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Abstract

Instrumental variable regression (IVR) is a statistical tech-
nique utilized to recover unbiased estimators when there are
errors in the independent variables. Estimator bias in learned
time series models can yield poor performance in applications
such as long-term prediction and filtering where the recursive
use of the model results in the accumulation of propagated
error. However, prior work addressed the IVR objective in the
batch setting, where it is necessary to store the entire dataset
in memory - an infeasible requirement in large dataset sce-
narios. In this work, we develop Online Instrumental Vari-
able Regression (OIVR), an algorithm that is capable of up-
dating the learned estimator with streaming data. We show
that the online adaptation of IVR enjoys a no-regret perfor-
mance guarantee with respect to the original batch setting by
taking advantage of any no-regret online learning algorithm
inside OIVR for the underlying update steps. We experimen-
tally demonstrate the efficacy of our algorithm in combination
with popular no-regret online algorithms for the task of learn-
ing predictive dynamical system models and on a prototypical
econometrics instrumental variable regression problem.

Introduction

Instrumental variable regression (IVR) is a popular statisti-
cal linear regression technique to help remove bias in the
prediction of targets when both the features and targets are
correlated with some unknown additive noise, usually a vari-
able omitted from the regression due to the difficulty in ob-
serving it (Bowden and Turkington 1990). In this setting, or-
dinary least squares (OLS) (i.e. linear regression) from fea-
tures to targets leads to a biased estimate of the dependence
between features and targets. For applications where the un-
derlying unbiased dependency is required, such as in the
study of causal effects for econometrics (Miguel, Satyanath,
and Sergenti 2004), epidemiology (Greenland 2000), or for
the learning of dynamical system models (Söderström and
Stoica 2002), IVR provides a technique to remove the corre-
lation with the unobserved variables.

We focus in this work on the regression application of in-
strumental variables where the IVR process consists of mul-
tiple linear regressions steps. Prior attention on IVR has fo-
cused on the batch learning scenario: each step of regression
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is performed in whole with all of the data at once. However,
with the ever growing prevalence of large datasets, such an
approach becomes quickly infeasible due to the scaling of
the memory and computational complexity with regards to
the data set size and feature dimensionality. Towards this
end, we propose an online version of instrumental variable
regression that replaces each of the regression steps with an
online learner.

Specifically, we develop an Online Instrumental Variable
Regression (OIVR) procedure that can be regarded as a re-
duction to no-regret online learning. Under the assumption
that the set of regression and instrumental variables are i.i.d,
we derive a strong no-regret bound with respect to the de-
sired objective optimized by the batch setting (batch IVR).
Our theorem allows us to take advantage of any no-regret
online learning procedure for the multiple regression steps
in IVR. We explicitly show that OIVR allows us to intro-
duce a new family of online system identification algo-
rithms that can exploit no-regret online learning. This re-
duction extends on the initial reduction given by Hefny et.
al (Hefny, Downey, and J. Gordon 2015) from batch pre-
dictive state dynamical system learning to batch IVR. Fi-
nally, we investigate the experimental performance of sev-
eral popular online algorithms such as Online Gradient De-
scent (OGD) (Zinkevich 2003), Online Newton Step (Hazan,
Agarwal, and Kale 2006) (ONS), Implicit Online Gradient
Descent (iOGD) (Kulis et al. 2010), and Follow The Regu-
larized Leader (FTRL) (Shalev-Shwartz 2011) in the context
of OIVR for both dynamical system modeling and on a sim-
ple but illustrative econometrics example.

Instrumental Variable Regression

Consider the standard linear regression scenario where we
wish to find A given design matrices (datasets) X =
[x1 x2 . . .] and Y = [y1 y2 . . .] representing our ex-
planatory variables (features) xi ∈ R

n×1 and outputs (tar-
gets) yi ∈ R

m×1. This relationship is modeled by:

Y = AX + E (1)

where E = [ε1 ε2 . . .] are independent noise (error).
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Solving this via least-squares minimization, gives us:

Â = Y XT (XXT )−1 = (AX + E)XT (XXT )−1

= AXXT (XXT )−1 + EXT (XXT )−1

= A+ EXT (XXT )−1 (2)

When the number of samples T goes to infinity, by law
of large number, we will have: EXT /T → E(εxT ) and
XXT /T → E(xxT ) in probability. Normally, we assume
that ε and x are uncorrelated, which means EXT /T con-
verges to zero in probability, (E(εxT ) = 0), which yields an
unbiased estimate of A from Eq. 2.

