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Abstract

Graph-based Semi-Supervised learning is one of the most
popular and successful semi-supervised learning methods.
Typically, it predicts the labels of unlabeled data by mini-
mizing a quadratic objective induced by the graph, which is
unfortunately a procedure of polynomial complexity in the
sample size n. In this paper, we address this scalability is-
sue by proposing a method that approximately solves the
quadratic objective in nearly linear time. The method con-
sists of two steps: it first approximates a graph by a minimum
spanning tree, and then solves the tree-induced quadratic ob-
jective function in O(n) time which is the main contribution
of this work. Extensive experiments show the significant scal-
ability improvement over existing scalable semi-supervised
learning methods.

Introduction

Over the past decades, big data phenomenon becomes
more and more common as collecting unlabeled data is
very easy. On the other hand, labeled data are still pre-
cious as labeling data needs expensive human labor. This
motivates researchers to develop a new machine learning
paradigm, called semi-supervised learning (SSL), that can
learn from mixed data sets consist of a limited number of
labeled data and a large amount of unlabeled data. Actu-
ally, many SSL methods have been proposed over the past
decades, such as generative approach (Nigam et al. 2000),
co-training (Blum and Mitchell 1998), transductive support
vector machines (Joachims 1999), graph-based SSL (Blum
and Chawla 2001; Zhu, Ghahramani, and Lafferty 2003;
Zhou et al. 2004; Belkin, Niyogi, and Sindhwani 2006).

Among these methods, graph-based SSL is perhaps the
most popular one. It is appealing because: (1) graph-based
SSL provides a general and effective way for combining
labeled and unlabeled data, (2) the resulting optimization
problem is convex and admits a closed-form solution. Al-
though having these advantages, graph-based SSL does not
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scale well with respect to the sample size n. Indeed, Graph-
based SSL method has to minimize a quadratic-form objec-
tive function induced by the graph Laplacian matrix, which
suffers from a time complexity O(n3) for dense graphs. Al-
though this complexity can be significantly reduced when
the graph is sparse, it is still polynomial in the number of
nodes, which is intractable for large-scale problems.

To address this scalability issue, various methods have
been proposed. In particular, based on the idea of graph
sparsification, (Herbster, Pontil, and Galeano 2008; Cesa-
Bianchi, Gentile, and Vitale 2009) propose to approximate
the graph by a spanning tree and then design fast labeling
methods under the online learning setting. Despite the speed,
(Zhang, Huang, and Liu 2015) has shown that these meth-
ods enjoy the advantage over graph-based SSL of being very
robust to the graph construction.

Inspired by these methods, our method also begins with
the tree approximation of graph. With a given tree, our
method infers labels of unlabeled data by minimizing the
same objective function as in traditional graph-based SSL
method. The main contribution is that we propose a novel
tree Laplacian solver that solves the optimization problem
in O(n) time. Although the tree approximation idea has
been explored before, both our learning model and the opti-
mization method are totally different. We will review related
works in Section 2, and show advantages of our method by
extensive comparison experiments in Section 5: for given
graphs, our method is at least 10 times faster than state-of-
the-art scalable methods.

Related Works

Based on how to approximate the Laplacian matrix, scal-
able graph-based SSL methods can be divided into two cat-
egories: low-rank approximation and sparse approximation.

Low-rank approximation methods can be further divided
into two sub-categories. The methods of the first sub-
category (Delalleau, Bengio, and Le Roux 2005; Zhang,
Kwok, and Parvin 2009; Liu, He, and Chang 2010; Lever,
Diethe, and Shawe-Taylor 2012) are based on sampling a
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small subset of data points as prototypes which are then used
in building the prediction function, the affinity matrix or the
data dependent kernel, and the main difference lies in the ap-
proaches to construct the affinity matrix. The time complex-
ity of these methods are O(m2n), where m is the number
of prototypes. However, in practice, methods of this type are
still slow because: (1) the number of prototypes is propor-
tional to the size of data sets, which means the complexity is
not strictly linear with n; (2) the prototype selection stage,
e.g. k-means clustering, is time consuming.

