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Abstract

Dictionary learning has played an important role in the suc-
cess of sparse representation. Although synthesis dictionary
learning for sparse representation has been well studied for
universality representation (i.e., the dictionary is universal
to all classes) and particularity representation (i.e., the dic-
tionary is class-particular), jointly learning an analysis dic-
tionary and a synthesis dictionary is still in its infant stage.
Universality-particularity representation can well match the
intrinsic characteristics of data (i.e., different classes share
commonality and distinctness), while analysis-synthesis dic-
tionary can give a more complete view of data representa-
tion (i.e., analysis dictionary is a dual-viewpoint of synthe-
sis dictionary). In this paper, we proposed a novel model
of analysis-synthesis dictionary learning for universality-
particularity (ASDL-UP) representation based classification.
The discrimination of universality and particularity represen-
tation is jointly exploited by simultaneously learning a pair
of analysis dictionary and synthesis dictionary. More specif-
ically, we impose a label preserving term to analysis coding
coefficients for universality representation. Fisher-like regu-
larizations for analysis coding coefficients and the subsequent
synthesis representation are introduced to particularity rep-
resentation. Compared with other state-of-the-art dictionary
learning methods, ASDL-UP has shown better or competitive
performance in various classification tasks.

Introduction

With inspirations of the sparsity mechanism of human vi-
sion system (B.A. Olshausen 1996) and the success of
sparse coding in image processing (M. Elad 2006)(J.C. Yang
2008), sparse representation has been widely applied to
many fields, such as computer vision and pattern recog-
nition (J. Wright 2009)(J. Wright 2010). As indicated by
(R. Rubinstein 2010), the dictionary plays an important
role in the success of sparse representation, which should
faithfully and discriminatively represents an input signal
as a sparse linear combination of dictionary atoms. Learn-
ing the desired dictionary from training data instead of us-
ing off-the-shelf bases (e.g., wavelets) has led to state-of-
the-art results in many practical applications, such as im-
age denoising (M. Elad 2006), face recognition (Q. Zhang
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Figure 1: Framework of the proposed analysis-synthesis dic-
tionary learning for universality-particularity representation.

2010)(Z.L. Jiang 2013), and image classification (I. Ramirez
2011)(M. Yang 2011).

One representative dictionary model for sparse represen-
tation is K-SVD (M. Aharon 2006), which learns an over-
complete dictionary of atoms for image patches and has
shown promising performance in image restoration. In the
task of image classification, image patches of all classes
could also be used to learn an dictionary, on which the cod-
ing coefficients of image patches could generate the descrip-
tor of images (J.C. Yang 2009). Both (M. Aharon 2006) and
(J.C. Yang 2009) belong to unsupervised dictionary learn-
ing approach since they ignore to use class label information
by assuming that image patches are universal to all classes.
With this assumption, the encoding of image patches on the
learned dictionary is regarded as universality representation.
Unsupervised dictionary learning for universality represen-
tation is powerful for data reconstruction, but not advanta-
geous for classification tasks. Without class label informa-
tion, the dictionary of unsupervised learning can not do par-
ticularity representation for labeled data so that the discrim-
ination embedded in the training data can not be well ex-
ploited. For classification tasks, the class label information
could guide dictionary learning to achieve a better classi-
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fication ability, so most prevailing dictionary learning ap-
proaches for classification is supervised.

In supervised dictionary learning, discriminative univer-
sality representation and particularity representation have
been studied for better classification. When the learned dic-
tionary is universal to all classes, discrimination of univer-
sality representation was explored by using group sparsity
(S. Bengio 2009) on coding coefficients or jointly learn-
ing a dictionary and a classifier over the coding coeffi-
cients (J. Mairal 2012; Q. Zhang 2010; Z.L. Jiang 2013;
W. Liu 2015a). Due to the promising performance of class-
particular dictionary representation in (J. Wright 2009), reg-
ularization for particularity representation has been intro-
duced in the phase of dictionary learning. (e.g., low class-
particular dictionary coherence (I. Ramirez 2011), good
class-particular representation for some class but bad for
all the other classes (J. Mairal 2008)(A. Castrodad 2012),
Fisher discrimination on class-particular dictionary and cod-
ing coefficient (W. Liu 2015b), task-driven terms (M. Yang
2013), etc.) (L. Zhang 2011a) further boosts the coding effi-
ciency using l2 norm instead of l1 for coding coefficients.

