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Abstract

In this work, we introduce a new generalized nonlinear tensor
regression framework called kernel-based multiblock tensor
partial least squares (KMTPLS) for predicting a set of depen-
dent tensor blocks from a set of independent tensor blocks
through the extraction of a small number of common and dis-
criminative latent components. By considering both common
and discriminative features, KMTPLS effectively fuses the
information from multiple tensorial data sources and unifies
the single and multiblock tensor regression scenarios into one
general model. Moreover, in contrast to multilinear model,
KMTPLS successfully addresses the nonlinear dependencies
between multiple response and predictor tensor blocks by
combining kernel machines with joint Tucker decomposi-
tion, resulting in a significant performance gain in terms of
predictability. An efficient learning algorithm for KMTPLS
based on sequentially extracting common and discriminative
latent vectors is also presented. Finally, to show the effective-
ness and advantages of our approach, we test it on the real-life
regression task in computer vision, i.e., reconstruction of hu-
man pose from multiview video sequences.

Introduction

Over the past few years, tensor-variate regression ap-
proaches have attracted a great amount of attention and
have been successfully applied in a variety of fields such
as chemometrics (Smilde, Westerhuis, and Boque 2000),
computer vision (Zhao et al. 2014; Guo, Kotsia, and Patras
2012), signal processing (Cichocki et al. 2015; Hou, Wang,
and Chaib-draa 2015; Zhao et al. 2013a; Eliseyev and Ak-
senova 2013), industrial batch process (Luo, Bao, and Gao
2015) and medical imaging data analysis (Zhou, Li, and Zhu
2013; Li, Zhou, and Li 2013; Hou and Chaib-draa 2015).

Among these approaches, the N-way partial least squares
(NPLS) regression approach, proposed by (Bro 1996), is a
natural multi-way extension of standard partial least squares
(PLS) (Abdi 2010; Zhao, Zhang, and Cichocki 2014) for
modeling a linear relationship between a response tensor and
a predictor tensor. The key idea of NPLS is to search for a
set of latent variables by performing a simultaneous canon-
ical/parallel (CP) factor analysis decomposition (Harshman
1970) of both independent tensor X and dependent tensor
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Y , ensuring that the latent components from X and Y have
the maximum pairwise covariance. However, due to the fact
that the NPLS is established based on the CP model, it ex-
hibits several drawbacks such as inferior fitness ability and
slow convergence rate when dealing with higher order ten-
sorial data.

The higher-order partial least squares (HOPLS) (Zhao et
al. 2013a), on the other hand, attempts to conduct a multilin-
ear projection of both tensors onto a new latent space using
the orthogonal block Tucker decomposition (De Lathauwer,
De Moor, and Vandewalle 2000; Tucker 1963), with con-
straint that the extracted latent variables explain as much as
possible the covariance between X and Y . Benefiting from
the advantages of Tucker over CP model, HOPLS promises
to provide a better predictive ability as well as a highly flex-
ible model that optimally balances between fitness and com-
plexity. To further enhance the predictability, an extension
of HOPLS, named kernel-based tensor partial least square
(KTPLS), was introduced in (Zhao et al. 2013b) based on
the combination of kernel machines with tensor decomposi-
tion, providing an attractive solution to the nonlinear tensor
regression problem.

Recently, advancing technologies have been producing
massive tensorial data streams from multiple sources or
modalities that couple in a common domain, and thus can be
analyzed jointly, e.g., the linked EEG and fMRI from neu-
roimaging data analysis. Most of studies have focused on
the single-block situation and the predictability is always re-
stricted due to the limited amount of information contained
in the single data source. If we simply apply the above meth-
ods and average the predictions among the blocks, then the
obtained result will not outperform the best singleton case,
since the common features of all data blocks are neglected.
Such progress highlights a growing need for the develop-
ment and application of tensor regression techniques by con-
sidering multiple predictor and response tensor blocks. For
this purpose, Smilde et al. proposed the multiway multiblock
covariates regression model (Smilde, Westerhuis, and Boque
2000), also termed as MMCR, to quantitatively analyze a
collection of predictor and response tensor blocks. Gener-
ally, MMCR handles all the predictor blocks in a hierarchi-
cal way that a super latent factor matrix is defined based on
all the individual latent factor matrices to make the final pre-
diction. Nevertheless, MMCR may suffer from low predic-
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tive ability due to the restriction of linearity, and thus is inad-
equate in terms of predictability in a situation where the non-
linear dependencies exist between the response and predic-
tor tensor blocks. Moreover, Westerhuis (Westerhuis, Kourti,
and MacGregor 1998) suggested that multilinear multiblock
PLS like MMCR is equivalent to PLS model with all vari-
ables combined into a large X -block in terms of predictive
ability. Besides, the developed algorithm for solving MMCR
is based on an alternating least square (ALS) style approach
(Carroll and Chang 1970), which is known to be a subopti-
mal procedure with slow convergence rate.

