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Abstract

Many real world applications in medicine, biology, com-
munication networks, web mining, and economics, among
others, involve modeling and learning structured stochas-
tic processes that evolve over continuous time. Existing ap-
proaches, however, have focused on propositional domains
only. Without extensive feature engineering, it is difficult—
if not impossible—to apply them within relational domains
where we may have varying number of objects and relations
among them. We therefore develop the first relational repre-
sentation called Relational Continuous-Time Bayesian Net-
works (RCTBNs) that can address this challenge. It features
a nonparametric learning method that allows for efficiently
learning the complex dependencies and their strengths si-
multaneously from sequence data. Our experimental results
demonstrate that RCTBNs can learn as effectively as state-
of-the-art approaches for propositional tasks while modeling
relational tasks faithfully.

Introduction

Modeling structured stochastic processes that evolve over
time is an important and challenging task with applications
in many fields ranging from surveillance to activity recog-
nition to reliability monitoring of communication networks
to treatment planning in biomedicine. Classical AI solutions
such as Dynamic Bayesian networks (Murphy 2002) dis-
cretize the time into fixed intervals and perform the mod-
eling on these intervals. While discretization is often indeed
reasonable, there are domains such as medicine in which no
natural discretization is available; if we discretize time too
finely, the learning problem can quickly become intractable,
but if we discretize time too coarsely, we lose information.

Therefore it is not surprising that models over finite
spaces but across continuous time have been proposed. The
most popular ones fall under the category of Continuous-
Time Markov Processes. They are described by an initial
distribution over the states of the model and a matrix that
specifies the rate of transition between states. Its succes-
sor, Continuous-Time Bayesian Networks (CTBNs) make
the problem more tractable by factorizing the rate matrix so
that conditional independencies can be exploited (Nodel-
man, Shelton, and Koller 2002). The models can be learned

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

efficiently from data, see e.g. (Weiss, Natarajan, and Page
2012). Without extensive feature engineering, however, it is
difficult—if not impossible—to apply CTBNs to relational
domains, in which e.g. there is a varying number of hetero-
geneous objects and relations among them. Many of today’s
datasets, however, are inherently relational and have no natu-
ral timeslices. Consider an Electronic Health Record (EHR).
It typically contains demographic information, prescription
history, lab tests, diagnoses, along with imaging data and
possibly in the near future, genetic (SNPs) data as well. An-
other example is the human-to-X communication network
where users typically call many different people, use a mul-
titude of apps, take pictures, listen to music, and so on. Sta-
tistical Relational Learning (SRL) has been proven success-
ful in such domains by combining the power of first-order
logic and probability (Getoor and Taskar 2007). As far as
we are aware, there are no continuous-time SRL approaches.
It is possible to model relational CTBNs in CTPPL (Pfef-
fer 2009), a general purpose probabilistic programming lan-
guage for processes over continuous time. However, the use
of a relational language allows us to develop a more power-
ful structure learning approach.

Consequently, we develop Relational Continuous-Time
Bayesian Networks (RCTBNs). They extend SRL towards
modeling in continuous time by “lifting” CTBNs to rela-
tional data. The syntax and semantics are based on Bayesian
Logic Programs (BLP) (Kersting and De Raedt 2002), and
the use of the logical notation allows for an expressive repre-
sentation that does not fix the number of features in advance
yet results in a homogeneous process. Although already in-
teresting on its own, we go one step further. Based on Fried-
man’s functional-gradient boosting (Friedman 2001), we
develop a non-parametric learning approach for RCTBNs
that simultaneously learns the dependencies between the
trajectories in the data and the parameters that quantify
these dependencies. Our extensive experimental evaluation
demonstrates that RCTBNs are comparable to state-of-the-
art methods on propositional data but can handle relations
faithfully, where propositional methods either fail or need to
be engineered specifically for each task.

To summarize, we make the following key contributions:
(1) We present the first continuous-time relational model. (2)
We develop a non-parametric learning algorithm for learn-
ing these models. (3) We prove the convergence properties
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of our algorithm. (4) Finally, we show that our algorithm
can even model propositional data created by other methods
effectively while faithfully modeling relational data.

We proceed as follows. After briefly reviewing CTBNs,
we lift them to the relational case and prove that the result-
ing RCTBNs are homogeneous. We then show how to learn
RCTBNs from data and prove convergence. Before conclud-
ing, we present our experimental results.

