its proof is similar to the
one in (Balcan and Long 2013) and is deferred to Appendix
A.2 in (Wang and Singh 2014).

Theorem 2. Fix δ ∈ (0, 1), r ∈ (0, 1/2), d ≥ 4 and T ≥
4. Suppose PX is an isotropic log-concave distribution on
the unit ball Sd and PY |X satisfies Eq. (1) with parameters
μ > 0 and 1/(1 + log(1/r)) ≤ α < 1 Let ŵ be the output
of Algorithm 1 run with bk−1 = C1βk−1 log T and the other
parameters unchanged. 3 Then with probability at least 1−δ

3C1 is an absolute constant. See Lemma 7, 8 in Appendix A.2
and Theorem 8 in (Balcan and Long 2013) for details.
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the following holds:

err(ŵ)− err(w∗) = Õ

((
d+ log(1/δ)

T

)1/2α
)
. (7)

Here ŵ is the output decision hyperplane of A, w∗ is the
Bayes classifier and in Õ(·) we omit dependency on r, μ and
polylogarithmic dependency on T and d.

5 Lower bounds

We prove lower bounds for active learning under the mem-
bership query synthesis setting. Since the query synthetic
setting is more powerful than the stream-based setting as
shown in Proposition 1, our result implies a lower bound
for stream-based selective sampling. Our lower bound for
membership query synthesis setting is for a slightly differ-
ent version of TNC, which implies TNC in Eq. (1) for distri-
butions that are bounded from below (including the uniform
distribution). This shows that both Algorithm 1 and previous
margin-based algorithms (Balcan, Broder, and Zhang 2007)
achieve the minimax rate (up to polylogarithmic factors) un-
der the uniform distribution on the unit ball.

To facilitate our analysis for the query synthesis setting, in
this section we adopt a new formulation of TNC condition in
terms of the label distribution function η(x) = Pr(y = 1|x).
Formally speaking, we assume that there exist constants 0 <
μ0 < ∞ and α ∈ [0, 1) such that for all x ∈ X the following
holds:

μ0 · |ϕ(x,w∗)|α/(1−α) ≤ ∣∣η(x)− 1/2
∣∣, (8)

where w∗ is the Bayes classifier with respect to η(·) and
ϕ(x,w∗) := π

2 − θ(x,w∗) ∈ [−π
2 ,

π
2 ] is the signed acute

angle between x and the decision hyperplane associated
with w∗. Similar formulation was also used in (Castro and
Nowak 2006; 2008; Ramdas and Singh 2013a) to analyze
active learning algorithms under the query synthesis setting.
We also remark that Eq. (8) implies the excess-risk based
TNC condition in Eq. (1) for data distributions with den-
sities bounded from below, as shown in Proposition 2. Its
proof is deferred to Appendix C in (Wang and Singh 2014).

Proposition 2. Suppose the density function g associated
with the marginal data distribution PX is bounded from be-
low. That is, there exists a constant γ ∈ (0, 1) such that
g ≥ γg0, where g0 ≡ π−d/2Γ(1+d/2) is the uniform distri-
bution on the unit d-dimensional ball. Then Eq. (8) implies
Eq. (1) with μ = 2(1− α)μ0γ.

We now present the main theorem of this section, which
establishes a lower bound on the angle between the output
classifier ŵ and the Bayes classifier w∗ for the member-
ship query synthesis setting, assuming the label distribution
PY |X satisfies TNC condition in Eq. (8).

Theorem 3. Fix d ≥ 2, T , μ0 > 0 and α ∈ (0, 1). Suppose
X = Sd and Y = {+1,−1}. Let Pα,μ0

denote the class
of all conditional label distributions that satisfy the label
distribution based TNC condition in Eq. (8) with parameters

α, μ0. Then the following excess risk lower bound holds:

inf
A∈Aqs

d,T

sup
PY |X∈Pα,μ0

E[θ(ŵ, w∗)] = Ω

((
d

T

)(1−α)/2α
)
.

(9)
Here in the Ω(·) notation we omit dependency on μ0.

Theorem 3 implies a lower bound for excess-risk based
TNC in Eq. (1) when the data distribution PX is uniform or
bounded from below, as shown in Corollary 1. By Proposi-
tion 1, Eq. (10) holds also for stream-based algorithms Astr

d,T .
We prove Corollary in Appendix B in (Wang and Singh
2014).
Corollary 1. Fix d ≥ 2, T, μ, γ > 0 and α ∈ (0, 1). Sup-
pose X = Sd, Y = {+1 − 1} and the density of PX is
bounded from below with constant γ. Let Pα,μ denotes the
class of all label distributions that satisfy the excess-risk
based TNC condition in Eq. (1) with parameters α, μ. Then
the following lower bound holds:

inf
A∈Aqs

d,T

sup
PY |X∈Pα,μ

E[err(ŵ)− err(w∗)]

= Ω

((
d

T

)1/2α
)
. (10)

Here in the Ω(·) notation we omit dependency on μ and γ.

