
Accelerating Random Kaczmarz Algorithm
Based on Clustering Information

Yujun Li and Kaichun Mo and Haishan Ye
Department of Computer Science and Engineering

Shanghai Jiao Tong University
{liyujun145,yhs12354123}@gmail.com, daerduomkch@sjtu.edu.cn

Abstract

Kaczmarz algorithm is an efficient iterative algorithm to solve
overdetermined consistent system of linear equations. During
each updating step, Kaczmarz chooses a hyperplane based
on an individual equation and projects the current estimate
for the exact solution onto that space to get a new esti-
mate. Many vairants of Kaczmarz algorithms are proposed
on how to choose better hyperplanes. Using the property of
randomly sampled data in high-dimensional space, we pro-
pose an accelerated algorithm based on clustering informa-
tion to improve block Kaczmarz and Kaczmarz via Johnson-
Lindenstrauss lemma. Additionally, we theoretically demon-
strate convergence improvement on block Kaczmarz algo-
rithm.

1 Introduction

In many real applications, we will face with solving the
overdetermined consistent system of linear equations of the
form Ax = b, where A ∈ R

n×p and b ∈ R
n are given data,

and x ∈ R
p is unknown vector to be estimated. If A has

a small size, we could directly solve the problem by com-
puting pseudo-inverse, x = A†b. However, if A is of large
size, either we cannot store it in the main memory or it is
extremely time-consuming to compute the pseudo-inverse.
Fortunately, in such cases, the Kaczmarz algorithm can be
used to solve the problem, since we can update our current
estimate to the exact solution x∗ iteratively by only using a
small fraction of entire data each time.

Recently, many variants of the classical Kaczmarz algo-
rithm (Kaczmarz 1937) are proposed by researchers. Classi-
cal Kaczmarz algorithm performs each iterative step by se-
lecting rows of A in a sequential order. Despite the power
of it, theoretical guarantee for its rate of convergence is
scarce. However, a randomized version of Kaczmarz al-
gorithm (Strohmer and Vershynin 2009), denoted as RKA
in this paper, yields provably exponential rate of conver-
gence in expectation by sampling rows of A at random,
with probability proportional to Euclidean norm. Recently,
more accelerated variants of Kaczmarz algorithms are put
forth by researchers. With the usage of well-known Johnson-
Lindenstrauss lemma (Johnson and Lindenstrauss 1984), El-
dar and Needell proposed RKA-JL algorithm (Eldar and

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Needell 2011), which selects the optimal update from a ran-
domly chosen set of linear equations during each iteration.
Empirical studies demonstrate an improved rate of conver-
gence than former methods. Moreover, along another direc-
tion of researches on accelerating Kaczmarz algorithm, mul-
tiple rows of A are utilized at the same time to perform one
single updating step. These RKA-Block methods (Elfving
1980; Needell and Tropp 2014; Briskman and Needell 2014)
use subsets of constraints during iterations so that an ex-
pected linear rate of convergence can be provably achieved if
utilizing randomization as well. However, geometric proper-
ties of blocks are important. Blocks with bad-condition num-
ber will interfere the rate of convergence.

Since Kaczmarz based algorithms are widely used nowa-
days (Natterer 1986; Sezan and Stark 1987; Dai, Soltana-
lian, and Pelckmans 2014; Thoppe, Borkar, and Manjunath
2014), many other branches of research on Kaczmarz are
developed. In terms of inconsistent case, many useful meth-
ods (Needell 2010; Zouzias and Freris 2013) are proposed.
When A is a large sparse matrix, there will appear a big
fill-in, modified Kaczmarz via clustering Jaccard and Ham-
ming distances can overcome this problem (Pomparău and
Popa 2014; Pomparău 2013). However in this paper, we
consider solving consistent system of linear equations with
high-dimensional matrix A following Gaussian distribution.

One greedy idea highlighted by (Eldar and Needell 2011)
emphasize the importance of choosing hyperplanes that give
the furthest distance to the current estimate during updat-
ing steps. Many methods such as (Eldar and Needell 2011)
are proposed to approximately utilize this idea by consider-
ing acceptable number of hyperplanes and selecting the fur-
thest one. In this paper, we utilize clustering methods to gain
more insight on where is the furthest hyperplane. Eventually,
we incorporated clustering algorithms into one version of
randomized Kaczmarz algorithm(RKA-JL) and block Kacz-
marz algorithm(RKA-Block) in order to better approximate
that optimal plane.