Background

While we will introduce relational concepts on-the-fly, let us
briefly review CTBNs and functional gradient boosting.

Continuous Time Bayesian Networks (CTBNs)

As mentioned earlier, although Dynamic Bayesian Net-
works (DBNs) can be effective temporal models, they re-
quire discretization of time to specific slots and cannot an-
swer queries outside these discretizations. Naturally, the
question is, what rate should the DBNs use if the events
all occur at distinct paces? An obvious way is to model the
system at the shortest possible period (i.e. highest changing
rate). However, this can lead to an increased computational
cost for inference, even an exponential explosion when per-
forming inference tasks over time. Continuous time Markov
processes (CTMPs) (El-Hay et al. 2006) avoid the require-
ment for choosing the sampling rate by modeling the time
continuously. However, since it models the transition dis-
tributions over the joint states of all variables, the size of
the CTMP intensity matrix increases exponentially in the
number of variables. With the forte of compact representa-
tion carried over from BNs, CTBNs (Nodelman, Shelton,
and Koller 2002) model the continuous time process as the
CTMP family does, but use a factored representation that
compactly models joint distributions.

Following the conventional notations in BNs (Pearl 1988),
we use X = {X1, X2, ..., Xn} to denote the collection of
random variables, but now each Xi is not a discrete-valued
variable but a process variable indexed by time t ∈ [0,∞).
More precisely, xi(t) denotes the value of Xi at time t. Ac-
cordingly, the instantiation of the parents of Xi at time t is
represented as PaXi(t). The instantiation of a particular set
of values of X(t) for all t is called a trajectory. The key dif-
ference to BNs is the use of conditional intensity matrices
(CIMs) instead of conditional probability distributions. Re-
call that BNs use parameters P (Xi|paji ) which indicates the
conditional distributions of Xi given its parents taking the
jth configuration. Since CTBNs model the distribution over
the variable’s trajectories, a CIM induces a distribution over
the dynamics of Xi(t) given the values of Pa(Xi) at time t
(denoted by paji ), which is defined as:
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probability of Xi transitioning from state 1 to state 2 given
its parents’ value, paji . IfXi is in state k, it would stay in this
state for an amount of time that is exponentially distributed
with parameter qxk

i |paj
i
, given its parents’ value is paji . The

expected time to transition is Et = 1/qxk
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. Upon transi-

tioning,Xi shifts from its k-th state to k′-th state with proba-
bility qxk

i x
k′
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i
/qxk

i |paj
i
. For details, we refer to first CTBN

work (Nodelman, Shelton, and Koller 2002).
Instead of a single probability distribution for Xi given a

specific instantiation of its parents as in BNs, CTBNs have
one CIM for every configuration of its parent set. Since
the number of configurations of Pa(Xi) equals to vi =∏

Xt∈Pa(Xi)
rt, there are vi conditional intensity matrices

for Xi in a CTBN model, and each CIM has ri× ri parame-
ters. Because of the constraint qxk

i |paj
i
=

∑
k′ �=k qxk

i x
k′
i |paj

i
,

the total number of independent parameters for a CTBN
model over set X is

∏
Xi∈X vi(ri × ri − ri). For an individ-

ual variable Xi, its trajectory can be viewed as a conditional
Markov process, which is inhomogeneous, because the in-
tensities vary with time. It is worth noting that the CIM is
not a direct function of time but rather a function of the cur-
rent values of its parent variables, which also evolve with
time. However, the global process of the variable set X is
a homogeneous Markov process. In fact, any CTBN can be
converted to a homogeneous Markov process by amalgama-
tions (Nodelman 2007) over all its CIMs into a joint intensity
matrix. Simply put, amalgamations are the summation over
the expansions of all the CIMs over the entire variable set.
Within the joint intensity matrix, all intensities correspond-
ing to two simultaneous changes are zero because both vari-
ables cannot transit at the same instant.

Finally, indeed it is sufficient to construct a CTBN with
two components: the initial distribution (denoted as P 0

X)
which is specified as a Bayesian network B over X and
a continuous transition model, specified by: i). a directed
graph G similar as a BN frame but possibly with cycles; ii).
a set of CIMs QX|Pa(X), for each variable Xi ∈ X.