The methods of the second sub-category are based on the
fast spectral decomposition of Laplacian matrix (Belkin and
Niyogi 2004; Fergus, Weiss, and Torralba 2009; Talwalkar
et al. 2013). Basically, these methods first extract the low
dimensional manifold structure represented by a few eigen-
vectors of the Laplacian matrix with small eigenvalues, and
then train a classifier on this presentation. However, when a
matrix is highly sparse (which is the case for most graphs),
its spectrum typically decays slowly, which makes the ap-
proximation of eigenvectors very inefficient.

The scalable methods of the second class are based on
graph sparsification. In (Herbster, Lever, and Pontil 2008;
Cesa-Bianchi et al. 2010), authors approximated a graph
with a line, and used the nearest neighbor rule to make clas-
sificiation. In (Herbster, Pontil, and Galeano 2008), authors
proposed to approximate a graph using a spanning tree, and
performed the perceptron algorithm to make prediction in
the RKHS space induced by this tree Laplacian. In (Cesa-
Bianchi, Gentile, and Vitale 2009; Zhang, Huang, and Liu
2015; Vitale et al. 2011), authors also adopted the tree ap-
proximation approach, but labeled the tree by minimizing
the tree cut.

Preliminaries

Problem Definition

In this work, we consider a particular setting of SSL called
transductive learning. Specifically, we are given l labeled
data points (x1, y1), . . . , (xl, yl) and n − l unlabeled data
points xl+1, . . . ,xn, where xi ∈ R

d (1 ≤ i ≤ n) is the
input of a data point, yi ∈ {−1,+1} (1 ≤ i ≤ l) indicates
the label of xi. For convenience, we also give a fake label to
each unlabel data: yi = 0 (l + 1 ≤ i ≤ n), and thus have
an input label vector y ∈ R

n. The goal is to predict the real
labels of unlabeled data.

For the multiple-class problem, we simply transfer it to
multiple binary-class problems by the one-vs-all strategy.

Graph Representation

To apply the graph-based SSL method, one has to represent
the data set by an undirected graph, in which each node rep-
resents a data point and each weighted edge evaluates the
similarity between the connected nodes. Mathematically, a
graph can be expressed by an affinity matrix W ∈ R

n×n, in
which Wij = Wji ≥ 0 is the weight of the edge between
node i and j. Furthermore, we can define a graph Laplacian
matrix by LG � D − W , where D ∈ R

n×n is a diagonal
matrix with Dii =

∑n
j=1 Wij .

Graph construction is very crucial for the success of
graph-based SSL, and is still an active field (Jebara, Wang,
and Chang 2009; Daitch, Kelner, and Spielman 2009; Zhang
et al. 2014). However, in practice, k-nearest neighbor (kNN)
graph and ε-nearest neighbor (εNN) graph are most popular.

Graph-based Semi-Supervised Learning

Given a partially labeled graph, graph-based SSL infers the
labels of unlabeled nodes by solving the following problem:

min
f∈Rn

(f − y)′C(f − y) + f ′LGf , (1)

where y and LG are defined as above, and C is a constant
diagonal matrix with Cii ≥ 0. The first term evaluates the
fitness of f to the input labels y, while the second term mea-
sures the smoothness of f w.r.t. the graph.

Many classical SSL methods can be viewed as spe-
cial cases of this method. For example, Gaussian Random
Fields (Zhu, Ghahramani, and Lafferty 2003) defines C by
Cii = +∞ for (1 ≤ i ≤ l) and Cii = 0 for (l+1 ≤ i ≤ n).
Learning Local and Global Consistency (Zhou et al. 2004)
uses a normalized graph Laplacian, and defines Cii = c for
all i (c > 0 is a constant).

Since the objective function is convex w.r.t. f , a global op-
timal solution exists. In addition, Problem (1) can be solved
by setting the gradient of the objective function to zero,
which leads to the following linear system:

(C + LG)f = Cy. (2)

Traditionally, it is solved by either two types of meth-
ods (Golub and Loan 1996): direct methods based on matrix
factorization and iterative methods such as conjugate gra-
dient decent (CG). In general, direct methods are preferred
when the problem is small and dense, while CG is more
widely used for large sparse problems. The complexity of
CG is O(m

√
κ) (Shewchuk 1994), where m is the number

of edges and κ is the condition number of C + LG. Since κ
is typically very large for large sparse matrices, in practice,
its running time is polynomial in n. Preconditioning tech-
niques have been applied to CG for improving κ and thus
accelerate CG (Spielman and Teng 2006). We will compare
our method with both CG and preconditioned CG in the ex-
perimental part.