It is well-known that high-dimensioanl data points ran-
domly sampled according to Gaussian distribution are much
likely be orthogonal to each other. One can refer to (Blum,
Hopcroft, and Kannan 2015) and Theorem 1 for details.
Even though real data entities in high dimension are not ide-
ally sampled from Gaussian distribution, they still tend to
stretch along with different axes. In this paper, we cluster

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1823



rows of A into different classes so that the center points of
clusters tend to be orthogonal. After capturing the clustering
information, we may first measure the distances between the
centroids of clusters to the current estimate within a tolerable
amount of time to gain knowledge about distances from the
current estimate to all hyperplanes determined by rows of
A. Then, we may further select one sample from the furthest
cluster to approximate the unknown furthest hyperplane.

The paper offers the following contributions:

• After applying clustering method and utilizing clustering
information, we improve RKA-JL and RKA-Block algo-
rithms to speedup their convergences. The empirical ex-
periments show the improvement clearly.

• Theoretically, we prove that clustering method could im-
prove convergence of RKA-Block algorithm. In addi-
tion, we coarsely analyze the modified RKA-JL (RKA-
Cluster-JL) in terms of runtime.

The remainder of the paper are organized as follows. In
section 2, we give a short overview of two relevant algo-
rithms proposed in recent years, which should be helpful
in understanding our algorithms. Section 3 shows how to
use clustering method to improve RKA-JL algorithm and
RKA-Block algorithm. We prove theoretically that cluster-
ing method could improve convergence of RKA-Block algo-
rithm. In section 4, we conduct some numerical experiments
to show the improved performance of our algorithms. Sec-
tion 5 concludes the paper briefly.1

2 Related Work

Consider the overdetermined consistent linear equation sys-
tem Ax = b, where A ∈ R

n×p, b ∈ R
n and x ∈ R

p. Denote
x0 the initial guess of x, A1, A2, ..., An the rows of data ma-
trix A and b1, b2, ..., bn the components in b. Besides, let x∗
denotes the optimal value such that it satisfies Ax∗ = b.

In classical Kaczmarz algorithm (Kaczmarz 1937), rows
are iteratively picked in a sequential order. Denote xk to be
the estimate of x∗ after k iterations. At the kth updating step,
we first pick one hyperplane Aix = bi and then xk can be
calculated by the former estimate xk−1 and the picked hyer-
plane as follows.

xk = xk−1 +
bi − 〈Ai, xk−1〉

‖Ai‖22
Ai (1)

Our work mainly relies on RKA-JL algorithm (Eldar
and Needell 2011) and RKA-Block algorithm (Needell and
Tropp 2014). We will review these algorithms below.

2.1 RKA-JL

During each updating step, Kaczmarz algorithm chooses a
hyperplane to project on. Thus, it is a combinatoric problem
if we want to select out the optimal sequence of projecting
hyperplanes and achieve the fastest convergence to the ex-
act solution x∗. Unfortunately, such problem is too compli-
cated to be solvable in reasonable amount of time. But, some

1Missing proof details can be found at the full paper
http://arxiv.org/abs/1511.05362.

greedy algorithm whose running time is affordable may be
used to approximate the optimal sequence of hyperplanes
and achieve a quite excellent convergence rate.

Before introducing a greedy algorithm proposed by (Eldar
and Needell 2011), we have to note a key property shared
by all Kaczmarz related algorithms. Recall that Kaczmarz
algorithm iteratively update the current estimate to a new
one by projecting on to one hyperplane. It is easy to observe
that the Euclidean distance between the current estimate and
the solution is monotonically decreased, which means that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2
This is obvious because

‖xk+1 − x∗‖22 = ‖xk − x∗‖22 − ‖xk+1 − xk‖22
≤ ‖xk − x∗‖22

Thus, if we can find a way to maximize ‖xk+1 − xk‖2 at
each iteration, we may achieve better convergence rate at
last.