(Relational) Functional Gradient Boosting

For learning RCTBNs, we will make use of (relational) func-
tional gradient boosting. The standard gradient ascent ap-
proach starts with initial parameters θ0 and iteratively adds
the gradient (Δi) of an objective function w.r.t. θi. Fried-
man(2001) proposed an alternate approach called functional
gradient boosting where the objective function is repre-
sented using a regression function ψ over the examples x
and the gradients are derived with respect to ψ(x). The key
idea behind this approach is that, instead of computing the
overall gradient, the gradients are approximated by comput-
ing them for each example. Each gradient term (Δm) is a
set of a training example and a regression value given by
the gradient w.r.t ψm(xi), i.e., < xi,Δm(xi) =

∂LL(x)
∂ψm(xi)

>.
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To generalize from these regression examples, a regression
function ψ̂m (generally regression tree) is learned to fit to
the gradients . The final model ψm = ψ0 + ψ̂1 + · · · + ψ̂m

is a sum over these regression trees.
This work has been extended to relational models (Natara-

jan et al. 2012; Karwath, Kersting, and Landwehr 2008;
Sutton et al. 2000; Natarajan et al. 2011) by replacing the
propositional trees with relational regression trees (Blockeel
and Raedt 1998). If we assume the probability of an
example (yi) given its parents/neighbors(xi) as a sigmoid of
ψ, the functional gradient of each example 〈xi, yi〉 w.r.t ψ is

∂ logP (yi;xi)

∂ψ(yi = 1;xi)
= I(yi = 1;xi)− P (yi = 1;xi)

where I is the indicator function that is 1 if yi = 1 and 0
otherwise. The expression is simply the adjustment required
to match the predicted probability with the true label of the
example. If the example is positive and the predicted prob-
ability is smaller than 1, this gradient is positive indicating
that the predicted probability should move towards 1. Con-
versely, if the example is negative and the predicted prob-
ability is larger than 0, the gradient is negative, driving the
value the other way.

Relational CTBNs

We now introduce Relational CTBNs (RCTBNs) and then
develop an efficient learning approach for them.

Syntax and Semantics

Consider the following motivating example. It is well known
that the probability of developing type 2 diabetes (a hered-
itary disease) increases with age. Its trajectory can be mod-
eled by CTBNs based on the expected transition time
learned from data. Due to the genetic disposition, the tran-
sition probability of a person’s diabetes status depends not
only on his/her behavior but also on trajectories of his/her
family members’ diabetes status. These are in turn dynamic
processes. To model relations over time faithfully, we adapt
first-order logic syntax. For example, we model the family
dependency using two (temporal) predicates

domain(Diabetes/2, discrete, [true, false])

domain(FamilyMember/2, discrete, [true, false])

The domain representation of Diabetes/2 can be inter-
preted as a predicate that has two arguments – the first ar-
gument running over persons and the second argument de-
noting the continuous time. As a binary predicate,Diabetes
takes discrete values of true/false. FamilyMember is
a binary relation between two persons and is not temporal.
Hence, it does not have time as a parameter.

To state that Mary does not have diabetes initially, we
use Diabetes(mary, t0).� 1. To denote that she gets
diabetes at time ti, we use Diabetes(mary, ti).⊕.
FamilyMember(x, y) denotes that x is a fam-
ily member of y. A sample data set could just be:

1� and ⊕ are values that we denote explicitly as against nega-
tives in FOL. This is merely for notational simplicity.

Training examples Background Knowledge
Diabetes(mary, t0).� FamilyMember(ann,mary).
Diabetes(ann, t2).⊕ FamilyMember(eve,mary).
Diabetes(tom, t3).⊕ FamilyMember(ian, tom).
Diabetes(john, t4).⊕ FamilyMember(jack, bob).

FamilyMember(bob,mary).
FamilyMember(tom,mary).

Now, consider the following (probabilistic) rule:

∀x, t1, ∃y, t, Diabetes(x, t1)� ∧
FamilyMember(y, x) ∧Diabetes(y, t)⊕ ∧t1 < t < t2

⇒ P (Diabetes(x, t2)⊕) = 1− e−q1(t2−t)

It states that for all the persons (x) who do not have diabetes
at time t1, if one of his/her family members (y) develops dia-
betes at t > t1, then the probability that x will have diabetes
at time t2 follows the exponential distribution specified at
the end of the rule (with parameter q1). Another rule is:

∀x, t1, �y, t, Diabetes(x, t1)� ∧
FamilyMember(y, x) ∧Diabetes(y, t)⊕ ∧t1 < t < t2

⇒ P (Diabetes(x, t2)⊕) = 1− e−q2(t2−t1)

This rule contains different conditions from the first rule and
says that if no family members develop diabetes in the time
interval t1 to t2, the probability that the person will have
diabetes is an exponential distribution with parameter q2.