Â = A+
1

T
EXT

(
1

T
XXT

)−1

→ A

However, if ε and x are correlated E(εxT ) �= 0, we are only
able to get a biased estimate of A through the least-squares
optimization, since E

[
εxT

]
E
[
xxT

]−1 �= 0.
On the other hand, IVR can achieve an unbiased estimate

of A (Rao et al. 2008; Cameron and Trivedi 2005). In IVR,
we remove this bias by utilizing an instrumental variable,
denoted as Z = [z1 z2 . . .] in Fig. 1. For a variable to be
an instrumental variable, we need two conditions: (1) the in-
strumental variable z is correlated with x such that E(xzT )
is full row rank and (2) the instrumental variable is uncorre-
lated with ε, i.e. E(zεT ) = 0.

Z X Y

ε

Figure 1: Causal diagram for IVR

Instrumental variable regression proceeds as follows. IVR

first linearly regresses from Z to X to get X̂ = XZ†Z,
where Z† = ZT (ZZT )−1. Then, IVR linearly regresses
from the projection X̂ to Y to get an estimate of A:

ÂIVR = Y X̂T (X̂X̂T )−1

= Y Z†ZXT (XZ†ZXT )−1

= AXZ†ZXT (XZ†ZXT )−1

+ EZ†ZXT (XZ†ZXT )−1

= A+ EZT (ZZT )−1ZXT (XZ†ZXT )−1

Note that ÂIV R → A in probability since EZT /T → 0 in
probability under the assumption that instrumental variable
z and ε are uncorrelated.

The process of instrumental variable regression can be
represented through the following two steps (also known as
two-stage regression):

M∗ ← argmin
M

‖X −MZ‖2F (3)

A∗ ← argmin
A

‖Y −AM∗Z‖2F (4)

For shorthand, we will generally refer to the final regression
stage, Eqn. 4, as the batch IVR objective .

Algorithm 1 Batch Instrumental Variable Regression
Input:

� Explanatory Variable Design Matrix X ∈ R
dx,n,

� Instrumental Variable Design Matrix Z ∈ R
dz,n,

� Prediction Targets Design Matrix Y ∈ R
dy,n

Output: A∗ ∈ R
dy,dx

1: M∗ ← argminM ‖X −MZ‖2F
2: X̂ ← M∗Z
3: A∗ ← argminA

∥∥∥Y −AX̂
∥∥∥2
F

4: return A∗

Online Instrumental Variable Regression

The formulation of online algorithms yields a two-fold ben-
efit – first, it allows us to use datasets that are too large to fit
in memory by considering only one or a few data points at a
time; second, it allows us to run our algorithm with stream-
ing data, a vital capability in fields such as robotics where
many sensors can push out volumes of data in seconds. In
the following section, we formulate an online, streaming-
capable adaptation of the batch Instrumental Variable Re-
gression (IVR) algorithm. We show that our online algorithm
has a strong theoretical performance guarantee with respect
to the performance measure in the batch setting.

In the batch setup of IVR (Algorithm 1), we require all the
datapoints a priori in order to find A∗. To create an online
version of this algorithm, it must instead compute estimates
Mt and At as it receives a single set of data points, xt, zt,
yt. To motivate our adaptation of IVR, we first consider the
adaptation of OLS (i.e. linear regression) to the online set-
ting. Given the design matrices X = [x0, . . . , xt, . . . , ] and
Y = [y0, . . . , yt, . . .], in OLS, we optimize the following
batch objective over all the data points:

β∗ = argmin
β

‖βX − Y ‖2F = argmin
β

∑
t

�t(β) (5)

where the loss function �t(β) = ‖βxt − yt‖22 is the L2
loss for the corresponding pair of data points (xt, yt). To
formulate an online OLS algorithm, we may naturally try
to optimize the L2 loss for an individual data point pair
‖βxt − yt‖22 at each timestep without directly considering
the loss induced by other pairs. Prior work in the liter-
ature has developed algorithms that address this problem
of considering losses �t and predicting a βt+1 while still
achieving provable performance with respect to the opti-
mization of β over the batch objective (Zinkevich 2003;
Hazan, Agarwal, and Kale 2006; Shalev-Shwartz 2011). The
performance guarantee of these algorithms is in terms of the
(average) regret, which is defined as:

1

T
REGRET =

1

T

∑
t

�t(βt)− 1

T
min
β

∑
t

�t(β) (6)

We say a learning procedure is no-regret if
limT→∞ 1

T (REGRET) = 0 ⇒ REGRET ∈ o(T ).
Intuitively, the no-regret property tells us that the opti-

mization of the the loss in this way gives us a solution that
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is competitive with the best result in hindsight (i.e. if we had
optimized over the losses from all data points). In IVR (Al-
gorithm 1), lines 1 and 3 are each linear regression steps
which are individually the same as Eqn. 5. Motivated by
this, we introduce Online Instrumental Variable Regression
(OIVR), in which we utilize a no-regret online learner for the
individual batch linear regressions in IVR. The detailed flow
of OIVR is shown in Algorithm 2.

Algorithm 2 Online Instrumental Variable Regression with
No-Regret Learners
Input:

� no-regret online learning procedures LEARN1,
LEARN2

� Streaming data sources for the explanatory variable
Sx(t) : t → x ∈ R

dx , the instrumental variable Sz(t) :
t → z ∈ R

dz , and the target variable Sy(t) :→ y ∈ R
dy

Output: ĀT ∈ R
dy,dx

1: Initialize M0 ∈ R
dx,dz , A0 ∈ R

dy,dx

2: Initialize M̄0 ← 0 ∈ R
dx,dz , Ā0 ← 0 ∈ R

dy,dx

3: Initialize t ← 1
4: while Sx �= ∅ and Sz �= ∅ and Sy �= ∅ do
5: (xt, zt, yt) ← (Sx(t), Sz(t), Sy(t))

6: Mt ← LEARN1(zt, xt,Mt−1)
7: M̄t ← ((t− 1)M̄t−1 +Mt)/t

8: x̂t ← M̄tzt
9: At ← LEARN2(x̂t, ŷt, At−1)

10: Āt ← ((t− 1)Āt−1 +At)/t
11: t ← t+ 1
12: end while
13: return Āt

From the definition of no-regret for the optimization on
lines 6 and 9 in Algorithm 2, we get the following:

1

T

∑
t

‖Mtzt − xt‖2F − 1

T
min
M

∑
t

‖Mzt − xt‖2F ≤ o(T )

1

T

∑
t

∥∥AtM̄tzt − yt
∥∥2

F
− 1

T
min
A

∑
t

∥∥AM̄tzt − yt
∥∥2

F
≤ o(T )

Though these regret bounds give us a guarantee on each in-
dividual regression with respect the sequence of data points,
they fail to give us the desired performance bound as we
get in the single OLS scenario; these bounds do not show
that this method is competitive with the optimal result from
batch IVR in hindsight (e.g., how close is At to A∗ from Al-
gorithm 1 with M∗ instead of M̄t). We wish to show that
this algorithm is in fact competitive with the batch instru-
mental variable regression algorithm (Algorithm 1). Specif-
ically, we focus on the stochastic setting where each set of
data points (xt, zt, yt) ∼ P is i.i.d.. In this setting, we would
like to show that:
∑
t

E
[∥∥ĀtM

∗z − y
∥∥2

2

]
−min

A

∑
t

E
[
‖AM∗z − y‖22

]
≤ o(T )

where minA
∑

t E
[‖AM∗z − y‖22

]
is exactly the last ob-

jective of batch IVR, since under the assumption that
xt, yt, zt are i.i.d, 1

T ‖Y − AM∗Z‖2F (Eq. 4) converges

to E
[‖AM∗z − y‖22

]
in probability. In the below sec-

tion, we derive the above bound for our OIVR algorithm.
Through this bound, we are able to show that even though
we optimize At with regards to the online M̄t at ev-
ery timestep, we are finally competitive with the solution
achieved by the batch procedure that uses the batch M∗ to
learn A∗. We also note that the prior technique, recursive
IVR (e.g. (Söderström and Stoica 2002)), is similar to using
FTRL (Shalev-Shwartz 2011) with rank-1 updates. We be-
low extend prior analysis in that we derive a regret bound for
this type of update procedure.