Tree-based Semi-Supervised Learning

Overview

In this section, we propose a method that approximately
solves Problem (1) in nearly linear time with the number
of edges.

Our motivation is that most graphs contain a large number
of redundant edges which can be safely removed without
sacrificing the accuracy. Based on this graph sparsification
idea, our method first approximates the graph by a spanning
tree and builds a Laplacian matrix LT over the tree; second,
it infers the labels by solving the following problem:

minf∈Rn(f − y)′C(f − y) + f ′LT f

⇔ (C + LT )f = Cy, (3)

2345



where LT is the tree Laplacian matrix, y and C are de-
fined as before. In the following subsections, we first review
methods for building spanning trees, and then present the
tree Laplacian solver that solves Problem (3) in O(n) time,
which is the core contribution of this work.

Generating Spanning Trees

There are a variety of methods for generating spanning
trees for connected graphs. However, for the task of SSL,
researchers have observed that minimum spanning tree
(MST) tends to generate the best performance (Zhang,
Huang, and Liu 2015). Theoretically, MST is the solution of
min{

∑
(i,j)∈E(T ) −Wij : T ∈ T (G)}, where T (G) is the

set of all spanning trees of graph G and E(T ) is the edge set
of tree T . Also, MST best approximates the original graph in
term of the trace norm (Herbster, Pontil, and Galeano 2008).
Computationally, MST can be generated by Kruskal’s algo-
rithm in O(|E(G)| log n) time, where |E(G)| is the number
of edges in G.

In case that G is not connected, we generate one span-
ning tree for each connected component, and perform the
tree Laplacian solver on each component.

Tree Laplacian Solver

In this section, we propose an efficient method for solving
(C + LT )f = Cy. In essence, it is a direct method (Toledo
2005; Golub and Loan 1996)which consists of two steps:
it first factorizes T � (C + LT ) by computing a sparse
matrix S such that T = S′S, and then solves S′Sf = Cy
by solving two simple linear systems.

Traditional direct methods adopt Cholesky decomposition
T = LL′ to produce a lower triangular factor matrix. Unfor-
tunately, L may be very dense even for a sparse T which
leads to polynomial complexity. Unlike classic direct meth-
ods, our method generates a non-triangular factor matrix by
directly exploiting the structure of trees. Most importantly,
completed in several tree traversals, our method enjoys a
complexity of O(n).

Before detailing the method, we first summarize some
properties of T as below:

• Since both C and LT are symmetric and positive semi-
definite (PSD), T is symmetric and PSD.

• Since a n-node tree has n−1 edges, T has exactly 2(n−1)
strictly negative off-diagonal elements.

• Since each node has at least one edge, each row/column
in T contains at least one negative off-diagonal element.

Ordering the nodes We select an arbitrary node as the
root, and sort the nodes by their orders in a post-order traver-
sal of the tree, denoted by [i1, i2, . . . , in]. Thus, we can per-
form a bottom-up traversal by visiting nodes from i1 to in,
and a top-down traversal from in to i1.

Tree Laplacian Factorization We describe a two-step
tree Laplacian factorization method that computes S such
that T = S′S. By exploiting the tree structure, it can be
completed by one bottom-up traversal and one top-down
traversal to the tree, and thus has a complexity of O(n).

STEP 1: P ′TP = Λ
We seek a matrix P to diagonalize T as P ′TP = Λ,
which is done by a procedure that iteratively eliminates non-
zero off-diagonal elements in T from bottom to top. Set-
ting T (1) = T , we update T (t) by: T (t+1) = P (t)′T (t)P (t)

for t = 1, . . . , n − 1. P (t) is a matrix with only n + 1
non-zero elements: all its diagonal elements equal to 1, and

P
(t)
it↑(it) = −T

(t)

it↑(it)
T

(t)
itit

. ↑ (a) denotes the farther node of a.