It is clear that, if we had used a propositional CTBN,
the dimension of this feature space (the number of CIMs)
would be exponential in the number of family members
the individual could have. In turn, when the data set is
rich in FamilyMember relationships, this can greatly
deteriorate the learning efficiency as observed by Weiss
et.al(2012). Hence, following the standard observations in-
side SRL (Getoor and Taskar 2007), we exploit the ability to
tie parameters using logic. More formally:
Definition A RCTBN clause consists of two components: a
first-order horn clause that defines the effect of a set of in-
fluencing predicates on a target predicate and a conditional
intensity matrix (CIM) that models the probability of transi-
tion of the target given the influences.
Definition A RCTBN program2 is a set of RCTBN clauses.

Note that there could be multiple clauses with the same
head, indicating the target trajectory depends on multiple
parent trajectories. Second, since we are in the relational set-
ting, there can be many instances that satisfy a single rule for
a single target. For instance, in the above rule, there can be
multiple family members (i.e., several instances of y) for the
current person x and there can be multiple rules for predict-
ing onset of diabetes. One is tempted to use various combin-
ing rules, see e.g. (Natarajan et al. 2009), for combining the
different distributions from multiple clauses. However, for
RCTBNs, the default amalgamation operation is sufficient
to guarantee a homogeneous Markov process.

2This is akin to Bayesian Logic Programs (Kersting and De
Raedt 2002). Whereas, in the case of BLPs, a probabilistic clause
consists of a first-order logic clause and a probability distribution
associated with it, RCTBNs have a conditional intensity matrix as-
sociated with every clause, and the predicates are indexed by time.
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Theorem 1. Given a set of CIMs associated with multiple
RCTBN clauses, the amalgamation operation on the CIMs
will result in a consistent homogeneous Markov process. The
amalgamation operation is equivalent to applying the Noisy-
Or combining rule to these RCTBN clauses.

The intuition is that the amalgamation process is additive
in the parameters. Similarly, we can show that the Noisy-
Or operation on the exponential distribution adds the condi-
tional intensities as well. That is, simple addition of the con-
ditional intensities is our default combination function for
the intensities (this is equivalent to applying Noisy-Or com-
bining rule to independent transition probabilities). Never-
theless, developing equivalents of other combination func-
tions such as weighted-mean and Noisy-And (Natarajan et
al. 2009) remains an interesting direction for future research.
Moreover, aggregators as used in other SRL models such as
Probabilistic Relational Models (Getoor et al. 2001) can also
be adopted easily in our learning formalism by allowing the
search to consider aggregators of certain predicates.

Finally, it is interesting to note that unlike the directed
model case of SRL models (for example BLPs), there is
no necessity for explicitly checking for cycles. This is due
to the fundamental assumption of the CTBN model: two
variables cannot transition out of their current state at the
same instant. So, the arcs in the transition model represent
the dependencies over the trajectories, which always point
from the previous time towards the current time. More pre-
cisely, Xi � Xj in the transition model means Xi(t) →
Xj(t +�t) and Xj(t) → Xi(t +�t). Note that �t could
be different in these two relations as, unlike DBNs which
have a predefined sampling rate before learning the model,
CTBNs model transitions over continuous time. Thus, a tar-
get variable could transit anytime based on a specific CIM
during the period after the parent set changes into its current
joint state and before any of them transits out of the current
state. As there are no cycles in a BN within any single time
slice, chain rule of BNs holds in CTBNs.

Learning RCTBNs

We now develop a non-parametric approach for learning
RCTBNs from data. Note that if the training data is com-
plete, then during the entire trajectory of X, the values of
Pa(X) are known. In turn, it is explicit at any time point
which conditional intensity matrix is dominating the dynam-
ics of X. Thus, the likelihood of the parameters can be de-
composed into the product of the likelihood of the individual
parameters (Nodelman, Shelton, and Koller 2003). This pa-
rameter modularity along with the structure modularity of
CTBNs allow the parameters of CTBNs to be learned lo-
cally. Besides, we notice that the likelihood function is also
decomposable over individual transitions along the trajecto-
ries because of the memoryless property of the exponential
distribution. These lay out the theoretical foundation for ap-
plying the non-parametric RFGB approach.