The exact greedy idea has been highlighted in (Eldar and
Needell 2011) when they proposed RKA-JL algorithm. The
idea is quite simple but reasonable. At the k-th updating
step, we can choose the hyperplane Aix = bi to project on
where Ai = argmaxAi

‖xk − xk−1‖2 and update the esti-
mate as Eq(1). But, after thinking of the practical issue, we
may find that it is unaffordable to sweep through all rows of
A to pick the best one at each iteration. Thus, (Eldar and
Needell 2011) proposed a procedure to approximate the best
hyperplane before performing each updating step, which is
the key component of RKA-JL algorithm.

Instead of sweeping through the whole data and com-
paring the update ‖xk+1 − xk‖2, RKA-JL algorithm (Eldar
and Needell 2011) selects p rows from A with probabil-
ity ‖Ai‖22 / ‖A‖2F , utilizes Johnson-Lindenstrauss lemma to
approximate the distance ‖xk+1 − xk‖2 = |bi−〈Ai,x〉|

‖Ai‖2
and

then choose the maximized one as the row to determine the
projecting hyperplane. Besides, a testing step is launched to
ensure that the chosen hyperplane will not be worse than that
of classical.

In the initialization step, the multiplication of A and Φ
costs O(npd) time. And it takes O(np) time to compute
the sampling probability, which only needs to be computed
once and coule be used in the following selection steps dur-
ing each updating step. The selection step costs O(pd) time,
while the testing and updating step clearly only cost O(p)
time. Therefore each iteration costs O(pd) time. The algo-
rithm converge (in expectation) in O(p) iterations, then the
overall runtime is O(npd+ dp2).

The whole process is given in Algorithm 1.
In fact, RKA-JL algorithm is only a weak approximation

to the greedy idea mentioned above, since it only takes into
consideration a small fraction of data each time. It is ob-
vious that the greater value of d and row selection number
will give greater improvements, but at the expense of greater
computation cost at each iteration. There is a trade-off be-
tween improvement and computational expense. However,
after utilizing clustering methods, more data can be used in

1824



Algorithm 1 RKA-JL
1: Input: A ∈ R

n×p, b ∈ R
n. Solve consistent linear

equation system Ax = b, where x ∈ R
p.

2: Initialization Step: Create a d × n Gaussian matrix Φ
and set αi = ΦAi. Initialize x0. Set k = 0.

3: Selection Step:Select p rows so that each row Ai is cho-
sen with probability ‖Ai‖22 / ‖A‖2F . For each row se-
lected, calculate

γi =
|bi − 〈αi,Φxk〉|

‖αi‖2
and set j = argmaxi γi.

4: Test Step: Select the first row Al out of the n, explicitly
calculate

γ̂j =
|bj − 〈Aj , xk〉|

‖Aj‖2
and γ̂l =

|bl − 〈Al, xk〉|
‖Al‖2

If γ̂l > γ̂j , set j = l.
5: Update Step: Set

xk+1 = xk +
bj − 〈Aj , xk〉

‖Aj‖22
Aj

6: Set k = k + 1. Go to step 3 until convergence.

selecting the best hyperplane while keeping the computa-
tional cost in an acceptable amount. We will illustrate our
modified RKA-Cluster-JL algorithm in section 3.1.

2.2 RKA-Block

Another direction of researches related with Kaczmarz lies
on the utilization of multiple rows of A to update at each
updating step. In (Elfving 1980; Needell and Tropp 2014)
block versions of Kaczmarz algorithm are proposed. Instead
of just using one hyperplane at each updating step, block
Kaczmarz uses multiple hyperplanes. To be specific, when
updating xk, we may project the old estimate xk−1 using
Aτ which is a submatrix in A and its corresponding bτ via
xk = xk−1 + (Aτ )

†(bτ −Aτxk−1).

Algorithm 2 RKA-Block
1: Input: A ∈ R

n×p, b ∈ R
n. Solve consistent linear

equation system Ax = b, where x ∈ R
p.

2: Initialization Step: Initialize x0. Set k = 0.
3: Selection Step: Uniformly choose some τ rows to con-

struct a matrix block Aτ .
4: Update Step: Set

xk+1 = xk + (Aτ )
†(bτ −Aτxk)

5: Set k = k + 1. Go to step 3 until convergence.