To address these limitations, we present a new general-
ized nonlinear tensor regression framework, namely kernel-
based multiblock tensor partial least squares (KMTPLS),
that serves as an extension to KTPLS (Zhao et al. 2013b) by
incorporating the kernel concept into the context of multi-
block tensor regression. In this paper, our contributions are
(i) introducing a generalized nonlinear framework that ef-
fectively fuses the information from multiple tensorial data
sources and integrates single and multiblock tensor regres-
sion scenarios into one general model using both common
and discriminative features; (ii) addressing the nonlinear de-
pendencies between multiple response and predictor tensor
blocks successfully by combining kernel machines with jo-
int Tucker decomposition, which leads to a further enhanced
predictive power; (iii) developing an efficient algorithm for
KMTPLS based on sequentially extracting common and dis-
criminative latent vectors, which can easily scale to a num-
ber of blocks; (iiii) it is the first work that applies multiblock
tensor regression approach to the multiview or multimodal
human motion estimation problem in computer vision.

Notation and Background
Higher-order tensors (Kolda and Bader 2009; Cichocki
2013) are represented as X ∈ R

I1×I2×···×ID in calligraphy
letters, where D is the order of X . Matrices denoted by
boldface capital letters X are the tensors of order 2. We
denote vectors using boldface lower-case letters x. The ith
entry of a vector x is denoted by xi, and the (i, j) entry
of a matrix X is denoted by xi j. Likewise, we denote the
entry (i1, i2, ..., iD) of Dth-order tensor X as xi1i2...iD . The
d-mode vector of tensor X is a vector of R

Id , which is
obtained by varying the index Id while keeping other in-
dices fixed. The d-mode matricization of X , denoted as
X(d) ∈ R

Id×I1···Id−1Id+1···ID , is the process of rearranging the
d-mode vectors into the columns of the resulting matrix.
Particularly, the vectorization of tensor X is denoted as
vec(X ). The d-mode product of tensor X ∈ R

I1×I2×···×ID

and matrix A ∈ R
Jd×Id is denoted by

Y = X ×d A ∈ R
I1×···×Id−1×Jd×Id+1×···×ID . (1)

Kernel-based Multiblock Tensor Partial Least

Squares (KMTPLS)
As mentioned in the previous section, the main objective of
KMTPLS is to predict a set of dependent tensor blocks from
a set of independent tensor blocks through the extraction of
a small number of common and individual latent compo-
nents followed by a regression step against them. Without

the loss of generality, we consider a (M1 + 1)th-order in-
dependent tensor block X1 ∈ R

N×I1×···×IM1 , a (M2 + 1)th-
order independent tensor block X2 ∈ R

N×J1×···×JM2 and a
(L+ 1)th-order dependent tensor block Y ∈ R

N×K1×···×KL ,
which can be obtained by concatenating N pairs of observa-
tions {(X (n)

1 ,X
(n)

2 ,Y (n))}N
n=1 that couple in the first mode

with the same sample size. Similar to KTPLS (Zhao et al.
2013b), the tensorial input and output data points X

(n)
1 ,

X
(n)

2 and Y (n) are mapped into the high-dimensional fea-
ture space H using a nonlinear transformation φ as follows:

φ : X (n)→ φ(X (n)) ∈ R
H1×···×HM . (2)

We thus have φ(X1), φ(X2) and φ(Y ) for the correspond-
ing blocks, which for simplicity can be denoted as Φ1, Φ2
and Ψ, respectively. Unlike KTPLS, we now perform the
Tucker decompositions of Φ1, Φ2 and Ψ jointly in H by
taking both common and individual features into account