Most of dictionary learning approaches (e.g., the methods
above) synthesize an input signal by using a linear combi-
nation of dictionary atoms, so they are called synthesis dic-
tionary learning. Recently, Rubinstein et al. (R. Rubinstein
2013) proposed an analysis dictionary learning method,
named analysis K-svd, for image restoration. As a dual-
viewpoint of synthesis dictionary, analysis dictionary di-
rectly transforms a signal to a sparse feature space by mul-
tiplying the signal. Similar to class-particular synthesis dic-
tionary learning, particularity discrimination has also been
exploited in the analysis and synthesis dictionary learning
for image classification tasks (S. Gu 2014).

Although improved performance has been reported in
the existing dictionary learning approaches, there still re-
mains several critical issues. Firstly, separately exploring
discriminative universality representation and particularity
representation (J. Mairal 2012)(Q. Zhang 2010)(Z.L. Jiang
2013)(I. Ramirez 2011)(J. Mairal 2008)(A. Castrodad 2012)
is not optimal since the data with different class labels
not only have distinctness but also share commonality (as
shown in Fig.1). Dictionary learning for discriminative uni-
versality representation alone ignores the powerful class-
particular representation, while there would be a big cor-
relation of class-particular dictionaries for the single dis-
criminative particularity representation. Secondly, conduct-
ing synthesis dictionary learning and analysis dictionary
learning separately can not collaborate their advantages to-
gether. Analysis-synthesis dictionary provides a more com-
prehensive viewpoint for representing a signal. The analysis
part projects the signal to a new feature space like feature
transformation, while the synthesis part represents the sig-
nal with well reconstruction. Furthermore, how to learn a
discriminative analysis-synthesis dictionary for universality-
particularity representation based classification still remains
to be explored.

In this paper we propose a novel model of analysis-
synthesis dictionary learning for universality-particularity
(ASDL-UP) representation based classification. The dis-

crimination of universality and particularity representa-
tion is jointly exploited by simultaneously learning a
pair of analysis dictionary and synthesis dictionary, as
shown in Fig.1. To the best of our knowledge, it is the
first time to integrate analysis-synthesis dictionary learn-
ing and universality-particularity representation into a uni-
fied model. More specifically, a label preserving term that
regularizes analysis coding coefficients for universality rep-
resentation is designed, while Fisher-like regularizations
for analysis coding coefficient and synthesis representation
are introduced to particularity representation. The proposed
ASDL-UP is evaluated on action, face, and gender classi-
fication. Compared with existing state-of-the-art dictionary
learning methods, ASDL-UP has better or competitive per-
formance in various classification tasks.

Related Work

Supervised synthesis dictionary learning for universality
representation (J. Mairal 2012)(Q. Zhang 2010)(Z.L. Jiang
2013)(S. Bengio 2009) and particularity representa-
tion (J. Mairal 2008)(M. Yang 2011)(A. Castrodad
2012)(I. Ramirez 2011) has been well studied recently.
Moreover, universality and discriminative components have
also been mined in matrix decomposition (Q. Zhang
2012). The closely related work to our proposed analysis-
synthesis dictionary learning for universality-particularity
(ASDL-UP) representation are synthesis dictionary learn-
ing for universality-particularity representation (N. Zhou
2012)(S. Kong 2012)(L. Shen 2013)(M. Yang 2014). Zhou
et al. (N. Zhou 2012) proposed a discriminative regulariza-
tion on the synthesis coding coefficients, while Kong et al.
(S. Kong 2012) introduced a coherence penalty term of dif-
ferent synthesis sub-dictionaries. Instead of using a flat cat-
egory structure, Shen et al. (L. Shen 2013) proposed to learn
a synthesis dictionary with a hierarchical category structure;
recently Yang et al. (M. Yang 2014) proposed a latent syn-
thesis dictionary learning approach. Although these synthe-
sis dictionary learning methods exploited universality and
particularity representation, they ignored to fully explore
the discrimination of universality-particularity representa-
tion and to learn a dual-viewpoint analysis dictionary, which
could make coding more meaningful and efficient. For anal-
ysis dictionary learning, there is no supervised method but
a unsupervised approach for universality representation ap-
plied to image restoration (R. Rubinstein 2013).