It is easy to show by induction that: (1) T (t) is sym-
metric and (2) the it row of T (t) has exactly two non-
zero elements: T

(t)
it↑(it) and T

(t)
itit

. Thus, T (t+1) is dif-

ferent from T (t) by only three elements: T
(t+1)
↑(it)↑(it) =

T
(t)
↑(it)↑(it) + P

(t)
it↑(it)T

(t)
it↑(it) and T

(t+1)
it↑(it) = T

(t+1)
↑(it)it = 0.

Since T (1) has 2(n − 1) non-zero off-diagonal elements
and we delete two of them by each iteration, Λ � T (n) =

P (n−1)′ . . . P (2)′P (1)′TP (1)P (2) . . . P (n−1) is a diagonal
matrix. We define P as P � P (1)P (2) . . . P (n−1).

In each iteration, we only have to calculate and store two
scalers: P

(t)
it↑(it) and T

(t+1)
↑(it)↑(it). Thus, the time and space

complexity of this procedure is O(n).
STEP 2: S′S = T

Defining S as S � Λ
1
2P−1 =

Λ
1
2 (P (n−1))−1 . . . (P (2))−1(P (1))−1, it is easy to show

that T = S′S. To compute S, we let S(1) = Λ
1
2 and

iteratively update S(t) by: S(t+1) = S(t)(P (n−t))−1 for
t = 1, . . . , n− 1.

Recall that P (t) is a sparse matrix with all its diagonal

elements equal to 1 and P
(t)
it↑(it) = −T

(t)

it↑(it)
T

(t)
itit

. It is straight-

forward to show that (P (t))−1 is equal to P (t) except one
element: (P (t))−1

it↑(it) = −P
(t)
it↑(it).

We can show by induction that the in−t column of S(t)

has only one non-zero element: S
(t)
in−tin−t

. As a result,

S(t+1) is different from S(t) by one element: S(t+1)
in−t↑(in−t)

=

−S
(t)
in−tin−t

P
(n−t)
in−t↑(in−t)

and S
(t)
in−t↑(in−t)

= 0. Since S(1) is
diagonal and we add one non-zero off-diagonal elements by
one iteration, S has n− 1 off-diagonal elements.

Since in each iteration we calculate and store one scalar
S
(t+1)
in−t↑(in−t)

, the time and space complexity of this proce-
dure is O(n).

Solving S′Sf = Cy Denoting b � Cy and g � Sf ,
we solve the linear equations system by: (1) solving S′g =
b by one bottom-up traversal; (2) solving Sf = g by one
top-down traversal. From the previous analysis, S has the
following properties:

• For ∀i 
= in, the i-th row has two non-zero elements: Sii

and Si↑(i). The in-th row has only one non-zero element:
Sinin .

• Let ↓ (a) denote the set of all children of node a. For ∀i
that | ↓ (i)| 
= 0, the i-th column has | ↓ (i)|+1 non-zero
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Algorithm 1 Tree Laplacian Factorization
Input: T , [i1, i2, . . . , in]
Output: S such that S′S = T
for t = 1 to n− 1 do

P
(t)
it↑(it) ← −Tit↑(it)

Titit

T↑(it)↑(it) ← T↑(it)↑(it) + P
(t)
it↑(it)Tit↑(it)

Tit↑(it) ← 0
T↑(it)it ← 0

end for
S ← T

1
2

for t = n− 1 to 1 do

Sit↑(it) ← −SititP
(t)
it↑(it)

end for

elements: Sii and {Sji, j ∈↓ (i)}. For ∀i that | ↓ (i)| = 0,
the i-th column has only one non-zero element: Sii.
STEP 1: S′g = b

For ∀i that | ↓ (i)| = 0, we have

Sii ∗ gi = bi ⇒ gi =
bi

Sii
.

For ∀i that | ↓ (i)| 
= 0, we have

Sii ∗ gi +
∑

j∈↓(i)
Sji ∗ gj = bi

⇒ gi =
1

Sii
(bi −

∑

j∈↓(i)
Sji ∗ gj).