Φ1 = GX1 ×1 [Tcom|Tdis1 ]×2 P
(1)
1 ×· · ·×M1+1 P

(M1)
1 + εX1

(3)
Φ2 = GX2 ×1 [Tcom|Tdis2 ]×2 P

(1)
2 ×· · ·×M2+1 P

(M2)
2 + εX2

(4)
Ψ = GY ×1 [Ucom|Udis1 |Udis2 ]×2 Q(1)×· · ·×L+1 Q(L) + εY

(5)
Udis1 = Tdis1Ddis1 +Edis1 (6)
Udis2 = Tdis2Ddis2 +Edis2 (7)
Ucom = TcomDcom +Ecom, (8)

where {GX1 ,GX2 ,GY } stand for the core tensors and
{P(m1)

1 ,P
(m2)
2 ,Q(l)} denote the corresponding loading fac-

tor matrices. {Tcom,Ucom} are defined as the common la-
tent factor matrices while {Tdis1 ,Udis1} and {Tdis2 ,Udis2}
correspond to the discriminative ones. Note that each pair
of latent factor matrices is connected by an inner relation,
namely the diagonal matrices Dcom, Ddis1 and Ddis2 , assum-
ing that U is linearly approximated by T. {εX1 ,εX2 ,εY }
and {Edis1 ,Edis2 ,Ecom} represent the residuals. In this way,
Φ1 and Φ2 are simultaneously correlated with Ψ by having
the largest covariance between latent factors Tcom and Ucom.
Meanwhile, Φ1 singly associates with Ψ by maximizing co-
variance between latent factors Tdis1 and Udis1 . Likewise,
the individual connection between Φ2 and Ψ is character-
ized via the maximum covariance between Tdis2 and Udis2 .
In essence, the common part Tcom captures the variation that
is present in all predictor blocks and hence describes what
all blocks have in common. The discriminative part Tdis1
and Tdis2 , on the other hand, explain the variation only in
their own individual tensor block. Rather than explicitly es-
timating all the high-dimensional core tensors and loading
factors, we only need to compute all the latent factors de-
scribed in (3)-(8). To this end, for the common latent fac-
tor Tcom = [t1, ..., tR] the optimization objective derived from
(Zhao et al. 2013b) for our 2-block setting turns out to be

max
{w1r ,w2r ,vr}

[cov1(tr,ur)cov2(tr,ur)]
2, r = 1, ...,R,

s.t. tr = Φ1(1)w1r = Φ2(1)w2r, ur = Ψ1(1)vr, (9)
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where we aim to optimize two covariance cov1 and cov2 at
the same time, yielding the maximum product of pair-wise
covariance of latent vectors. Here w1r, w2r and vr serve
as weight vectors. In the case of discriminative part Tdis1
(Tdis2 ), the objective is similar except that only the cov1
(cov2) should be taken into consideration.

The strategy for solving the above optimization problem
consists in sequentially extracting by deflation R pairs of
the latent vectors {tr,ur} to incorporate the information of
Φ1 and Φ2 into the model simultaneously. The KMTPLS
is summarized in Algorithm 1, which consists of two ma-
jor stages. In stage 1 (line 4-15), during each inner iteration
the latent vector tr is first updated by the information of Φ1
at line 7 and then immediately followed an update by the
information of Φ2 at line 9. Having extracted a new pair of
{tr,ur}, the deflations with respect to Φ1(1)ΦT

1(1), Φ2(1)ΦT
2(1)

and Ψ(1)ΨT
(1) are executed from line 12 to 14, removing the

calculated variation from the corresponding blocks. The re-
peated extraction procedure stops when the desired R num-
ber of vector pairs are obtained (line 15). Stage 1 means
the common contribution from Φ1 and Φ2 is collaboratively
responsible for Ψ. Substituting these inner steps into each
other, stage 1 is in fact equivalent to solving the following
eigenvalue problems

Φ1(1)ΦT
1(1)Ψ(1)ΨT

(1)Φ2(1)ΦT
2(1)Ψ(1)ΨT

(1)tr = λ tr (10)

ur = Ψ(1)ΨT
(1)tr. (11)