Note that each training example is a segment of a trajec-
tory that includes not more than one transition of the tar-
get predicate. For example, Figure 1 shows the trajectories
of BloodPressure(BP ), Diabetes and CV D for patient

Examples Facts
CV D(John, t0).� BP (John, t0, low).
CV D(John, t1).� Diabetes(John, t0, false).
CV D(John, t2).� BP (John, t1, high).
CV D(John, t3).� BP (John, t2, low).
CV D(John, t4).� Diabetes(John, t3, true).
CV D(John, t5).⊕ BP (John, t4, high).
CV D(John, t6).� BP (John, t6, low).

Figure 1: Example trajectories of John.

John. Let us assume that the goal is to predict the transition
of CV D from low to high. As can be observed, every fea-
ture/predicate transits at different time points (fundamental
assumption of CTBNs). This can be represented in a logical
notation as we show in the bottom half of Figure 1.

Now, we first define the transition distribution from the
perspective of each segment:

positive examples (xki → xk
′

i ) :
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′
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(
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(1)

where T [xki x
k′
i |paji ] is the residence time of Xi starting

from being in its k-th state till transiting to its k′-th state
given its parents being in their j-th joint state. We de-
fine the function value ϕxk

i x
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i |paj

i
∈ (−∞,∞) such that
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= e

ϕ
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i x
k′
i |paj

i
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mization w.r.t. qxk
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i
for CTBNs could be addressed by

maximizing the loglikelihood function w.r.t. ϕxk
i x

k′
i |paj

i
.

To summarize, instead of maximizing the likelihood func-
tion by calculating the sufficient statistics—T̂ [xki |paji ], the
total amount of time that Xi = xki while Pa(Xi) = paji ,
and M [xki → xk

′
i |paji ], the total number of transitions—

aggregated over the trajectories (Nodelman, Shelton, and
Koller 2003), we optimize the global loglikelihood function
by maximizing the individual likelihood of all the segments
each of which has a weight (i.e. ϕxk

i x
k′
i |paj

i
) attached to it.

In the case of binary valued target predicates, the target
variable has to transit to the other state upon transiting out
of the current state, so qxk

i x
k′
i |paj

i
(k′ �= k) = qxk

i |paj
i
, hence

e
ϕ
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i
xk′
i
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i (k′ �= k) = e

ϕ
xk
i
|paj

i , and the negative examples
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now only contain one case where no transition happened.
So, the gradient function could be derived as:

∂LL
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negative examples (xki → xki ) :
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Based on its definition in (1), the transi-
tion probability for positive examples: prob+ =

1− exp(−eϕxk
i
|paj

i T [xki x
k′
i |paji ]), so the gradients function

can be represented in the terms of prob+ as:

∂LL

∂ϕxk
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⎧⎪⎪⎪⎨
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positive examples (xki → xk
′

i ) :
−(1−prob+) ln(1−prob+)

prob+

negative examples (xki → xki ) :

ln(1− prob+)
(3)

This presents the weight updates of the examples in each
iteration based on the current model.

Plugging (3) into the RFGB results in a convergent
learner. More precisely,

Theorem 2. There exist global maxima for the loglikelihood
function.

Proof. The Hessian functions of the loglikelihood function
w.r.t. ϕxk

i x
k′
i |paj

i
equals to:

H =
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(prob+)2

negative examples (xki → xki ) :

ln(1− prob+)
(4)

Since prob+ ∈ [0, 1], we could derive the value ranges as:
ln(1 − prob+) ∈ (−∞, 0], (prob+ + ln(1 − prob+)) ∈
(−∞, 0], prob+−1 ∈ [−1, 0], and (prob+)2 ∈ [0, 1], hence
the Hessian function w.r.t. ϕxk

i x
k′
i |paj

i
would always be non-

positive for any ϕxk
i x

k′
i |paj

i
. So, the loglikelihood is a con-

cave function of ϕxk
i x

k′
i |paj

i
, which has global maxima.

Theorem 3. RFGB for CTBNs converges when the predic-
tions reach the true values. In other words, RFGB for CTBNs
will converge to global maxima.