Block Kaczmarz algorithm selects several hyperplanes
and project xk onto the intersection of several hyperplanes.
This procedure acts exactly the same as projecting the cur-
rent estimate in hyperplanes iteratively until convergence.

However, only one updating step is required to achieve that,
while iteratively bouncing between these hyperplanes takes
time. See Algorithm 2 for details.

While block Kaczmarz provably expected linear rate of
convergence, it remains a problem on how to choose rows
to construct blocks so that they are well-conditioned. We
will show in section 3.2 that utilizing clustering information
helps a lot. Besides, theoretical guarantee is given to demon-
strate the acceleration of our modified RKA-Cluster-Block
algorithm.

3 Methodology and Theoretical Analysis

In this section we will introduce our accelerated algorithms
and give some theoretical analysis. Our observation is that
high-dimensional Gaussian distributed data tends to stretch
in nearly orthogonal clusters. See theorem below for Theo-
retical proof.

Theorem 1. u and v are two vectors in R
d. Suppose each

entry of u and v are sampled from Gaussian distribution
N (0, σ2). Then one has the probability inequality

P (
|uT v|

‖u‖2 ‖v‖2
≤ ε) ≥

(
1− 1

ε2(1− δ)4d

)(
1− 6e−cδ2d

)

where δ ∈ [0, 1] and c is a fixed constant.

Proof. (Sketch) Denote Eu the event that u holds in-
equality σ(1 − δ)

√
d ≤ ‖u‖2 ≤ σ(1 + δ)

√
d. Via

Bayes’ theorem we have P (|uT v| ≤ ε ‖u‖2 ‖v‖2) =

P (|uT v| ≤ ε ‖u‖2 ‖v‖2 |Eu ∩ Ev)P (Eu ∩ Ev). We apply
Chebyshev’s inequality to bound the probability P (|uT v| ≤
ε ‖u‖2 ‖v‖2 |Eu ∩ Ev). Together with bound on the proba-
bility P (Eu ∩ Ev), we finish the proof. We leave details to
the full paper.

Therefore, two randomly chosen items from a high-
dimensional Gaussian distributed data have a high proba-
bility to be perpendicular. Even though real data entities
in high dimension are not ideally sampled from Gaussian
distribution, they still tend to stretch along with different
axes (Blum, Hopcroft, and Kannan 2015). Thus, they can
be grouped into different clusters where distances to each
other are quite large. Moreover, if the data actually can be
embedded in a small dimensional space, the number of clus-
ters should be close to the rank of the space, and thus quite
small. Thus, if we can measure the property of these clus-
ters within affordable amount of time, we can quickly master
some knowledge on the entire data set.

Base on this observation, we give two accelerating algo-
rithms via taking advantage of clustering. The clustering al-
gorithm needs not to be specific. Any clustering algorithm
with runtime no more than O(npd + dp2) is acceptable. In
practice, we use a k-means clustering method(King 2012).
Clustering A’s rows into k cluster will cost O(knp). In ex-
periments, k = 4. It can be absorbed in the order of RKA-
JL’s computing operation numbers. Therefore the runtime
on clustering is acceptable.

1825



3.1 RKA-Cluster-JL

To perform each projection, Kaczmarz select one hyper-
plane Aix = bi to be projected on. We should notice that
the hyperplane is uniquely determined by normal vector
Ai/ ‖Ai‖2. To see this, recall Eq(1). If we scale Ai and bi by
multiplying a constant c, it will not change the updating re-
sult. Besides, since all hyperplanes go through the point x∗,
we can uniquely calculate out bi = Aix∗. Thus, it is enough
to only consider the normal vectors of rows of A with unit
length when choosing hyperplane to be projected on.

In this section, we will utilize clustering method to im-
prove RKA-JL algorithm proposed by (Eldar and Needell
2011). We conduct a clustering algorithm on A to cluster
the rows into k clusters, each of which has a representive
vector or cluster center Acj , j ∈ {1, 2, ..., k}. At each it-
eration, we first choose the cluster representive vector Acj
which gives the maximized update ‖xk+1 − xk‖2. Then in
the jth cluster we randomly choose p rows with probability
proportional to ‖Ai‖22 / ‖A‖2F . This procedure could help us
on better approximating the furthest hyperplane since good
planes are more likely to be in the furthest cluster. The whole
process is detailedly stated in Algorithm 3.