It is worth noting that Φ1(1)ΦT
1(1) and Φ2(1)ΦT

2(1), contain-
ing only the inner products between vectorized tensorial data
points, can be substituted by kernel Gram matrices KX1 and
KX2 respectively. Likewise, the Ψ(1)ΨT

(1) is also replaced
with KY . Hence, the previous deflation step in Algorithm 1
for Φ1(1)ΦT

1(1) (line 12) finally becomes

KX1 ← (I− trt
T
r )KX1(I− trt

T
r ), (12)

and the previous formulation (10)-(11) can be rewritten as

KX1KY KX2KY tr = λ tr (13)

ur = KY tr. (14)
Thereafter, we continue to extract the discriminative la-

tent pairs {Tdis1 ,Udis1} and {Tdis2 ,Udis2}, which are used
to explain the variation of each individual block, from the
deflated Φ1, Φ2 and Ψ obtained in the first stage. In stage
2, we follow the similar extracting pattern as stage 1 except
that {Φ1,Ψ} and {Φ2,Ψ} are considered separately, imply-
ing two separate contributions are from Φ1 and Φ2 for the
final response Ψ, respectively.

Eventually, with all the latent factors Tcom, Tdis1 , Tdis2
and Ucom, Udis1 , Udis2 in hand, the new response Y new can
be jointly predicted from the test points X new

1 and X new
2

by modifying the prediction formula in (Rosipal and Trejo
2002) to be

y(new)T = αkT
X new

1
U1(T

T
1 KX1U1)

−1TT
dis1

Y(1)

+(1−α)kT
X new

2
U2(T

T
2 KX2U2)

−1TT
dis2

Y(1), (15)

where (kX new
1

)n = k(X new
1 ,X

(n)
1 ) and (kX new

2
)n =

k(X new
2 ,X

(n)
2 ). T1 = [Tcom|Tdis1 ], T2 = [Tcom|Tdis2 ],

U1 = [Ucom|Udis1 ] and U2 = [Ucom|Udis2 ]. The hyperparam-
eter α varying from 0 to 1 indicates the relative importance
of each block, and thus can be heuristically determined
according to their individual predictive ability. Notice that
here y(new) is in a vector form and should be reformulated
into a tensor form Y new by refolding.

We would like to make several remarks about our KMT-
PLS approach. It can actually be regarded as a gen-
eralized kernel-based nonlinear tensor regression frame-
work that includes the KTPLS as a special case by set-
ting the number of latent components from other tensor
blocks to be zero. Additionally, this framework enables
us to straightforwardly extend both model and algorithm
to more general cases in which more than two predic-
tor tensor blocks and one response tensor block are in-
volved. Furthermore, our model, based on common and
discriminative features, is superior to MMCR with respect
to the interpretability. Inheriting the advantage from KT-
PLS, the framework is capable of flexibly adapting different
types of specially defined tensor kernel functions, namely
(KX1)nn′ = kx1(X

(n)
1 ,X

(n′)
1 ), (KX2)nn′ = kx2(X

(n)
2 ,X

(n′)
2 )

and (KY )nn′ = ky(Y (n),Y (n′)), to different individual ten-
sor blocks, leading to a better performance than that of com-
bining all variables in one large X -block.

Note that our algorithm is motivated by the classical NI-
PALS (Rosipal and Trejo 2002), which has proved to be ex-
tremely robust for solving the eigenvalue related problems,
providing a robust procedure for iteratively estimating la-
tent components in our setting. Therefore, we can reliably
extract a desired number of pairs of latent components up
to the point when the rank of the corresponding unfolded
tensor block is reached. The computational complexity of
extraction as well as deflation of a single pair of latent vec-
tors scales as O(n2) while the overall cost is linearly pro-
portional to the total number of desired latent components
in T blocks, i.e., Rcom +Rdis1 + · · ·+RdisT . Hence, such se-
quential strategy of extraction of one pair of latent vectors
at a time by deflation is more efficient than MMCR (Smilde,
Westerhuis, and Boque 2000) that performs a simultaneous
calculation of all factor matrices. We should mention that the
cost of establishing the kernel matrix, depending on the spe-
cially designed tensor kernel function, should also be taken
into account.