Performance Analysis of Online IVR

In order to derive the primary theoretical contribution of this
work in Theorem 2, we first present the lemma below with a
derivation in the appendix 1. We follow with a sketch of the
proof for the performance guarantee of OIVR with regards
to the batch IVR solution and recommend the reader to the
appendix for the detailed derivation.

In lines 7 and 10 of Algorithm 2, we compute an average
of the sequence of predictors (matrices). This computation
can be done relatively efficiently without storing all the pre-
dictors trained. The usefulness of this operation can be seen
in the result of the below lemma.
Lemma 1. Given a sequence of convex loss functions
{�t(β)}, 1 ≤ t ≤ T , and the sequence of {βt} that is
generated by any no-regret online algorithm, under the as-
sumption that �t is i.i.d and � = E(�t), the average β̄ =
1/T

∑
t βt of {βt} has the following properties:

E
[
�(β̄)− �(β∗)

] ≤ 1

T
r(T ) → 0, T → ∞, (7)

where r(T ) stands for the function of the regret bound with
respect to T 2, which is sublinear and belongs to o(T ) for all
no-regret online learning algorithms. When � is α strongly
convex with respect to β in norm ‖ · ‖, we have:

E
[‖β̄ − β∗‖] ≤ 2

αT
r(T ) → 0, T → ∞ (8)

Similar online-to-batch analysis can be found in (Cesa-
Bianchi, Conconi, and Gentile 2004; Littlestone 2014;
Hazan and Kale 2014). For completeness, we include the
proof of the lemma in the appendix.

With this, we now approach the main theorem for the re-
gret bound on Online Instrumental Variable Regression. We
explicitly assume that xt, yt and zt are i.i.d, and x = E(xt),
y = E(yt), z = E(zt), and E(ztz

T
t ) is positive definite.

Theorem 2. Assume (xt, yt, zt) are i.i.d. and E(zzT ) is pos-
tive definite. Following any online no-regret procedure on
the convex L2 losses for Mt, and At and computing M̄t, Āt

as shown in Algorithm 2, we get that as T → ∞:

E
[∥∥ĀTM

∗z − y
∥∥2
2

]
→ E

[
‖A∗M∗z − y‖22

]
(9)

and ĀT → A∗ (10)

1Available at http://www.cs.cmu.edu/˜arunvenk
2For instance, online gradient descent (Zinkevich 2003) has

rt(T ) = C
√
T for some positive constant C.

2103



for the A∗, M∗ from Batch IVR (Alg. 1).

Proof. For the sake of brevity, we provide the complete
proof in the appendix and an abbreviated sketch below.

Since we run a no-regret online algorithm for At on
loss function ‖AtM̄tzt − yt‖22, we have:∑

t

‖AtM̄tzt − yt‖22 ≤ REGRETA +
∑
t

‖A∗M̄tzt − yt‖22

where
∑

t denotes
∑T

t=1.
Let εt = M∗ − M̄t. Then, expanding the squared norms on
the left and right side of the inequality, rearranging terms,
and upperbounding the terms we get:∑

t

‖AtM
∗zt − yt‖22 ≤ REGRETA

+
∑
t

‖A∗M∗zt − yt‖22

+ ‖A∗‖2F ‖εt‖2F ‖zt‖22 + ‖At‖2F ‖εt‖2F ‖zt‖22
+ 2|(A∗M∗zt − yt)

T
(A∗εtzt)|

+ 2|(AtM
∗zt − yt)

T
(Atεtzt)|

Assume that ‖zt‖2, ‖yt‖2, ‖M∗‖F , ‖At‖F , ‖A∗‖F are each
always upper bounded by some positive constant. Defining
positive constants C1 and C2 appropriately and using the
Cauchy-Swartz and triangle inequalities, we get:∑

t

‖AtM
∗zt − yt‖22 ≤ REGRETA (11)

+
∑
t

‖A∗M∗zt − yt‖22 + C1 ‖εt‖2F + C2 ‖εt‖F

Since we run a no-regret online algorithm on loss ‖Mtzt −
xt‖22 with the assumptions that zt, xt, and yt are i.i.d and
E[zzT ] is positive definite, we get as t → ∞:

E ‖εt‖2F ≤ 1

t
rM (t) → 0 and E ‖εt‖F ≤

√
1

t
rM (t) → 0,

where E is the expectation under the randomness of the se-
quences z and x. Considering the stochastic setting (i.e. i.i.d
zt, xt, and yt), applying Cesaro Mean (Hardy 2000) and tak-
ing T → ∞:

1

T
E

[∑
t

‖AtM
∗z − y‖22

]
≤ E

[
‖A∗M∗z − y‖22

]
Thus, we have shown the algorithm is no-regret.
Let ĀT = 1

T

∑
t At. Using Jensen’s inequality, we get:

E
[∥∥ĀTM

∗z − y
∥∥2
2

]
≤ E

[
‖A∗M∗z − y‖22

]
Since the above is valid for any A∗, let A∗ =

argminA E
[
‖AM∗z − y‖22

]
. Due to bounding from above

and below by the objective at A∗, we get:

E
[∥∥ĀTM

∗z − y
∥∥2
2

]
→ E

[
‖A∗M∗z − y‖22

]

With E
[
zzT

] � 0 resulting in strongly convex objective,
we get a unique minimizer for the objective:

ĀT → A∗, T → ∞

We also want to note that the regret rate of our al-
gorithm depends on the no-regret online algorithms used.
For instance, if we use OGD, which has no-regret rate of
O(

√
T/T ) for LEARN1 and LEARN2, then our algorithm

has a no-regret rate of O(
√
T/T ). The choice of learning

algorithm is related to the desired trade-off between compu-
tational complexity and convergence rate. FTRL and ONS
can have faster convergence, making them suitable for appli-
cations where obtaining samples is difficult: e.g., data from
a physical robot. In contrast, gradient-based algorithms (e.g.
iOGD, OGD) have lower computational complexity but may
converge slower, making them useful for scenarios where
obtaining samples is cheap, e.g., data from video games.

Dynamical Systems as

Instrumental Variable Models

For a dynamical system, let us define state s ∈ S ∈ R
m and

observation o ∈ O ∈ R
n. At time step t, the system stochas-

tically transitions from state st to state st+1 and then re-
ceives an observation ot+1 corresponding to st+1. A dynam-
ical system generates a sequence of observations ot from la-
tent states st connected in a chain. A popular family of algo-
rithms for representing and learning dynamical systems are
predictive state representations (PSRs) (Littman, Sutton, and
Singh 2001; Singh, James, and Rudary 2004; Boots and Gor-
don 2012; 2011a; 2011b; Boots, Siddiqi, and Gordon 2011;
Hefny, Downey, and J. Gordon 2015). It also has been shown
in (Boots and Gordon 2011b; Hefny, Downey, and J. Gordon
2015) that we can interpret the problem of learning PSRs
as linear instrumental-variable regression, which reduces the
dynamical system learning problem to a regression problem.

Following (Hefny, Downey, and J. Gordon 2015), we de-
fine the predictive state Q as Qt = E(ot:t+k−1|o1:t−1)
(instead of tracking the posterior distribution P(st|o1:t−1)
on state, we track the observable representation Qt), where
ot:t+k−1 is a k-step time window of future observations. We
also define the extended future observations as ot:t+k, which
is a (k + 1)-step time window of future observations. The
predictive state representation of extended futures is defined
as Pt = E(ot:t+k|o1:t−1). Therefore, learning a dynamical
system is equivalent to finding an operator A that maps from
Qt to Pt:

Pt = AQt (12)

With A and the initial belief Q0 = E(o0:k−1), we are able to
perform filtering and prediction. Given the belief Qt at step
t, we use A to compute Pt = E(ot:t+k|o1:t−1). To com-
pute E(ot+1:t+k|o1:t−1) (prediction), we simply drop the ot
from Pt. For filtering, given a new observation ot, under the
assumption that the extended future ot:t+k has constant co-
variance, we can compute E(ot+1:t+k|o1:t) by simply per-
forming a conditional Gaussian operation.
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(a) Mackey-Glass (τ = 10)
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(b) Helicopter

Timestep (Data Point #) 104
0 0.5 1 1.5 2 2.5

100

101
Airplane Flight Take Off

FTRL
iOGD
OGD
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(c) Airplane Flight Take Off

Timestep (Data Point #) 104
0 1 2 3 4 5 6 7 810-2

10-1

100

101
Robot Drill Assembly

FTRL
iOGD
OGD
ONS

(d) Robot Drill Assembly

Figure 2: Convergence Plots for the Dynamical System Experiments. (Best viewed in color)