The most difference between Algorithm 1 and Algorithm
3 is that Algorithm 3 chooses the best cluster representive
point first, and then process as the same in Algorithm 1.

Ideally, if the furthest hyperplane to the current estimate
lies in the furthest cluster, Algorithm 3 doesn’t spend time to
consider data points in other clusters at all, while Algorithm
1 still does that. If the total budget for sampled rows each
time is fixed to s, Algorithm 3 spends (s−c) of them search-
ing in the right cluster, while Algorithm 1 only spends s/c,
which drops the probability of it to find better hyperplane
compared with Algorithm 3.

To theoretically analysize our algorithm, we propose the
following proposition.
Proposition 2. A ∈ R

n×p is a row-normalized matrix,
whose rows have unit length. Suppose the row vectors of
A are uniformly distributed in the high-dimensional space.
Cluster these row vectors by directions into k = O(log(p))
clusters, each of which has t = n

k rows. Among k cluster-
ing representive vectors, let Ac be the one maximizing the
update ‖xk+1 − xk‖22. Suppose the rows in the cth cluster
have bigger updates than rows in other clusters. In RKA-JL,
it set d = O(log(p)) for Gaussian matrix Φ ∈ R

d×p. Then
the utility of the RKA-JL algorithm comparing kp rows to
find a maximized one in O((log(p))2p) time is the same of
the utility of RKA-Cluster-JL algorithm comparing k + p
rows in O(log(p)p) time.

Since the updates are only determined by the directions of
the rows, roughly speaking, the rows with similar directions
in the same cluster will have similar updates. Therefore the
rows in cluster c tends to have bigger updates than the rows
in other cluster. This is essentially the key idea behind this
algorithm.

3.2 RKA-Cluster-Block

In this subsection, we will apply clustering method to block
Kaczmarz. We will show that by using the clustering in-

Algorithm 3 RKA-Cluster-JL
1: Input: A ∈ R

n×p, b ∈ R
n.

2: Output: Solve consistent linear equation system Ax =
b, where x ∈ R

p.
3: Initialization Step: Create a d × p Gaussian matrix Φ

and set αi = ΦAi. Conduct a clustering algorithm in
the rows of A, resulting in c clusters with representive
points Acl

, l = {1, 2, ..., c}. Initialize x0. Set k = 0.
4: Selection Step: Calculate

x̂k = Φxk

For each representive point, calculate

rl =
|bi − 〈Acl

, xk〉|
‖Acl

‖2
and set t = argmaxl rl.
Select p rows so that each row Ai is chosen with prob-
ability ‖Ai‖22 / ‖A‖2F in the tth cluster. For each row
selected, calculate

γi =
|bi − 〈αi,Φxk〉|

‖αi‖2
and set j = argmaxi γi.

5: Test Step: Select the first row al out of the n, explicitly
calculate

γ̂j =
|bj − 〈aj , xk〉|

‖aj‖2
and γ̂l =

|bl − 〈al, xk〉|
‖al‖2

If γ̂l > γ̂j , set j = l.
6: Update Step: Set

xk+1 = xk +
bj − 〈aj , xk〉

‖aj‖22
aj

7: Set k ← k + 1. Go to step 4 until convergence.

formation we can easily construct well-conditioned matrix
blocks doing favor in the convergence analysis of block
Kaczmarz.
Lemma 3. (Needell and Tropp 2014). Suppose A is a matrix
with full column rank that admits an (m,α, β) row paving
T . Consider the least-squares problem

min ‖Ax− b‖22
Let x∗ be the unique minimizer, and define e := Ax∗ − b.
Then for randomized block Kaczmarz method, one has

E[‖xj − x∗‖22] ≤
[
1− σ2

min(A)

βm

]
‖x0 − x∗‖22

+
β

α

‖e‖22
σ2
min(A)

where an (m,α, β) row paving is a partition T =
{τ1, ..., τm} of row indices that satisfices

α ≤ λmin(AτiA
T
τi) and λmax(AτiA

T
τi) ≤ β

1826



for each τi ∈ T .
From the lemma above, we notice that the convergence

rate of block Kaczmarz algorithm highly depends on the
spectral norm β and condition number β/α of the block ma-
trix. The smaller value of β and β/α will give us a faster
convergence rate. See Algorithm 4 for our entire proposed
algorithm.