Experimental Results

In all experiments, the MMCR and KMTPLS were used
for comparison including the settings of single and multi-
ple input blocks for KMTPLS model. For simplicity, the
polynomial kernel function of second degree was employed.
The predictive performance was quantitatively evaluated by
means of the root mean squares of prediction (RMSEP)
(Kim et al. 2005) and the Q index that is defined as Q =
1−‖Y − Ŷ ‖F/‖Y ‖F , where Ŷ is the prediction of Y .
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Algorithm 1 Our Kernel-based Multiblock Tensor Par-
tial Least Squares (KMTPLS)

1: Input: observations of Φ1, Φ2 and Ψ; number of desired latent
vectors R, R1 and R2

2: Output: common matrices Tcom, Ucom and discriminative ma-
trices Tdis1 , Udis1 , Tdis2 , Udis2

3: Initialize: randomly initialize ur, u1r1 and u2r2
4: /* Stage 1: extract common latent factor Tcom, Ucom */
5: repeat
6: repeat
7: tr = Φ1(1)ΦT

1(1)ur, tr ← tr/‖tr‖
8: ur = Ψ(1)ΨT

(1)tr, ur ← ur/‖ur‖
9: tr = Φ2(1)ΦT

2(1)ur, tr ← tr/‖tr‖
10: ur = Ψ(1)ΨT

(1)tr, ur ← ur/‖ur‖
11: until convergence
12: deflate Φ1(1)ΦT

1(1) matrix: Φ1(1)ΦT
1(1)

← (Φ1(1)− trtT
r Φ1(1))(Φ1(1)− trtT

r Φ1(1))
T

13: deflate Φ2(1)ΦT
2(1) matrix: Φ2(1)ΦT

2(1)

← (Φ2(1)− trtT
r Φ2(1))(Φ2(1)− trtT

r Φ2(1))
T

14: deflate Ψ(1)ΨT
(1) matrix: Ψ(1)ΨT

(1)

← (Ψ(1)− trtT
r Ψ(1))(Ψ(1)− trtT

r Ψ(1))
T

15: until R pairs of latent vectors of {Tcom,Ucom} or the rank con-
dition is met

16: /* Stage 2: extract discriminative latent factors Tdis1 , Udis1 ,
Tdis2 , Udis2 */

17: repeat
18: repeat
19: t1r1 = Φ1(1)ΦT

1(1)u1r1 , t1r1 ← t1r1/‖t1r1‖
20: u1r1 = Ψ(1)ΨT

(1)t1r1 , u1r1 ← u1r1/‖u1r1‖
21: until convergence
22: deflate Φ1(1)ΦT

1(1) matrix: Φ1(1)ΦT
1(1)

← (Φ1(1)− t1r1 tT
1r1

Φ1(1))(Φ1(1)− t1r1 tT
1r1

Φ1(1))
T

23: deflate Ψ(1)ΨT
(1) matrix: Ψ(1)ΨT

(1)

← (Ψ(1)− t1r1 tT
1r1

Ψ(1))(Ψ(1)− t1r1 tT
1r1

Ψ(1))
T

24: repeat
25: t2r2 = Φ2(1)ΦT

2(1)u2r2 , t2r2 ← t2r2/‖t2r2‖
26: u2r2 = Ψ(1)ΨT

(1)t2r2 , u2r2 ← u2r2/‖u2r2‖
27: until convergence
28: deflate Φ2(1)ΦT

2(1) matrix: Φ2(1)ΦT
2(1)

← (Φ2(1)− t2r2 tT
2r2

Φ2(1))(Φ2(1)− t2r2 tT
2r2

Φ2(1))
T

29: deflate Ψ(1)ΨT
(1) matrix: Ψ(1)ΨT

(1)

← (Ψ(1)− t2r2 tT
2r2

Ψ(1))(Ψ(1)− t2r2 tT
2r2

Ψ(1))
T

30: until R1 pairs of latent vectors of {Tdis1 ,Udis1} or the rank
condition is met, and R2 pairs of latent vectors of {Tdis2 ,Udis2}
or the rank condition is met