5.1 Proof sketch of Theorem 3

In this section we sketch a proof for Theorem 3. The com-
plete proof is deferred to Appendix B due to space con-
straints in (Wang and Singh 2014). We assume the data di-
mension d ≥ 2 is even. This does not lose any generality
because the lower bounds in Eq. (9) and (10) remain asymp-
totically the same if d is replaced with (d+ 1).

The main idea of the proof is the construction of a hy-
pothesis set W = {w∗

1 , · · · , w∗
m} ⊆ R

d with log |W| =
Ω(d) such that for any hypothesis pair (w∗

i , w
∗
j ) the angle

θ(w∗
i , w

∗
j ) is large while KL(Pi,T ‖Pj,T ) is small 4 . Here

Pi,T denotes the distribution of T labels under the label dis-
tribution associated with w∗

i (rigorous mathematical defini-
tion of Pi,T is given in the appendix of (Wang and Singh
2014)). Intuitively, we want w∗

i and w∗
j to be well separated

in terms of the loss function (i.e., θ(w∗
i , w

∗
j )) while being

hard to distinguish by any active learning algorithm under a
fixed query budget T (implied by the KL divergence condi-
tion).

The following lemma accomplishes the first objective by
lower bounding θ(w∗

i , w
∗
j ). Its proof is based on the con-

struction of constant-weight codings (Graham and Sloane
1980) and is deferred to Appendix B in (Wang and Singh
2014).
Lemma 4. Assume d is even. Fix a parameter t ∈ (0, 1/4).
There exists a hypothesis set W = {w∗

1 , · · · , w∗
m} ⊆ R

d

such that
t ≤ θ(w∗

i , w
∗
j ) ≤ 6.5t, ∀i �= j; (11)

4For two continuous distributions P and Q with densities p and
q, their Kullback-Leibler (KL) divergence KL(P‖Q) is defined as∫
p(x) log p(x)

q(x)
dx if P � Q and +∞ otherwise.
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(a) Illustration of P (1)

Y |X

(b) Illustration of P (i)

Y |X , i �= 1

Figure 1: Graphical illustrations of P
(1)
Y |X (left) and P

(i)
Y |X

(right) constructed as in Eq. (12). Solid lines indicate the
actual shifted probability density functions η(x)−1/2 where
η(x) = Pr[Y = 1|X = x]. In Figure 1(b), the orange curve
(both solid and dashed) satisfies TNC with respect to w∗

1
and the green curve satisfies TNC with respect to w∗

i . Note
the two discontinuities at ϕ(x,w∗

1) = ±6.5t. Figure 1(b)
is not 100% accurate because it assumes that ϕ(x,w∗

1) =
ϕ(x,w∗

i ) + θ(w∗
1 , w

∗
i ), which may not hold for d > 2.

furthermore, log |W| ≥ 0.0625d for d ≥ 2.

We next tackle the second objective of upper bounding
KL(Pi,T ‖Pj,T ). This requires designing label distributions
{P (i)

Y |X}mi=1 such that they satisfy the TNC condition in Eq.

(8) while having small KL divergence between P
(i)
Y |X and

P
(j)
Y |X for all distinct pairs (i, j). We construct the label dis-

tribution for the ith hypothesis as below:

P
(i)
Y |X(Y = 1|x) =

⎧⎪⎨⎪⎩
1
2 + sgn(w∗

i · x)℘(|ϕ(w∗
i , x)|),

if |ϕ(w∗
1 , x)| ≤ 6.5t;

1
2 + sgn(w∗

1 · x)℘(|ϕ(w∗
1 , x)|),

if |ϕ(w∗
1 , x)| > 6.5t;

(12)
where ϕ(w, x) = π

2 − θ(x,w) ∈ [−π
2 ,

π
2 ] and ℘ is defined

as

℘(ϑ) := min{2α/(1−α)μ0 · ϑα/(1−α), 1/2}. (13)

A graphical illustration of P
(1)
Y |X and P

(i)
Y |X constructed in

Eq. (12) is depicted in Figure 1. We use the same distribution

when data points are far from the optimal classification hy-
perplane (i.e., |ϕ(w∗, x)| > 6.5t) in order to maximize the
“indistinguishability” of the constructed conditional distri-
butions. On the other hand, by TNC assumption P

(i)
Y |X must

have f∗
i (x) = sgn(w∗

i · x) as its Bayes classifier and TNC
condition along the hyperplane w∗

i must hold. As a result,
when a data point is close to the hyperplane represented by
w∗

i the label distribution differs for each hypothesis w∗
i in

W . Similar construction of adversarial distributions was also
adopted in (Castro and Nowak 2008) to prove lower bounds
for one-dimensional active threshold learners.