Algorithm 4 RKA-Cluster-Block
1: Input: A ∈ R

n×p, b ∈ R
n.

2: Output: Solve consistent linear equation system Ax =
b, where x ∈ R

p.
3: Initialization Step:

Clustering: Conduct a clustering algorithm in the rows
of A, resulting in c clusters with representive vectors
Acl

, l = {1, 2, ..., c}
Partition: Randomly extract one row of each cluster

and compose to a row submatrix Aτi from A, where
i ∈ {1, 2, ..., T}. And denote the corresponding val-
ues as bτi.

Setting: k = 0, xk = 0, N the number of iteration.
4: Selection Step: Uniformly Select Aτi from

{Aτ1 , Aτ2 , ..., AτT }.
5: Update Step: Set

xk+1 = xk + (Aτ )
†(bτ −Aτxk)

6: Set k = k + 1. Go to step 4 until convergence.

Next, we will theoretically show that our algorithm have
a better convergence rate under a mild assumption that data
are sampled according to high-dimensional Gaussian distri-
bution. The runtime analysis is similar to RKA-Cluster-JL.

To measure the orthogonality between matrix rows, we
define the orthogonality value.
Definition 4 (Orthogonality Value). A is an k × p matrix.
Let Â be the matrix after normalizing rows of A. Then each
row of Â has unit length. Define Orthogonality Value

ov(A) = max
i�=j

|〈Âi, Âj〉|

where Âi is the ith row of Â.
Clearly, the inequality 0 ≤ ov(A) ≤ 1 holds for any ma-

trix A. Take some examples to get a close look, ov(I) = 0,
ov(ones2(5, 5)) = ov(ones(5, 5)/

√
5) = 1. Then we could

give a upper bound on spectral norm below.
Theorem 5. A ∈ R

k×p, Ai ∈ R
p is the ith row of A,

‖Ai‖2 = 1 for all i ∈ {1, 2, ..., k}. Suppose the orthogo-
nality value ov(A) ≤ ε, then one has∥∥AAT

∥∥
2
≤ 1 + kε.

Proof. (Sketch) Using the fact that ‖X‖22 ≤ ‖X‖1 ‖X‖∞,
we bound

∥∥AAT
∥∥
1

and
∥∥AAT

∥∥
∞ respectively. We leave

details to the full paper.
2Matlab notation.

This theorem gives us an upper bound of spectral norm
to the matrix with bound on orthogonality value. Lower or-
thogonality value corresponds to that A’s rows are almost
perpendicular. Thus, we can conclude that selecting rows
from each cluster to construct block matrices can give us
small spectral norm.
Theorem 6. Let A be a k × p row-normalized matrix. Sup-
pose |〈Ai, Aj〉| ≥ δ for all i, j ∈ {1, 2, ..., k}, then one has∥∥AAT

∥∥
2
≥ 1 + (k − 1)δ.

While, this theorem gives us an lower bound to the matrix
with relatively low orthogonality value. This corresponds to
the case that if we choose rows from only one or two clus-
ters since these selected rows have almost same direction. In
such case, we proved that the spectral norms of block ma-
trices are quite large. Thus, it is quite reasonable to say that
choosing rows from each cluster should converge faster than
choosing rows from one or two clusters.
Theorem 7. A ∈ R

k×p, Ai ∈ R
p is the ith row of A,

‖Ai‖2 = 1 for all i ∈ {1, 2, ..., k}. Suppose the orthogo-
nality value ov(A) ≥ 1

ε , then one can bound the condition
number of AAT ,

cond(AAT ) ≤ 1 + kε

1− ε
.

According to lemma 3, spectral norm and condition num-
ber have a huge impact to the convergence of block Kacz-
marz. Based on the same assumption about low orthogonal-
ity value, the two theorems 5 and 7 give a theoretical analysis
to the upper bounds of spectral norm and condition number.
Also, the experiments show that block Kaczmarz with clus-
tering is more robust in the noisy case.