Utrecht Multi-Person Motion Database

In this section, we first applied our approach to a real-life
tensor regression task, i.e., estimation of articulated 3D hu-
man pose positions from multiple video streams, to sys-
tematically show the advantages of KMTPLS. The dataset
was taken from the Utrecht Multi-Person Motion (UMPM)
benchmark (Van Der Aa et al. 2011), which provides syn-
chronized motion capture data and video sequences from
multiple viewpoints. More specifically, the video sequences

of 30-60 seconds were captured using 4 Basler calibrated
color cameras with a resolution of 644× 484 pixels at 50
fps. In addition, to obtain the 3D ground truth information,
they used a Vicon MoCap system to record the 3D positions
of 37 reflective markers attached to each subject at a frame
rate of 100 fps for describing the movements of head, shoul-
ders, elbows, wrists, knees and ankles etc. The activities of
natural motions of humans in daily life such as walking, jog-
ging, balancing were captured within a region of 6m×6m.
For our test, we employed the intensity image sequences,
with a downsized resolution of 32× 24 pixels, as the input
of algorithms. Hence, each video sequence can be naturally
represented as a 3rd-order predictor tensor (i.e., frames ×
width × hight). As for the ground truth, the mocap data was
down-sampled at 50 fps, and thus can be expressed as a 3rd-
order tensor (i.e., samples × 3D positions × markers). For
each scenario, we split the video sequence into two differ-
ent partitions, i.e., a training set from the first 1/3 part and a
test set from the remaining 2/3 part, respectively. The cross-
validation applied on training set was performed to select all
the desired tuning parameters. In this experiment, we chose
3 principal cameras that form an equilateral triangle includ-
ing the front camera (F), the left camera (L) and the right
camera (R), and we mainly focused on the 2-block situation
while the multiple input blocks cases were studied in the
following section. To be fair, the maximal possible number
of latent vectors that can be extracted from each individual
block was set as 10 for both KMTPLS and MMCR.

Table 1 summarizes the prediction performance from
KMTPLS and MMCR. Clearly, our method significantly
outperformed MMCR in almost all cases in terms of pre-
dictive accuracy, especially in the “grab” scenario where the
largest performance gaps were 0.1839 and 178.4 with re-
spect to Q and RMSEP when the front camera and the right
camera were integrated. Meanwhile, as also shown in Figure
1, we can see that the considerably improved predictability
were achieved by all 2-block situations in comparison to the
corresponding single block cases. For example, in the “ta-
ble” scene, the optimal Q obtained by the left and the right
cameras were 0.5995 and 0.5906, while it was boosted to
0.6847 as we effectively fuse two cameras using KMTPLS.

To investigate the effect of the α on the predictive per-
formance, Q is given in Figure 2 for varying alpha value at
the retained ranks. We may notice that the optimal α , which
is the measurement of involvement in the final prediction,
can somehow roughly reflect the relatively predictive power
of each individual block. Specifically, the optimal α in the
“grab” scene were 0.1 and 0.2 for the “F-R” and “L-R”, in-
dicating the model intended to attach more importance to
the camera “R” with the best singleton predictive accuracy
of 0.7789. For visualization, Figure 3 further demonstrates
the ground truth and the predicted 3D front angle trajecto-
ries for the test sequence using the front and left cameras.
We can see that our KMTPLS “L-R” achieves much better
accuracy than both KMTPLS “L” and MMCR “L-R” cases.

Berkeley Multimodal Human Action Database

In order to validate the superiority of KMTPLS in the con-
text of several cameras from multiple views, the second
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UMPM KMTPLS MMCR
Scenario Appraisal F L R F-L F-R L-R F-L F-R L-R

Grab
Rank (10) (6) (10) (6,4,1) (8,1,2) (8,0,2) (3,10,2) (3,10,8) (3,10,1)

Q 0.7141 0.7240 0.7789 0.7690 0.7950 0.7995 0.6237 0.6111 0.6497
RMSEP 241.4 230.0 185.5 192.7 172.8 169.7 347.7 351.2 292.7

Triangle
Rank (9) (9) (10) (8,2,2) (1,8,0) (7,1,3) (4,9,1) (4,10,1) (5,8,2)

Q 0.7599 0.7462 0.7227 0.7801 0.7629 0.7691 0.7168 0.7195 0.7324
RMSEP 202.5 208.2 232.3 181.3 200.2 190.6 241.3 239.9 224.5

Table
Rank (10) (9) (10) (1,9,8) (1,9,0) (9,0,1) (3,9,9) (5,10,1) (4,7,2)

Q 0.6340 0.5995 0.5906 0.6910 0.6414 0.6847 0.6713 0.6626 0.6761
RMSEP 298.0 319.3 325.9 247.4 291.2 250.7 267.2 277.2 260.9

Table 1: Performance comparison of KMTPLS and MMCR for the optimal Rank, Q and RMSEP and on UMPM.