The study of supervised analysis-synthesis dictionary
learning has started recently. Gu et al. (S. Gu 2014) pro-
posed a model of analysis-synthesis dictionary learning for
particularity representation. Although improved results are
reported, it doesn’t use intra-class discrimination and ig-
nores universality representation, resulting in big correla-
tion between different class-particular dictionaries. For uni-
versality representation, there is no supervised analysis-
synthesis dictionary learning method proposed except a un-
supervised analysis-synthesis dictionary learning approach
(R.Rubinstein 2014) for image denoising.
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Analysis-Synthesis dictionary learning

Compared to universality or particularity representation,
the universality-particularity representation could better rep-
resent intrinsic characteristic of data, i.e., data of differ-
ent classes not only have class-particular parts but also
share commonality. Meanwhile, analysis-synthesis dictio-
nary could provide a more complete view of data repre-
sentation data than analysis dictionary or synthesis dictio-
nary because analysis dictionary is a dual viewpoint of syn-
thesis dictionary (R. Rubinstein 2013). Both universality-
particularity representation and analysis-synthesis dictio-
nary learning could benefit the representation and classifi-
cation of data, therefore they should be jointly considered in
a unified dictionary learning model.

Let X = [X1, · · · ,Xk, · · · ,XK ], where each column
of Xk is a kth-class training sample. The model of analysis-
synthesis dictionary learning for universality-particularity
(ASDL-UP) representation is represented as

min
D0,P 0,D,P

‖X −D0Sη (P 0X)−DS (PX)‖2F
+γR0 (D0,P 0) + λR (D,P )

s.t.
∥∥d0

i

∥∥2
2
≤ 1 ∀i; ‖dk

i ‖22 ≤ 1 ∀i, k
(1)

where P 0 and D0 are a pair of universal analysis and syn-
thesis dictionaries, D = [D1, · · · ,Dk, · · · ,DK ], P =
[P 1, · · · ,P k, · · · ,PK ], P k and Dk are a pair of class-
particular analysis and synthesis dictionaries for class k,
and d0

i and dk
i are the ith atoms of D0 and Dk, respec-

tively. Here Sη(.) and S(.) are two sparse operators on
the coding coefficients generated by the analysis dictionary,
R0(D0,P 0) and R (D,P ) are discriminative regulariza-
tions on ASDL for universality representation and particu-
larity representation, respectively. These two regularizations
are illustrated in detailed in the following sections.

Regularization for universality representation

The regularization of R0(D0,P 0) on analysis-synthesis
dictionary is designed for discriminative universality repre-
sentation based classification. Although the universal dictio-
nary atoms lose correspondence to class labels, the discrimi-
nation of coding coefficients is exploited to make the univer-
sal dictionary powerful for classification. Here we designed
a label preserving term for coding coefficients to simulta-
neously minimize the intra-class variance and maximize the
inter-class variance. To this end, we proposed a discrimina-
tive analysis coding coefficient term,

R0 (D0,P 0) = ‖Y −WSη (P 0X)‖2F (2)

where Y ∈ �K×N is a label indicating matrix, N is the
number of training samples, W is a discrimination matrix
projecting the coding coefficient to the label space, and Sη(.)
is a hard thresholding operator which sets its input entries
with absolute values below η as zeros, while keep all the
other entries unchanged. Here a column vector of Y is a
label indicating vector for some training sample. For in-
stance, the indicating vector for a training sample of class
k is [0, . . . , 1, . . . , 0]T where 1 is in the kth element.

Regularization for particularity representation

The regularization of R (D,P ) on analysis-synthesis dic-
tionary is designed for discriminative particularity represen-
tation. Since class-particular dictionary atoms have corre-
spondence to class labels, both the discrimination of class-
particular representation and coding coefficient is exploited
by designed a suitable regularization. Here we proposed a
Fisher-like regularization on the analysis coding coefficient
and synthesis representation. We design R (D,P ) as

R (D,P ) =
∑K

k=1

∥∥P k

[
X̄k,Xk −Mk

]∥∥2
F

(3)

where X̄k is the complementary set of Xk, and Mk is a
matrix with each column as the mean vector of Xk. The
discrimination on analysis representation is designed in the
light of the Fisher criterion. The minimization of Eq.(3) not
only makes P k have less correlation with the data from
other classes for a big between-class scatter, but also makes
Xk − Mk small along the subspace spanned by P k for a
small within-class scatter.