It is necessary to notice that (Needell and Tropp 2014)
proposed two algorithms to select block matrices. One ap-
proach is an iterative algorithm repeatedly extracting a well-
conditioned row-submatrix from A until the paving is com-
plete. This approach is based on the column subset selection
method proposed by (Tropp 2009). The another approach
is a random algorithm partitioning the rows of A in a ran-
dom manner. The iterative algorithm will give a set of well-
conditioned blocks, but at a much expense of computation.
The random algorithm is easy to implement and bears an up-
per bound β ≤ 6 log(1 + n) with high probability 1− n−1.
Our construction for the clustering matrix blocks is more
similar to the random algorithm in that we also construct the
matrix block in a random manner, after clustering.

But to get the lower bound of α, the random algorithm
needs a fast incoherence transform, which changes the orig-

inal problem min ‖Ax− b‖22 into
∥∥∥Ãx− b̃

∥∥∥2
2
, where Ã =

SA, b̃ = Sb and S is the fast incoherence transform-
ing matrix. Therefore it brings more noise into the origi-
nal problem. Without changing the original form of the least
square problem, our clustering method will construct well-
conditioned matrix block with proven upper bounds.

4 Experiment
In this section we empirically evaluate our methods in
comparison with RKA-JL and RKA-Block algorithms. We

1827



mainly follow (Needell and Tropp 2014) to conduct our ex-
periments. The experiments are run in a PC with WIN7 sys-
tem, i5-3470 core 3.2GHz CPU and 8G RAM.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

R
e
la

ti
v
e
 A

b
s
o
lu

te
 R

e
s
id

u
a
l 
to

 x
*

 

 

RKA−JL

RKA−Cluster−JL

(a) Add noise N (0, 0.1)

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration

R
e
la

ti
v
e
 A

b
s
o
lu

te
 R

e
s
id

u
a
l 
to

 x
*

 

 

RKA−JL

RKA−Cluster−JL

(b) Add noise N (0, 0.2)

Figure 1: Convergence comparison between RKA-JL and
RKA-Cluster-JL

First, we compare the proposed RKA-Cluster-JL with the
original RKA-JL algorithm. We generate data that com-
prises of several clusters. Here, n = 10000 and p = 1000.
Besides, since the real data is usually corrupted by white
noise, we add Gaussian noise with mean 0 and standard de-
viation 0.1 or 0.2. Figure 1 below shows that RKA-Cluster-
JL outperforms RKA-JL. To cluster the data, we use the K-
means variant algorithm (King 2012).

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iterations

R
e

la
ti
v
e

 A
b

s
o

lu
te

 R
e

s
id

u
e

 t
o

 X
tru

e

 

 

RKA−Block

RKA−Cluster−Block

(a) Add noise N (0, 0.1)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Iterations

R
e

la
ti
v
e

 A
b

s
o

lu
te

 R
e

s
id

u
e

 t
o

 X
*

 

 

RKA−Block

RKA−Cluster−Block

(b) Add noise N (0, 0.2)

Figure 2: Convergence comparison between RKA-Block
and RKA-Cluster-Block

Next, we compare the results produced by RKA-Block
and RKA-Cluster-Block algorithms. We generate data that
lies in four distinctive clusters. Here, n = 10000, p = 1000
and the block size is four. Then, as usual, white Gaussian
noise with mean 0 and standard deviation 0.1 or 0.2 is added
to the data to simulate the real world. From Figure 2 below,
we can see that our algorithm performs better than RKA-
Block algorithm.

It is quite reasonable that our algorithm is better. Since our
theoretical analysis tells us that smaller condition number or
spectral norms of the block matrix, better performance the
algorithm will have. We collect the condition numbers and
spectral norm when these iterative algorithm running, and
draw the box plots on Figure 3. It shows that our algorithm
gives both smaller condition number and spectral norm.