MHAD Jumping in the Place Bending
Subject Method Blocks Q RMSEP Time (ms) Q RMSEP Time (ms)

S6

KMTPLS

1 0.6836 (0.0056) 209.3 (4.2) 38 (19) 0.6991 (0.0059) 188.7 (4.4) 71 (12)
2 0.6955 (0.0043) 200.7 (2.9) 70 (27) 0.7076 (0.0030) 182.8 (2.3) 122 (15)
3 0.6986 (0.0030) 199.3 (1.9) 92 (58) 0.7112 (0.0021) 179.9 (1.6) 173 (13)
4 0.7000 (0.0025) 198.5 (1.6) 139 (81) 0.7129 (0.0015) 179.0 (1.2) 324 (44)

MMCR
2 0.6717 (0.0050) 218.3 (3.0) 1616 (999) 0.6524 (0.0179) 217.3 (11.1) 4510 (2201)
3 0.6762 (0.0027) 215.4 (1.6) 2530 (1235) 0.6602 (0.0045) 212.8 (3.1) 8154 (3077)
4 0.6790 (0.0019) 213.7 (1.1) 2954 (788) 0.6630 (0.0029) 210.8 (1.8) 13116 (3974)

S10

KMTPLS

1 0.7141 (0.0057) 196.8 (4.3) 45 (13) 0.7329 (0.0055) 168.9 (3.9) 49 (22)
2 0.7230 (0.0047) 190.4 (3.5) 74 (43) 0.7449 (0.0029) 160.2 (2.2) 110 (26)
3 0.7253 (0.0038) 188.3 (2.8) 134 (63) 0.7493 (0.0029) 157.3 (1.3) 149 (21)
4 0.7263 (0.0027) 187.9 (2.0) 195 (85) 0.7516 (0.0015) 155.6 (1.1) 199 (27)

MMCR
2 0.6930 (0.0047) 211.3 (3.4) 2248 (2175) 0.7010 (0.0100) 188.9 (6.3) 8118 (3676)
3 0.6967 (0.0021) 208.7 (1.5) 2771 (2551) 0.6945 (0.0164) 193.0 (10.5) 11575 (4390)
4 0.6989 (0.0010) 207.2 (0.8) 2985 (2408) 0.6941 (0.0133) 193.4 (8.7) 15540 (4837)

S12

KMTPLS

1 0.7059 (0.0065) 198.9 (5.3) 16 (6) 0.6755 (0.0060) 195.3 (4.3) 69 (16)
2 0.7199 (0.0032) 189.2 (2.3) 31 (12) 0.6841 (0.0020) 189.5 (1.4) 138 (19)
3 0.7240 (0.0029) 186.3 (2.2) 41 (13) 0.6859 (0.0015) 188.8 (1.0) 226 (38)
4 0.7265 (0.0016) 184.3 (1.2) 69 (23) 0.6867 (0.0015) 188.4 (1.0) 314 (45)

MMCR
2 0.6909 (0.0051) 208.1 (3.4) 1689 (983) 0.6541 (0.0032) 208.1 (1.7) 3256 (1318)
3 0.6943 (0.0041) 205.4 (2.5) 2568 (1039) 0.6564 (0.0033) 206.8 (1.3) 7289 (2180)
4 0.6959 (0.0036) 204.2 (2.1) 4280 (2136) 0.6585 (0.0020) 205.5 (1.0) 10649 (2925)

Table 2: Performance comparison of KMTPLS and MMCR for the averaged Q, RMSEP and learning time on MHAD.