The sparse regularization, i.e., S(.), is designed as
S (PXk) = [0; · · · ;P kXk; · · · ; 0] according to the Fisher
criterion to achieve a discriminative synthesis representa-
tion. For kth data Xk, the sparse regularization sets zero
synthesis representation for other class synthesis dictionary
(i.e.,S(P lXk) = 0 for l �= k) while keep the synthesis rep-
resentation for kth-class synthesis dictionary.

Model of ASDL-UP

We have proposed discriminative regularizations on AS dic-
tionary for university representation and particularity rep-
resentation. Thus the proposed model of analysis-synthesis
dictionary learning for university-particularity (ASDL-UP)
representation is written as

min
D,W,P ,D0,P 0

K∑

k=1

‖Xk −D0Sη (P 0Xk)−DkP kXk‖2F
+λ

∥
∥P k

[
X̄k,Xk −Mk

]∥∥2

F

+γ ‖Y k −WSη (P 0Xk)‖2F
s.t.

∥
∥d0

i

∥
∥2

2
≤ 1 ∀i; ‖dk

i ‖22 ≤ 1 ∀i, k
(4)

where the first term is the discriminative universality-
particularity representation on AS dictionary based on
Eq.(3), and the second and third terms are discriminative
analysis coding coefficients terms of universality represen-
tation and particularity representation.

ASDL-UP representation based classification

After learning the universal and class-particular analysis-
synthesis dictionaries, we conduct the classification by
jointly using the discrimination of universality and partic-
ularity of analysis-synthesis dictionaries. The identity is
argmin

k
‖y −D0Sη (P 0y)−DkP ky‖2 − τ [WSη (P 0y)]k

(5)
where the first term is the particularity representation resid-
ual on analysis-synthesis dictionary for class k, the second
term is class confidence based on university representation
on analysis dictionary for class k, and a simple linear combi-
nation of universality-particularity discrimination is utilized
in our classification model.
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Optimization of ASDL-UP

The ASDL-UP objective function in Eq.(4) is divided into
two sub-problems by doing universal analysis-synthesis dic-
tionary learning (ASDL) and class-particular ASDL alter-
natively: updating D0, P 0 by fixing Dk, P k and updating
Dk, P k by fixing D0, P 0.

Universal ASDL

By fixing the class-particular analysis-synthesis dictionary
(i.e., Dk, P k for each class k), the ASDL-UP model of
Eq.(4) becomes

min
D0,P 0,W

K∑
k=1

( ‖Zk −D0Sη (P 0Xk)‖2F
+γ ‖Y k −WSη (P 0Xk)‖2F

)

s.t.
∥∥d0

i

∥∥2
2
≤ 1 ∀i;

(6)

where Zk = Xk−DkP kXk. Let Γk =
[
Zk;

√
γY k

]
and

O =
[
D0;

√
γW
]
, the two terms of Eq.(6) could integrate

a single one,

min
O,P 0

‖Γ−OSη (P 0X)‖2F s.t. ‖oi‖22 ≤ 1 ∀i (7)

where oi = [d0
i ;wi], wi is the ith column vector of W , Γ =

[Γ1, · · · ,Γk, · · · ,ΓK ] and X = [X1, · · · ,Xk, · · · ,XK ].
The constraint of Eq.(7) can not only regularize the universal
dictionary but also make the solution of W more stable. For
solving Eq.(7), we update the universal analysis-synthesis
dictionary atoms pair by pair. At the jth step, we keep all
but the jth pair of atoms (i.e.,oj and pj) fixed, where P 0 =

[pT
1 ; · · · ,pT

j ; · · · ] . Then we could isolate the dependence
on the jth atom pair and rewrite Eq.(7) as

min
oj ,pj

∥∥Ej − ojSη

(
pT
j X
)∥∥2

2
s.t. ‖oj‖22 ≤ 1 (8)

where Ej = Γ−∑i�=j oiSη

(
pT
i X
)
.