Since computing gi only needs to know {gj , j ∈↓ (i)}, we
can solve equations S′g = b in order of [i1, i2, . . . , in].
Since solving each equation needs O(| ↓ (i)|) operations,
solving S′g = b needs O(

∑
i | ↓ (i)|) = O(n) operations.

STEP 2: Sf = g
For i = in, we have

Sii ∗ fi = gi ⇒ fi =
gi

Sii
.

For i 
= in, we have

Sii ∗ fi + Si↑(i)f↑(i) = gi ⇒ fi =
1

Sii
(gi − Si↑(i)f↑(i)).

Since computing fi only needs to know f↑(i), we can solve
equations in Sf = g in order of [in, in−1, . . . , i1]. Since
solving each equation needs O(1) operations, solving Sf =
g needs O(n) operations.

To conclude this part, we summarize the tree Laplacian
factorization procedure in Alg. 1 and the linear equations
system solver in Alg. 2. Note that the time and space com-
plexity for both procedures is O(n).

Convergence and Complexity Analysis

Given a graph, our method first approximates it by a MST
tree, and then solves T f = Cy by the tree Laplacian
solver. The tree Laplacian solver completes in exact five
times tree traversals: one for node ordering, two for ma-
trix factorization and two for solving the linear systems.

Algorithm 2 Linear Equations System Solver
Input: S, b, [i1, i2, . . . , in]
Output: f such that S′Sf = b
for t = 1 to n do

if | ↓ (it)| = 0 then

git ←
bit

Sitit
//leaf

else
git ← 1

Sitit
(bit −

∑
j∈↓(it) Sjit ∗ gj)

end if
end for
for t = n to 1 do

if | ↑ (it)| = 0 then

fit ←
git

Sitit
//root

else
fit ← 1

Sitit
(git − Sit↑(it)f↑(it))

end if
end for

Thus, the convergence is clear. Since building MST requires
O(|E(G)| log n) time and the tree Laplacian solver requires
O(n) time, its overall complexity is O(|E(G)| log n). When
O(|E(G)|) = O(n) as many applications in practice, our
method scales nearly linear with n.

Experiment

Here we conduct experiments to evaluate our method in
accuracy and speed. We denote our method as TbTL
(Tree-based Transductive Learning), and compare it with
two graph-based SSL methods GRF (Zhu, Ghahramani,
and Lafferty 2003) and LLGC (Zhou et al. 2004), one
tree-based method GPA (Herbster, Pontil, and Galeano
2008), one prototype-based method AGR (Liu, He, and
Chang 2010), and one spectral method Eigen (Belkin
and Niyogi 2004). The codes of TbTL are available at
www.nlpr.ia.ac.cn/pal/ymzhang/index.html .

For GRF, conjugate gradient (CG) is applied. For LLGC,
we adopt both CG and preconditioned CG whose pre-
conditioners are constructed by spectral sparsifiers of
graphs (Koutis, Miller, and Peng 2010). We denote this later
method by LLGC-PCG, and use the algorithm CMG from
www.cs.cmu.edu/~jkoutis/cmg.html. For TbTL, we define C
as Cii = 100 for 1 ≤ i ≤ l, Cii = 0 for l+1 ≤ i ≤ n. MST
is used for both GPA and TbTL. For Eigen, we use a random
algorithm described in (Halko, Martinsson, and Tropp 2011)
to compute the m smallest eigenvectors of D− 1

2LD− 1
2 as

it performs much better than column sampling and Nyström
which are more suitable for approximating dense matrix. All
methods are run on a PC with a 3.10 GHz 4-core CPU and 8
GB RAM.

Small Data Sets

We use 4 image data sets (COIL20, USPS, MNIST and
Letter) and 2 text data sets (RCV1 and News20) to test
these methods. Their basic properties are listed in Ta-
ble 1. We adopt kNN for graph construction. For im-
age sets, d(u,v) = ‖u − v‖2 is used for the NN
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search and exp{−d(u,v)
σ2
0

} for weighting edges where σ2
0 =

∑
(i,j)∈E(G) d(xi,xj)/|E(G)|. For text sets, 1 − <u,v>

‖u‖‖v‖ is
used for the NN search and <u,v>

‖u‖‖v‖ for weighting edges.