Lemma 5 summarizes key properties of the label distribu-
tions {P (i)

Y |X}mi=1 constructed as in Eq. (12). It is proved in
Appendix B of (Wang and Singh 2014).
Lemma 5. Suppose W = {w∗

1 , · · · , w∗
m} ⊆ R

d satisfies
Eq. (11) and {P (i)

Y |X}mi=1 is constructed as in Eq. (12). Then
for every i the hypothesis f∗

i (x) = sgn(w∗
i · x) is the Bayes

estimator of P (i)
Y |X and the TNC condition in Eq. (8) holds

with respect to w∗
i . In addition, for every i �= j the KL di-

vergence between Pi,T and Pj,T is upper bounded by

KL(Pi,T ‖Pj,T ) ≤ C · Tt2α/(1−α), (14)
where C is a positive constant that does not depend on T or
t.

With Lemma 12 lower bounding θ(w∗
i , w

∗
j ) and Lemma 5

upper bounding KL(Pi,T ‖Pj,T ), Theorem 3 and Corollary 1
can be proved by applying standard information theoretical
lower bounds (Tsybakov and Zaiats 2009). A complete proof
can be found in Appendix B in (Wang and Singh 2014).

6 Discussion and remarks
Comparison with noise-robust disagreement-based ac-
tive learning algorithms In (Hanneke 2011) another
noise-robust adaptive learning algorithm was introduced.
The algorithm is originally proposed in (Dasgupta, Hsu, and
Monteleoni 2007) and is based on the concept of disagree-
ment coefficient introduced in (Hanneke 2007). The algo-
rithm adapts to different noise level α, and achieves an ex-
cess error rate of

O

((
ϑ(d log T + log(1/δ))

T

) 1
2α

)
(15)

with probability 1 − δ, where d is the underlying dimen-
sionality, T is the sample query budget and ϑ is the dis-
agreement coefficient. Under our scenario where X is the
origin-centered unit ball in R

d for d > 2, the hypothesis
class C contains all linear separators whose decision sur-
face passes passing the origin and PX is the uniform dis-
tribution, the disagreement coefficient ϑ satisfies (Hanneke
2007) π

4

√
d ≤ ϑ ≤ π

√
d. As a result, the algorithm pre-

sented in this paper achieves a polynomial improvement in
d in terms of the convergence rate. Such improvements show
the advantage of margin-based active learning and were also
observed in (Balcan and Long 2013). Also, our algorithm
is considerably much simpler and does not require comput-
ing lower and upper confidence bounds on the classification
performance.

2185



Connection to adaptive convex optimization Algorithm
1 is inspired by an adaptive algorithm for stochastic convex
optimization presented in (Juditsky and Nesterov 2014). A
function f is called uniformly convex on a closed convex set
Q if there exists ρ ≥ 2 and μ ≥ 0 such that for all x, y ∈ Q
and α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

− 1

2
μα(1− α)‖x− y‖ρ. (16)

Furthermore, if μ > 0 we say the function f is strongly con-
vex. In (Juditsky and Nesterov 2014) an adaptive stochastic
optimization algorithm for uniformly and strongly convex
functions was presented. The algorithm adapts to unknown
convexity parameters ρ and μ in Eq. (16).

In (Ramdas and Singh 2013a) a connection between
multi-dimensional stochastic convex optimization and one-
dimensional active learning was established. The TNC con-
dition in Eq. (1) and the strongly convex condition in Eq.
(16) are closely related, and the exponents α and ρ are
tied together in (Ramdas and Singh 2013b). Based on this
connection, a one-dimensional active threshold learner that
adapts to unknown TNC noise levels was proposed.

In this paper, we extend the algorithms presented in (Ju-
ditsky and Nesterov 2014; Ramdas and Singh 2013a) to
build an adaptive margin-based active learning for multi-
dimensional data. Furthermore, the presented algorithm
adapts to all noise level parameters α ∈ (0, 1) with appropri-
ate setting of r, which corresponds to convexity parameters
ρ > 1. 5 Therefore, we conjecture the existence of similar
stochastic optimization algorithms that can adapt to a notion
of degree of convexity ρ < 2 as introduced in (Ramdas and
Singh 2013a).

Future work Algorithm 1 fails to handle the case when
α = 0. We feel it is an interesting direction of future work
to design active learning algorithms that adapts to α = 0
while still retaining the exponential improvement on con-
vergence rate for this case, which is observed in previous
active learning research (Balcan, Broder, and Zhang 2007;
Balcan and Long 2013; Castro and Nowak 2008).
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