Let Sη(.) define a partition of X into two sets: J and
J̄ , with current pj , where Sη(p

T
i X

J) = pT
i X

J and
Sη(p

T
i X

J̄) = 0. Ej is similarly spitted to the submatrices
EJ

j and EJ̄
j . Then we approximate Eq.(8) to

min
oj ,pj

∥∥∥[EJ
j ;0]− ojp

T
j

[
XJ ; εX J̄

]∥∥∥2
2
s.t. ‖oj‖22 ≤ 1 (9)

where ε is simply set as a big value (e.g.,10) to minimize
pT
j X

J̄ and make Sη(p
T
j X

J̄) = 0. Similar to (R.Rubinstein
2014), the set J remains roughly when Eq.(9) is solved. The
model of Eq.(9) can be efficiently solved by using the Rank-
one approximation algorithm in Fig.2 of (R.Rubinstein
2014), with normalizing the energy of each synthesis dic-
tionary atom less than 1.

By using similar procedure, all pairs of analysis-synthesis
dictionary atoms for universality representation are updated.
The cost of Eq.(6) can decrease in each iteration and can be
approximately solved after several iterations.

Algorithm 1 Training Procedure of ASDL-UP
1: Initialization

All analysis-synthesis dictionary atoms are randomly
initialized with unit l2-norm energy.

2: Class-particular ASDL
Updating each pair of class-particular dictionaries, Dk

and P k, by solving Eq.(10).
3: Universal ASDL

Updating each pair of universal dictionary atoms by
solving Eq.(8).

4: Output
Return to step 2 until the values of the objective function
in Eq. (4) in adjacent iterations are close enough or the
maximum number of iterations is reached.
Output D,P ,D0,P 0, and W .

Class-particular ASDL

By fixing the universal analysis-synthesis dictionary (i.e.,
D0, P 0), the ASDL-UP model of Eq.(4) becomes

min
D,P

K∑
k=1

‖Zk,0 −DkP kXk‖2F + λ ‖P kV k‖2F
s.t. ‖dk

i ‖22 ≤ 1 ∀i;
(10)

where V k = [X̄k,Xk − Mk] and Zk,0 = Xk −
D0Sη (P 0Xk). Then the analysis-synthesis dictionary
learning for particularity representation can be conducted
class by class. The formulation of Eq. (10) is same to that
of Eq.(5) in (S. Gu 2014). So in this paper we solve Eq.(10)
by using the algorithm of (S. Gu 2014).

ASDL-UP algorithm

Based on the algorithms of class-particular ASDL and uni-
versal ASDL, the algorithm of ASDL for universality-
particularity representation is summarized in Algorithm 1.
When O is learned, the projection matrix (i.e.,W ) and the
universal analysis dictionary D0 is solved based on O =[
D0;

√
γW
]
. And the final W is got by do renormaliza-

tion, wi = wi

/∥∥d0
i

∥∥
2
∀i.

Based on the proposed solving algorithm, both object
function values of class-particular ASDL and universal
ASDL monotonously decreases. Since the object function
of ASDL-UP is lower bounded, the whole algorithm can
converge. An convergence example of universal ASDL and
calss-particular ASDL on UCF sport action dataset (M. Ro-
driguez 2008) is show in Fig. 2(a), with the convergence of
the whole ASDL-UP shown in Fig. 2(b).

Experiments and results

In this section, we evaluate the performance of ASDL-UP
on various classification task. Action classification, face
recognition, gender classification are performed by using
ASDL-UP and the competing methods in the following Sec-
tions. More experimental and time complexity analysis are
presented in the supplementary material1. To clearly il-

1available at www.yangmeng.org.cn or www.wyliu.com
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Figure 2: An example of ASDL-UP convergence on UCF
sport action dataset (M. Rodriguez 2008).

lustrate the advantage of ASDL-UP, we compare ASDL-
UP with several recent DL methods, such as Discrimina-
tive K-SVD (DKSVD) (Q. Zhang 2010), Label Consistent
K-SVD (LCKSVD) (Z.L. Jiang 2013), dictionary learning
with structure incoherence (DLSI) (I. Ramirez 2011), dictio-
nary learning with commonality and particularity (COPAR)
(S. Kong 2012), joint dictionary learning (JDL) (N. Zhou
2012), Fisher discrimination dictionary learning (FDDL)
(M. Yang 2011), and the latest dictionary pair learning
(DPL) (S. Gu 2014). Besides, we also report sparse repre-
sentation based classifier (SRC) (J. Wright 2009), collab-
orative representation based classification (CRC)(L. Zhang
2011b), linear support vector machine (SVM), nearest sub-
space classifier(NSC) and some methods for special tasks.
In no specific instruction, the number of class-specific dic-
tionary atoms in these DL methods is set as the number of
training samples in the same class.