5 Conclusion

In this paper, we propose an acceleration approach to im-
proving the RKA-JL algorithm. Our approach is based on

1.6

1.8

2

2.2

2.4

2.6

randomized paving cluster

C
o
n
d
it
io

n
 N

u
m

b
e
r

(a) N (0, 0.1)

1.1

1.2

1.3

1.4

1.5

1.6

randomized paving cluster

S
p
e
c
tr

a
l 
N

o
rm

(b) N (0, 0.1)

1.6

1.8

2

2.2

2.4

2.6

randomized paving cluster

C
o
n
d
it
io

n
 N

u
m

b
e
r

(c) N (0, 0.2)

1.1

1.2

1.3

1.4

1.5

1.6

randomized paving cluster

S
p
e
c
tr

a
l 
N

o
rm

(d) N (0, 0.2)

Figure 3: Comparison between RKA-Block and RKA-
Cluster-Block in Condition number and spectral norm

a simple yet effective idea for clustering data points. More-
over, we have extended the clustering idea to construct well-
conditioned matrix blocks, which shows improvement over
the block Kaczmarz. When data points follow a Gaussian
distribution, we have conducted theoretical and empirical
analysis of our approaches.

References

Blum, A.; Hopcroft, J. E.; and Kannan, R. 2015. Founda-
tions of Data Science.
Briskman, J., and Needell, D. 2014. Block kaczmarz method
with inequalities. Journal of Mathematical Imaging and Vi-
sion 1–12.
Byrne, C. 2009. Bounds on the largest singular value of
a matrix and the convergence of simultaneous and block-
iterative algorithms for sparse linear systems. International
Transactions in Operational Research 16(4):465–479.
Dai, L.; Soltanalian, M.; and Pelckmans, K. 2014.
On the randomized kaczmarz algorithm. arXiv preprint
arXiv:1402.2863.
Eldar, Y. C., and Needell, D. 2011. Acceleration of ran-
domized kaczmarz method via the johnson–lindenstrauss
lemma. Numerical Algorithms 58(2):163–177.
Elfving, T. 1980. Block-iterative methods for consistent
and inconsistent linear equations. Numerische Mathematik
35(1):1–12.

1828



Hong, Y., and Pan, C.-T. 1992. A lower bound for the
smallest singular value. Linear Algebra and Its Applications
172:27–32.
Johnson, W. B., and Lindenstrauss, J. 1984. Extensions
of lipschitz mappings into a hilbert space. Contemporary
mathematics 26(189-206):1–1.
Kaczmarz, S. 1937. Angenäherte auflösung von systemen
linearer gleichungen. Bulletin International de lAcademie
Polonaise des Sciences et des Lettres 35:355–357.
King, A. 2012. Online k-means clustering of nonstationary
data. Prediction Project Report.
Natterer, F. 1986. The mathematics of computerized tomog-
raphy, volume 32. Siam.
Needell, D., and Tropp, J. A. 2014. Paved with good in-
tentions: Analysis of a randomized block kaczmarz method.
Linear Algebra and its Applications 441:199–221.
Needell, D. 2010. Randomized kaczmarz solver for noisy
linear systems. BIT Numerical Mathematics 50(2):395–403.
Pomparău, I., and Popa, C. 2014. Supplementary projec-
tions for the acceleration of kaczmarz algorithm. Applied
Mathematics and Computation 232:104–116.
Pomparău, I. 2013. On the acceleration of kaczmarz projec-
tion algorithm. PAMM 13(1):419–420.
Sezan, M. I., and Stark, H. 1987. Incorporation of a pri-
ori moment information into signal recovery and synthesis
problems. Journal of mathematical analysis and applica-
tions 122(1):172–186.
Strohmer, T., and Vershynin, R. 2009. A randomized kacz-
marz algorithm with exponential convergence. Journal of
Fourier Analysis and Applications 15(2):262–278.
Thoppe, G.; Borkar, V.; and Manjunath, D. 2014. A stochas-
tic kaczmarz algorithm for network tomography. Automatica
50(3):910–914.
Tropp, J. A. 2009. Column subset selection, matrix factor-
ization, and eigenvalue optimization. In Proceedings of the
Twentieth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 978–986. Society for Industrial and Applied Mathe-
matics.
Zouzias, A., and Freris, N. M. 2013. Randomized extended
kaczmarz for solving least squares. SIAM Journal on Matrix
Analysis and Applications 34(2):773–793.

1829