Figure 1: Performance comparison of KMTPLS and MMCR
for the Q versus the different combination of cameras.

experiment was carried out on the Berkeley Multimodal
Human Action Database (MHAD) (Ofli et al. 2013) that

consists of temporally synchronized data simultaneously
recorded by several different systems, including an optical
motion capture system, four multi-view stereo camera clus-
ters, two Microsoft Kinect cameras.

The MHAD comprises 11 actions performed by 12 sub-
jects, with each subject performing 1 or 5 repetitions of each
action per recording. We chose the 2 most challengeable ac-
tions with 5 repetitions that involve dynamics in both up-
per and lower extremities, namely “jumping in place” and
“bending-hands up all the way down”. In this experiment,
we were particularly interested in how the predictive perfor-
mance is affected by the number of predictor blocks in the
process of fusion. To this end, we selected 4 of C1 cameras
from 4 clusters as well as 2 of C2 cameras from clusters
L1 and L2, resulting in a total number of 6 cameras from
all 12 cameras. Note that each time we chose a subset of
these 6 cameras as candidates to jointly make the predic-
tion, we therefore have “6 choose T ” (CT

6 ) different com-
binations for the T -block situation. Similar to the previous
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Figure 2: Performance comparison of KMTPLS for the Q when using the optimal rank versus the relative importance α .

Figure 3: Visualization of ground truth and the trajectories
predicted by MMCR and KMTPLS in the ”table” scenario.

Figure 4: Performance comparison of KMTPLS and MMCR
for the best Q, RMSEP versus the number of input blocks.

experiment, both video sequence and mocap data are repre-
sented as 3rd-order tensors. In the case of the ground truth,

the 3D positions of 43 LED markers affixed to different parts
of the body were captured within the space of 2m×2m. We
took the first recording of each action as training set and
second recording as test set. The optimal number of com-
mon and discriminative latent vectors was selected by cross-
validation on the training set. The maximal number of latent
vectors from each block for both models was fixed as 8. Fi-
nally, the total number of predictor tensor blocks T grew up
to 4, and the importance parameter α for each block was
simply fixed to be 1/T .

The averaged prediction results as well as the learning
time of the two methods are compared in Table 2. As was
expected, KMTPLS exhibited much better performance than
MMCR with respect to all the measurements. In particu-
lar, for the “bending” action, the averaged improvement by
KMTPLS over MMCR when using 4 blocks were 0.0499,
0.0575 and 0.0282 in terms of Q, and 31.8, 37.8 and 17.1 in
terms of RMSEP for subjects “s6”, “s10” and “s12”, respec-
tively. On the other hand, KMTPLS shows a consistently en-
hanced predictability as the number of blocks increases from
1 up to an optimal number, demonstrating the effectiveness
of our fusion strategy. Specifically, compared with 1-block
KMTPLS, the improved accuracy of action “jumping” with
respect to Q by 4-block KMTPLS accumulated to 0.0164,
0.0122 and 0.0206 for subjects “s6”, “s10” and “s12”.

Figure 4 illustrates the best prediction results among the
CT

6 combinations in each T -block case. We also see that
the predictive enhancement becomes smaller as more blocks
were incorporated into the model, which was then followed
by a slight decrease when the number of blocks exceeded
an optimal threshold. For instance, in Figure 4, the optimal
number of blocks for subject “s10” in “jumping” action is
3. This reflects the fact that adding too many blocks, on the
other hand, may increase the chances of overfitting or bring
noise into the model, leading to a degraded predictive ability.

Conclusion

We have proposed a generalized nonlinear tensor regres-
sion framework KMTPLS that effectively fuses the informa-
tion from multiple tensorial data sources and unifies the sin-
gle and multiblock tensor regression into one model using
both common and discriminative features. Compared with
multilinear model MMCR (Smilde, Westerhuis, and Boque
2000), our approach can successfully deal with the nonlinear
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dependencies between multiple response and predictor ten-
sor blocks by combining kernel machines with joint Tucker
decomposition, resulting in significantly enhanced predic-
tive power.

The experimental results on both UMPM and MHAD
databases have demonstrated the advantages of our method
when applied to the real-world tensor regression task in
computer vision. For future work, we would like to mention
that performance could be further improved at the cost of
running time for designing and adapting more sophisticated
tensorial kernel functions by exploiting more structural in-
formation of tensorial data than simply using polynomial or
Gaussian kernel functions.
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