There are three parameters,λ,γ, and η, in the model of
ASDL-UP (i.e.,Eq.(4)). λ is a parameter of discriminative
class-particular analysis coding coefficient term, γ is a pa-
rameter of discriminative universal analysis coefficient term,
and η is a parameter of hard-thresholding function. In our
experiments, we fix λ = 1e − 3 in all experiments and set
γ = 0.1, and η = 1e− 5 for face recognition, and γ = 0.5,
and η = 1e− 4 for all the other experiments.

UCF Action classification

The benchmark action dataset, UCF sports action dataset
(M. Rodriguez 2008), is used to conduct the action clas-
sification experiment. The dataset collected video clips
from various broadcast sports channels (e.g., BBC and
ESPN). The action bank features of 140 videos provided by
(S. Sadanand 2012) are adopted in the experiment. These
videos cover 10 sport action classes: driving, golfing, kick-

Table 1: The recognition rates (%) on UCF sports ac-
tion dataset. Qiu and Sadanand denote (Q. Qiu 2011) and
(S. Sadanand 2012) respectively.

Qiu LCKSVD DLSI DKSVD FDDL Sadanand
83.6 91.2 92.1 88.1 93.6 90.7
SRC COPAR JDL KSVD DPL Ours

92.9 90.7 90.0 86.8 92.9 95.0

Table 2: The recognition rates (%) on UCF 50 dataset.
Sadanand, Wang denote the approach used in (S. Sadanand
2012) and (H.R. Wang 2012) respectively.

NSC LCKSVD DLSI DKSVD FDDL Sadanand
51.8 53.6 60.0 38.6 61.1 57.9
SRC COPAR JDL Wang DPL Ours

59.6 52.5 53.5 47.9 62.4 62.8

ing, lifting, horse riding, running, skateboarding, swinging-
(prommel horse and floor), swing-ing-(high bar) and walk-
ing. As the experiment setting in (Z.L. Jiang 2013), we eval-
uated the ASDL-UP via five-fold cross validation. Here the
dimension of the action bank feature is reduced to 100 via
PCA, and the performance of some specific methods for ac-
tion recognition, such as Qiu 2011 (Q. Qiu 2011), action
bank feature with SVM classifier (S. Sadanand 2012) are
also re-ported in Table 1. It can be observed that the pro-
posed ASDL-UP achieves the highest rate (i.e.,95.0% ac-
curacy), 1.4% improvement over the second best method,
FDDL.

Following the experiment settings in (S. Sadanand 2012),
we then evaluated ASDL-UP on the large-scale UCF50 ac-
tion dataset by using fivefold group-wise cross validation,
and compared it with the recent DL methods and the other
state-of the-art methods, including (S. Sadanand 2012) and
(H.R. Wang 2012). The results are shown in Table 2. Again,
ASDL-UP achieves better performance than all the compet-
ing methods. Meanwhile, both the analysis-synthesis dictio-
nary learning methods, including ASDL-UP and DPL, are
visibly better than all the other methods. Compared with
(S. Sadanand 2012), ASDL-UP has over about 5% improve-
ment.

Face recognition

Two face databases, such as the aligned labeled face in the
wild (LFWa)(L. Wolf 2009) and AR (A. Martinez 1998), are
used to evaluate the performance of the proposed ASDL-UP.
The AR dataset contains illumination, expression, and dis-
guise variation. Following the experimental setting of AR in
(Z.L. Jiang 2013), a set of 2,600 images of 50 female and
50 male subjects are extracted. 20 images of each subject
are used for training and the remaining 6 images are used
for testing. 540-d feature provided by (Z.L. Jiang 2013) is
used as the facial features. The experimental results of all
the competing methods are listed in Table 3. In this dataset,
ASDL-UP achieves the best performance, e.g., 99.5% ac-
curacy, and have over 1% improvements over all the other
competing methods including DPL.
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Table 3: The recognition rates (%) on AR dataset.
NSC SRC DLSI DKSVD FDDL
92.0 97.5 97.5 89.2 97.5
LCKSVD COPAR JDL DPL Ours