Proof. For positive examples, let a = 1 − prob+, based on
(3) and L′Hôpital′s rule, lim

prob+→1
∇+ equals to

lim
a→0+

−a ln a
1− a = lim

a→0+

ln a

1− 1
a

= lim
a→0+

1/a

1/a2
= 0+

Algorithm 1 RCTBN-RFGB: RFGB for RCTBNs
1: function RCTBNBOOST(TP , OP )
2: for CT in TP do � Iterate through target predicates
3: ϕCT

0 := Initial function � Empty tree
4: for 1 ≤ m ≤ M do � M gradient steps
5: Tr := GenExamples(CT,ϕCT

m−1, OP )
6: � Generate examples
7: ΔCT

m := FitRelRegressionTree(Tr,OP )
8: � Fit trees to gradients
9: ϕCT

m := ϕCT
m−1 +ΔCT

m � Update model
10: end for
11: end for
12: end function

Algorithm 2 Example generation for RCTBNs
1: function GENEXAMPLES(CT,ϕ,OP )
2: Tr := ∅
3: for tri ∈ OP do � Iterate over all transitions in OP
4: Compute the residence time T of the target predicate
5: Compute prob+ = f(T, ϕ) � Transition probability
6: if tri ∈ CT then

7: Δ(tri) =
−(1−prob+) ln(1−prob+)

prob+

8: � Compute gradient of positive example
9: else

10: Δ(tri) = ln(1− prob+)
11: � Compute gradient of negative example
12: end if
13: Tr := Tr∪ < tri, Δ(tri) >
14: � Update relational regression examples
15: end for
16: return Tr � Return regression examples
17: end function

For negative examples,

lim
prob+→0

∇− = lim
prob+→0

ln(1− prob+) = 0−

As shown above, ∇+ ∈ [0,+∞) and converges when the
prediction equals the true value of positives (i.e. prob+ = 1)
while ∇− ∈ (−∞, 0] and converges when the prediction
equals the true value of negatives (i.e. prob+ = 0).

The algorithm for learning RCTBNs is summarized in
Alg. 1, where we use OP to denote observed predicates,
TP to denote the set of target predicate transitions that we
are interested in and CT , the current target transition (for
example, low to high of CVD). In each gradient step, we
first generate examples (denoted as Tr) based on the current
ϕ function. We use standard off-the-shelf relational regres-
sion tree learning approaches (Blockeel and Raedt 1998) to
get a regression tree that fits these gradients Tr (function
FitRelRegressionTree). Then, we add the learned tree
ΔCT

m to the model and repeat this process. The examples
are generated using Alg. 2. Since any non-transition can be
used to generate a negative example, we can potentially have
infinite negative examples (for every time point). To prevent
skew and scalability issues, we generate negative examples
only at time points when a certain predicate other than the
target predicate has a transition. Algorithmically, we iterate
over all the transitions in the trajectories. If the transition is
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Figure 2: Left three columns, propositional domains (Q1): The results show no statistically significant difference between
RCTBNs and state-of-the-art methods. Right column, relational experiment (Q2): (Upper frame) RCTBN model of CVD.
(Bottom frame) The results show that RCTBNs can capture relations faithfully. As there is no continuous time relational
model, the results are compared against “ground truth”. Note that the “ground truth” does not have AUC = 1.0 because when we
generated the data using forward sampling, the values are sampled based on the transition intensity calculated by P = 1−e−q∗t.
The AUC of ground truth is calculated based on these generating transition probabilities instead of the determinant values (i.e.
0 for positive examples and 1 for negative examples).

over the target predicate, we generate a regression example
using the gradients for positive examples from (3). If the tar-
get predicate does not transit in this segment, we treat it as a
negative example, and compute the gradient accordingly.

Experiments

Our intention is to investigate whether RCTBNs truly gen-
eralize CTBNs to relational domains by addressing the fol-
lowing two questions:

(Q1) How does RCTBN compare to CTBNs on proposi-
tional domains?

(Q2) Can RCTBN-RFGB learn relational models faithfully
where CTBNs would fail or need extensive feature engi-
neering ?