Table 1: A brief description of data set.
Data Set Size Dim Class
COIL20 1440 1024 20
USPS 9298 256 10
Letter 20000 16 26

MNSIT 70000 784 10
RCV1 20242 47236 2

News20 19996 1355191 2

Accuracy For GRF, LLGC and Eigen, k is chosen from
{2, 4, 8, 16} by minimizing the test error. For GPA and
TbTL, k is simply fixed to 16 since they are very robust
to this parameter. For Eigen, we approximately compute
the 400 smallest eigenvectors. For AGR, 1000 prototypes
are selected by k-means clustering, and s is chosen from
{2, 4, 8, 16} by minimizing the test error.

For each data set, we randomly select l data points as
labeled data and run different methods to predict the unla-
beled data. To control the variance, we repeat the procedure
20 times for different labeled/unlabeled splits. We let l vary
from n×{1%, 2%, 4%, 8%, 16%, 32%, 64%}, and report the
results in Figure 1. Since accuracies of LLGC and LLGC-
PCG are very similar, only results of LLGC are reported.

We observe that: (1) In most cases, GRF and LLGC pro-
vide higher accuracies than scalable methods, which implies
information lost during the approximation; (2) Two tree-
based methods (TbTL and GPA) generate similar accuracy
results, while are similar to or better than the prototype-
based method AGR and the spectral method Eigen. It sug-
gests that sparse approximation is more effective than low-
rank approximation.

Speed We compare methods’ running time for labeling a
given graph. For GPA and TbTL, the reported time includes
the time for generating MST tree and labeling the nodes.
As AGR can not be directly applied to graphs, we do not
provide its result.

The first experiment examines how the running time of the
considered methods vary with n, it proceeds as follows. We
construct a 8NN graph for each data set, randomly select l =
2%×n data points as labeled data and use different methods
to predict the unlabeled data. The average running time over
10 random labeled/unlabeled splits is reported in Table 2.
As we can see, TbTL is at least 10 times faster than other
methods for all cases, and the advantage becomes greater as
n increases.

The second experiment evaluates how the running time
vary with |E(G)|. We construct a kNN graph for each k ∈
{2, 3, . . . , 12} for MNIST. For each graph, we randomly se-
lect l = 2% × n data points as labeled data and use dif-
ferent methods to predict the unlabeled data. The average
running time over 10 random labeled/unlabeled splits is re-
ported in Figure 2. We observe that the running time of GPA

Table 2: Average running time for labeling a given graph (in
seconds).

USPS Letter MNIST RCV1 News20
GRF 0.16 1.48 73.65 6.39 5.37

LLGC 0.60 0.82 114.26 6.76 13.34
LLGC-PCG 0.49 2.11 4.62 0.38 0.39

GPA 0.28 6.92 14.29 0.45 0.45
Eigen 1.34 2.93 10.71 2.83 2.79
TbTL 0.01 0.05 0.15 0.03 0.03

and TbTL grows slowly with |E(G)|, while the running time
of GRF and LLGC grows rapidly.

The third experiment evaluates how the running time vary
with l. We construct a 8NN graph for MNIST, randomly se-
lect l = n×{1%, 2%, 4%, 8%, 16%, 32%, 64%} data points
as labeled data and use different methods to predict the un-
labeled data. The average running time over 10 random la-
beled/unlabeled splits is reported in Figure 3. We observe
that the running time of LLGC, Eigen and TbTL is invariant
with l. The running time of GPA grows linearly with l which
is consistent with its time complexity O(nl). The running
time of GRF decrease rapidly with l since its complexity is
polynomial with n− l.

Large Data Set

To evaluate our method on large data set, we follow the strat-
egy used in (Liu, He, and Chang 2010). We construct ex-
tended MNIST by shifting each image by one pixel in each
direction, which results in 630, 000 images. Then, PCA is
performed to reduce the data to 86 dimensions.