A naive approach to compute A is to use ordinary linear
regression directly from futures ot:t+k−1 to extended futures
ot:t+k. However, even though ot:t+k−1 and ot:t+k are unbi-
ased samples of Qt and Pt, they are noisy observations of Qt

and Pt respectively. The noises overlap: ot:t+k−1 and ot:t+k

share a k-step time window (Hefny, Downey, and J. Gordon
2015). Therefore, directly regressing from Qt to Pt gives a
biased estimate of A, which can lead to poor prediction and
filtering performance. Indeed, as verified in our experiments,
the biased A computed by ordinary least square regression
performs worse in comparison to the IVR based methods.

To overcome the bias, the authors in (Boots and Gordon
2011b; Hefny, Downey, and J. Gordon 2015) introduce past
observations ot−k:t−1 as instruments. The past observations
ot−k:t−1 are not correlated with the noise in the future obser-
vations ot:t+k−1 and extended future observations ot:t+k but
are correlated with Qt. Explicitly matching terms to those
used in IVR, the noisy observation of Pt is equivalent to
y, the noisy observation of Qt is equivalent to x, and the
past observations ot−k:t−1 is the instrumental variable z.
Unlike (Hefny, Downey, and J. Gordon 2015), which intro-
duced batch IVR (Alg. 1) for system identification, we use
OIVR (Alg. 2) where we receive observations online.

Online Learning for Dynamical Systems

Given OIVR, learning dynamical systems online becomes
straightforward. To apply Alg. 2 to model dynamical sys-
tems, we maintain a k-step time window of the future
ot:t+k−1, a (k + 1)-step time window of the extended fu-
ture ot:t+k, and a k-step time window of the past ot−k:t−1.
Matching terms to Alg. 2, we set xt = ot:t+k−1, yt = ot:t+k,
and zt = ot−k:t−1. With xt, yt and zt, we update Mt and At

following lines 6 and 9. When a new observation ot+k+1

is received, the update of xt and yt and zt to xt+1, yt+1

and zt+1 is simple and can be computed efficiently (e.g., to
compute yt+1 = ot+1:t+k+1, we simply drop ot from xt and
append ot+k+1 at the end (i.e. circular buffer)).

By maintaining these three fixed-step time window of ob-
servations instead of building a large Hankel matrix ((Hefny,
Downey, and J. Gordon 2015; Boots, Siddiqi, and Gordon
2011)) that stores concatenations of all the observations, we
significantly reduce the required space complexity. At every
online update step (lines 6 and 9 in Alg. 2), the online learn-
ing procedure usually has lower computational complex-
ity. For instance, using Online Gradient Descent (Zinkevich

2003) requires O((kn)2) computations at each step com-
pared to the O((kn)3) in the batch-based algorithms (usu-
ally due to matrix inversions).

Experiments

We demonstrate the performance OIVR on a variety of dy-
namics benchmark and one illustrative econometrics prob-
lem. In Fig. 2, we show the convergence of the estimated Āt

in OIVR to the A∗ computed with IVR. As an additional per-
formance metric, we report the observation prediction error
with a constant covariance Kalman filter using Āt (Fig. 3) on
a set of held out test trajectories. For computational reasons,
we report the filter error after every 50 data points given to
the online learner. Below we describe each our test benches.

MG-10 The Mackey-Glass (MG) time-series is a standard
dynamical modelling benchmark (Ralaivola and D’Alche-
Buc 2004; Wingate and Singh 2006) generated from the
nonlinear time-delay differential equation ẋ(t) = −bx(t) +

ax(t−τ)
1+x(t−τ)10 . This system produces chaotic behavior for
larger time delays τ (seconds).

Helicopter The simulated helicopter from (Abbeel and
Ng 2005) computes its dynamics in a 21-dimensional state
space with a 4-dimensional control input. In our experi-
ments, a closed loop LQR controller attempts to bring the
helicopter to hover at a fixed point from randomly chosen
starting configurations. White noise is added in each state
transition. The LQR controller chooses actions based on
state and it poses a challenge for the learner to extract this
implicit relationship governing the evolution of the system.