To this aim we evaluated RCTBN-RFGB on propositional
and relational data sets and compared it to state-of-
the-art where possible. More precisely, we employed
three standard CTBN datasets from prior literature,
i.e. the Drug model (Nodelman, Shelton, and Koller
2003), MultiHealth model (Weiss, Natarajan, and Page
2012) and S100 model (Weiss, Natarajan, and Page
2012). In the drug domain, the data is generated for
length of 10, the target predicate is JointPain(X,T )
and other variables include the trajectories of Eating,
Fullstomach, Hungry, Uptake, Concentration,
Barometer, and Drowsy. The MultiHealth data has
the target predicate Atherosclerosis(X,T ) and tra-
jectories of Gender, Smoking, Age, Glucose, BMI ,
BP , ChestPain, AbnormalECG, MI , Troponin,

ThrombolyticTherapy, Arrhythmia, Stroke, and
HDL, for a length of 100. The S100 domain has 100 binary
valued trajectories of length 2 and the target is S100(X,T ).

We compared RCTBN-RFGB learning approach with
the state-of-the-art propositional CTBN learning approach-
mfCTBN (Weiss, Natarajan, and Page 2012) on these data.
Note that these are specialized domains created by the au-
thors of the respective papers (Nodelman et al. for Drug
and Weiss et al. for MultiHealth and S100). Our goal is to
demonstrate that even for data that are not created synthet-
ically by our model, we can still learn a comparably accu-
rate model from them. Moreover, our formalism can han-
dle structured inputs/outputs while these prior work cannot
handle them without significant feature engineering. We ran
5-fold cross validation to generate the learning curve of the
loglikelihood and AUC-ROC on the test set.

(Q1) RCTBN compares well to CTBN on propositional
domains: As the left three columns in Figure 2 show, our
method is comparable (no statistically significant difference
at p=0.05) to the best propositional method i.e. mfCTBN on
data created by mfCTBN model. This answers (Q1) affirma-
tively – RCTBN is comparable to state-of-the-art algorithms
for modeling propositional dynamic processes.

(Q2) RCTBN can capture relations faithfully where
CTBNs would fail or need extensive engineering: The re-
lational data is generated by a cardiovascular disease(CVD)
model shown in Figure 2(right column, top) over a duration
of 50 years. We used a latent variable, Healthy(X) to gen-
erate the transition patterns of dietary and exercise habit for
individuals with healthy/unhealthy lifestyle. CV D(X,T ) is
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our target predicate whose CIMs are conditioned on both the
features related to the target individual and the CVD status
of his/her parents. We used forward sampling (Nodelman
2007) to generate 200 trajectories for individuals whose par-
ents are absent in the data (i.e. sample their CVD transitions
based on CIMs conditioned only on white parent nodes in
Figure 2(right, top)) and 200 trajectories for individuals who
have one or both parents in the data (CIMs conditioned on
white and blue parent nodes in Figure 2(right, top)).

For this dataset, we present the results averaged over 5
runs compared against the ground truth in Figure 2 (right
column, bottom). As can be observed, our approach is com-
parable to the ground truth. A more compelling result is that
we are able to retrieve the structure of the CVD predicate,
i.e., the learned tree includes the CVD status of the parents.
This answers (Q2) affirmatively, i.e., our proposed approach
does model relations faithfully3.

Conclusion

We proposed the first relational model that can faithfully
model continuous time. Our model is inspired from the suc-
cesses in the CTBNs and the SRL communities. Besides,
we adapt and refine the leading learning algorithm for SRL
models to the temporal case. The key innovation is that the
conditional intensity is defined as a monotonic function of
the RFBG function value, hence, maximizing w.r.t. function
values can maximize the loglikelihood of the trajectories.
Our resulting algorithm is non-parametric and can learn the
dependencies and the parameters together. Our initial results
are promising and show that we can indeed recover the orig-
inal structure and faithfully model the relational trajectories.

Our current learning approach is discriminative and we
are only learning for a single query. Extending this to gen-
erative learning and modeling jointly over multiple predi-
cates is our next step. More applications of the algorithm to
complex tasks such as Electronic Health Records, gene ex-
perimental databases, network flow modeling, and monitor-
ing the reliability of human-to-X communication systems,
among others, with asynchronous events are exciting direc-
tions. Adaptation of different types of combination functions
is another important direction. Finally, improving inference
is essential to scale up our learning algorithm to a large num-
ber of tasks and is also an interesting direction for future
research.
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3Note that our work is the first dynamic relational model to han-
dle continuous time, see also the discussion in the introduction.
Other formalisms exist to handle continuous variables but not con-
tinuous time which in our case is not a variable by itself but rather
an argument of all the predicates. Hence, our relational baseline is
the ground truth.
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