For GPA, Eigen and TbTL, we perform KD-tree
to approximately construct a 8NN graph and adopt
exp{−‖u−v‖2

σ2
0

} for weighting edges. Since AGR reported
out-of-memory error in the experiment, we directly cite the
results reported by the authors. For Eigen, the 200 small-
est eigenvectors are used to train the least square classifier.
We additionally compare with 1NN classifier and SVM with
RBF kernel as baseline methods. We list the average accu-
racy over 20 random labeled/unlabeled splits in Table 3, and
the average running time in Table 4. For AGR, Eigen and
TbTL, the running time consists of two parts: graph con-
struction which takes 61.3 seconds and graph labeling.

Table 3: Average classification accuracy on extended
MNIST with n = 630, 000(%).

l = 100 l = 1000 l = 10000
1NN 60.70± 1.98 82.50± 0.42 92.94±0.08

SVM+RBF 57.80± 4.51 88.41±0.26 95.79±0.06
AGR 80.25±1.83 – –
GPA 89.63±2.13 95.09±0.32 95.78±0.86
Eigen 82.27±2.83 93.96±0.39 94.91±0.08

LLGC-PCG 90.66±3.34 96.28±0.26 96.92±0.05
TbTL 89.97±1.90 95.11±0.32 96.77±0.08

Clearly, TbTL performs better than baseline methods,
AGR, GPA and Eigen. Although the accuracy of AGR and

2348



�� �� �� �� ��� ��� ���

	
�

	
�

	
�

	
�

	


�

�����������������

��
��
��
���
��
��
��
��
��
��
��

�� 
!!�"
�#$
$��
%�&��
'�'!

(a) COIL20

�� �� �� �� ��� ��� ���
	
��

	
��

	
�

	
��

	
��

	
��

	
��

��������	�	
�
���

��
�
�
���
��
��
��
��
��
��
��

���
����
���
���
���	�
����

(b) USPS
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(c) Letter
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(d) MNIST
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(e) RCV1
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(f) News20

Figure 1: Average classification accuracy for different labeled data size.
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Figure 2: The dependence of running time on the number of
edges on MNIST (in seconds).

Eigen can be improved by using more prototypes or eigen-
vectors, they will become even more slower since their time
complexity scales quadratically with the number of proto-
types or eigenvectors.

We also observe that LLGC-PCG’s accuracy is slightly
better than TbTL. However, the running time of LLGC-PCG
is 50+ times of TbTL’s for l = 100, and 130+ times of
TbTL’s for l = 10000. Thus, we conclude that for small
or middle size data sets, LLGC-PCG is better because of its
high accuracy; while for very large data sets, TbTL is the
algorithm of choice because of its low computational cost.
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Figure 3: The dependence of running time on the number of
labeled nodes on MNIST (in seconds).

Conclusion

In this work, we have proposed TbTL as a scalable approach
to address the computational challenge faced by the classic
graph-based SSL method. Based on the idea of graph sparsi-
fication, our method first approximates the graph by a span-
ning tree. Then, it labels the tree by minimizing a quadratic
objective function, for which we propose a novel tree Lapla-
cian solver that finds the solution in O(n) time. Comparing
with existing scalable SSL methods, our method is signifi-
cantly faster while the gain of speedup comes at very little
cost of accuracy.
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Table 4: Average running time on extended MNIST with
n = 630, 000(in seconds). For GPA, Eigen, LLGC-PCG and
TbTL, this contains two parts: the time for building the ANN
graph (61.3s) and the time for inferring labels.

l = 100 l = 1000 l = 10000
1NN 1.7 13.5 116.1

SVM+RBF 12.0 82.1 605.3
AGR 331.7 – –
GPA 61.3+14.7 61.3+91.5 61.3+1814.6
Eigen 61.3+180.3 61.3+180.8 61.3+183.0

LLGC-PCG 61.3+106.8 61.3+182.2 61.3+265.2
TbTL 61.3+2.2 61.3+2.2 61.3+2.2

As experiments show, the running time of scalable SSL is
dominated by computing nearest neighbors. Thus, efficient
graph construction methods is the key to further accelerate
graph-based SSL, which will be left as the future work.
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