97.8 98.3 98.5 98.3 99.5

Table 4: The recognition rates (%) on LFWa dataset.
SVM SRC DLSI DKSVD FDDL
63.0 72.7 73.8 65.9 74.8
LCKSVD COPAR JDL DPL Ours

66.0 72.6 72.8 74.6 78.1

We then evaluate ASDL-UP on the application of face
recognition in the wild. LFWa(L. Wolf 2009) is a large-scale
database, which contains variations of pose, illumination,
expression, misalignment and occlusion, etc. 143 subjects
with no less than 11 samples per subject are chosen (4174
images in total). For each person the first 10 samples are
used for training data with the remaining samples for test-
ing. Histogram of Uniform-LBP is extracted via dividing a
face image into 10×8 patches. Table 4 illustrates the com-
parison of all methods. Similar to the results on AR, ASDL-
UP achieves the best performance. Especially, the proposed
ASDL-UP has over 5% improvement compared to the syn-
thesis hybrid dictionary learning models (e.g., JDL).

Gender classification

There are total 13143 face images in the aligned labeled face
in the wild (LFWa) (L. Wolf 2009). LFW is a large-scale
database, which contains variations of pose, illumination,
expression, misalignment and occlusion, etc. Based on gen-
der information provided by LFW and attribute information
provided by (N. Kumar 2009), we remove some extremely
difficult samples (i.e., ones with absolute gender attribute
values less tan 0.1) and final get a dataset of 12702 face
images, of which 9900 are male samples and 2802 are fe-
male samples. Some gender examples on LFW dataset are
shown in Fig. 3 We randomly select 585 male samples and
622 female samples as the training set, while the remain-
ing 11495 face images used as the test data. Histogram of
Uniform-LBP is extracted from the face images, and 320d
pca+block-lda feature are finally used the descriptor of face
images. Here we require that the dictionary number is 40 for
all dictionary learning algorithm.

The experimental results are listed in Table 5. It can
be seen that ASDL-UP is visibly better than all the other
mehtods. The accuracy of ASDL-UP is not only at least
1.5% higher than COPAR and JDL, but also 1.1% higher
than DPL, which is the second best method.

Testing time comparison

The classification of ASDL-UP is very efficiently conducted
because there is only multiplication of vectors in its classifier
(i.e., Eq.(5)). The classification of other DL methods, such
as DLSI, DKSVD, FDDL, LCKSVD, COPAR and JDL, all
needs to solve a sparse coding problem, which has more time

Figure 3: Some gender examples on LFW dataset.

Table 5: Gender classification accuracy (%) on LFW dataset.
CRC SRC DLSI DKSVD FDDL
83.7 90.5 87.9 87.0 90.2
LCKSVD COPAR JDL DPL Ours

92.4 91.4 85.2 92.0 93.1

Table 6: Average running time (second) on two datasets.
method Sparse Coding DPL ASDL-UP

UCF sport action 1.3e-3 4e-6 3e-6
LFW gender 9.2e-2 1.4e-5 1.4e-5

complexity than ASDL-UP. The average running times on
two datasets using Matlab 2011a are listed in Table 6. It can
be seen that the testing time of ASDL-UP is less than or
similar to that of DPL, but much faster than sparse coding in
other DL methods. More time complexity and running time
comparison are presented in supplementary material.

Concluding Remarks

This paper presented a novel discriminative analysis-
synthesis dictionary learning model (ASDL-UP) for
universality-particularity representation based classification.
In ASDL-UP, a pair of analysis dictionary and syn-
thesis dictionary has been learned for the universality-
particularity representation based classification. Because
analysis-synthesis dictionary can give a more complete view
of data representation, the learned dictionary pair more ef-
fectively utilizes the discrimination of universality repre-
sentation and particularity representation of data. Moreover,
discriminative universal analysis coding coefficient term
is designed to preserve the class label information, while
Fisher-like regularizations on the class-particular analysis-
synthesis representation are proposed to ensure a discrimi-
native analysis-synthesis representation. We also proposed
an efficient solving algorithm for ASDL-UP. The ASDL-
UP was extensively evaluated on several image classifica-
tion tasks. Experimental results demonstrated that ASDL-
UP outperforms some state-of-the-art methods.
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