Airplane Flight Take Off We also consider the complex
dynamics generated during a DA-42 airplane’s take off in
a flight simulator, X-plane (Research 2015), a well known
program for training pilots. Trajectories of observations,
which include among others speed, height, angles, and the
pilot’s control inputs, were collected were collected from a
human expert controlling the aircraft. Due to high correla-
tion among the observation dimensions, we precompute a
whitening projection at the beginning of online learning us-
ing a small set of observations to reduce the dimensionality
of the observations by an order of magnitude.
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Figure 3: Filtering Error for the Dynamical System Experiments. Note that the results for OLS iOGD in Fig. 3(c) and for ONS
in Fig. 3(d) are higher than the plotted area. (Best viewed in color)

Robot Drill Assembly Our final dynamics benchmark
consists of 96 sensor telemetry traces from a robotic
manipulator assembling the battery pack on a power drill.
The 13 dimensional observations consist of the robot arm’s
7 joint torques as well as the 3D force and torque vectors
as measured at the wrist of the robotic arm. The difficulty
in this real-world dataset is that the sensors, especially the
force-torque sensor, are known to be noisy and are prone to
hysteresis. Additionally, the fixed higher level closed-loop
control policy for the drill assembly task is not explicitly
given in the observations and must be implicitly learned.

We applied four different no-regret online learning al-
gorithms on the dynamical system test benches: OGD
(Online Gradient Descent), iOGD (implict Online Gradient
Descent), ONS (Online Newton Step), and FTRL (Follow
the Regularized Leader). Fig. 2 shows the convergence of
these online algorithms in terms of ‖Āt − A∗‖F , where Āt

is the solution of OIVR at time step t and A∗ is the solution
from batch IVR. Though FTRL had the fastest convergence,
FRTL is memory intensive and computationally expensive
as it runs a batch IVR at every time step over all the data
points which have to be stored. ONS, also a computationally
intensive algorithm, generally achieved fast convergence
on the testbenches, except in the Robot Drill Assembly
benchmark due to the difficulty in tuning the parameters of
ONS. In general, OGD and iOGD perform well while only
requiring storage of the latest data point. Furthermore, these
algorithms have lower computational complexity than ONS
and FTRL at each iteration.

We also compared the filtering performance of these
OIVR methods with batch IVR, batch OLS, and online OLS
(via iOGD) on these datasets. The results are shown in
Fig. 3. First, by comparing the batch IVR and batch OLS,
we observe that the biased A computed by batch OLS is con-
sistently outperformed on the filtering error by the A com-
puted by from batch IVR. Secondly, we also compare the
performance of OIVR and online OLS where OIVR outper-
forms online OLS in in most cases. In Fig. 3(c) we notice
that OIVR with FTRL, ONS, iOGD gives smaller filter error
than batch IVR. This is possible since IVR does not explic-
itly minimize the filter error but instead minimizes the sin-
gle step prediction error. The consistency result for IVR only
holds if the system has truely linear dynamics. However, as

our dynamics benchmarks consist of non-linear dynamics,
there may exist a linear estimator of the system dynamics
that can outperform IVR in terms of minimizing filter error.

College Distance We finally consider an econometrics
problem, a traditional application domain for instrumental
variable regression, the College Distance vignette. In this
experiment, we try to predict future wages given the number
of years of education as the explanatory variable (feature)
and the distance to the nearest 4 year college as the instru-
ment (Kleiber and Zeileis 2008; Card 1993). The claim is
that the distance is correlated with the years of college but is
uncorrelated with future wages except through the education
level. The goal is to find the meaningful linear coefficient
from education level to wages. As such, we do not compare
against OLS as it does not try to find a similarly meaningful
representation. We see in Table 1 that the online algorithm is
able to converge on the solution found in the batch setting.

IVR iOGD ONS OGD FTRL

Computed A 0.688 0.690 0.689 0.698 0.688

Table 1: Ā found using various online no-regret algorithms
versus A from batch IVR for the College Distance dataset.

Conclusion

We introduced a new algorithm for Online Instrumental
Variable Regression and proved strong theoretical perfor-
mance bounds with regard to the traditional batch Instru-
mental Variable Regression setting through a connection to
no-regret online algorithms. Through connections between
IVR and dynamical system identification, we introduced a
rich new family of online system identification algorithms.
Our experimental results show that OIVR algorithms work
well in practice on a variety of benchmark datasets.
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