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Abstract

Feature selection has been widely recognized as one of the
key problems in data mining and machine learning commu-
nity, especially for high-dimensional data with redundant in-
formation, partial noises and outliers. Recently, unsupervised
feature selection attracts substantial research attentions since
data acquisition is rather cheap today but labeling work is
still expensive and time consuming. This is specifically use-
ful for effective feature selection of clustering tasks. Recent
works using sparse projection with pre-learned pseudo labels
achieve appealing results; however, they generate pseudo la-
bels with all features so that noisy and ineffective features de-
grade the cluster structure and further harm the performance
of feature selection; besides, these methods suffer from com-
plex composition of multiple constraints and computational
inefficiency, e.g., eigen-decomposition. Differently, in this
work we introduce consensus clustering for pseudo label-
ing, which gets rid of expensive eigen-decomposition and
provides better clustering accuracy with high robustness. In
addition, complex constraints such as non-negative are re-
moved due to the crisp indicators of consensus clustering.
Specifically, we propose one efficient formulation for our
unsupervised feature selection by using the utility function
and provide theoretical analysis on optimization rules and
model convergence. Extensive experiments on several real-
world data sets demonstrate that our methods are superior to
the most recent state-of-the-art works in terms of NMI.

Introduction

Nowadays cutting edge technologies for data mining man-
age to tackle two major problems with the exponential
growth in harvest data: high dimensionality (Agrawal et
al. 1998), huge data size (Fayyad, Piatetsky-Shapiro, and
Smyth 1996). High dimensional data have never been com-
mon than today in many areas since the entity itself in-
cludes rich contents that can not be easily abstracted by
machines via algorithms: text, images, videos, etc. On one
hand, researchers attempt to extract as many features as pos-
sible to assist learning algorithms for better performance;
on the other hand, rich features lead to redundant informa-
tion, noisy portion, and outlier samples. In the worst case,
an expansion of feature size will take exponentially more
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computing resource but only provide limited performance
improvement.

Feature selection manages to tackle the problem above
by selecting the pivot portion of feature, which has been
widely discussed in machine learning and data mining com-
munity (Guyon and Elisseeff 2003; Li and Fu 2015). Clearly,
features after selection are easily interpreted, need shorter
training time, and most importantly overcome the over fit-
ting problem. A straightforward way is to enumerate all dif-
ferent feature subsets and evaluate each by certain metric
or scores. Such exhaust search is usually computational in-
tractable but for small feature sets. When it comes to unsu-
pervised tasks, feature selection becomes more challenging.

Many algorithms have been proposed to effectively solve
the feature selection problem, which can be briefly catego-
rized into three groups according to the accessibility to la-
bels: supervised feature selection, semi-supervised feature
selection and unsupervised feature selection.

The first category utilizes label information to find the fea-
ture relevance or mutual information, and ensures that the
discriminative knowledge is correctly encoded by the se-
lected features (Wolf and Shashua 2005; Theodoridis and
Koutroumbas 2008; Nie et al. 2010). Such strategy is usu-
ally very effective, but needs costly label information, which
is not always available in mining task. Therefore, unsuper-
vised feature selection is demanded for the scenario with-
out any label information but the underlying distribution of
the data (Wolf and Shashua 2005; Dy and Brodley 2004;
Zhao and Liu 2007; Alelyani, Tang, and Liu 2013). How-
ever, due to the absence of labels, it is usually hard to de-
termine the quality of features directly. To this end, unsu-
pervised feature selection approaches usually proceed with
certain evaluation criteria such as: Laplacian Score (He,
Cai, and Niyogi 2005), mutual information (Peng, Long,
and Ding 2005), and maximum likelihood (Dy and Brodley
2004), or generate pseudo labels to apply supervised feature
selection (Cai, Zhang, and He 2010; Li et al. 2013).

Recently, some achievements have been witnessed in Un-
supervised Feature Selection scenario, which use sparse pro-
jection with pseudo labels to guide the process of feature se-
lection. However, they generate pseudo labels with all fea-
tures so that noisy and ineffective features degrade pseudo
labels and further harm the performance of feature selec-
tion (Liu and Tao 2015); besides, these methods suffer from
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complex composition of multiple constraints and computa-
tional inefficiency. In light of this, we propose a novel un-
supervised feature selection methods based on consensus
clustering, called Consensus Guided Unsupervised Feature
Selection (CGUFS), which jointly learns pseudo labels and
sparse feature projection in an efficient manner via a step-
one framework. Three main contributions are highlighted as
follows.
• Consensus clustering is used for pseudo label learning and

solve it in linear time, which not only improves the clus-
tering accuracy, but also substantially reduces the running
time compared those exploiting spectral methods.

• We get rid of complex compositions of different con-
straints such as non-negative by the built in crisp indi-
cator of our model, which reduces the model complex-
ity. UFS with utility function is implemented within our
framework, and theoretical analyses on efficient optimiza-
tion rules and convergence are given.

• Extensive experiments on several data sets demonstrate
that our method is not only superior to the most state-of-
the-art works in terms of clustering quality, but also robust
to the model parameters.

Related Work

Here we introduce the related work in terms of unsupervised
feature selection and consensus clustering.

As mentioned before, the main challenge for unsuper-
vised feature selection is to find appropriate evaluation crite-
ria or pseudo labels. Such evaluations criteria can be utilized
to explore feature relevance, or intrinsic data structure, and
the learned pseudo labels can guide the feature selection in a
supervised fashion. In the following part, we introduce unsu-
pervised feature selection methods in three categories: filter,
wrapper, embedded approaches (Guyon and Elisseeff 2003;
Liu and Yu 2005).

Filter algorithms take advantage of proxy measure to
score the feature set rather than the commonly used er-
ror rate (Zhao and Liu 2007; He, Cai, and Niyogi 2005;
Peng, Long, and Ding 2005; Mitra, Murthy, and Pal 2002;
Cheung and Zeng 2009). However, such measures may eas-
ily ignore factors critical to feature selection since the proxy
measures usually concentrate on one aspect of the prob-
lem. For example, Laplacian Score is able to select features
contributing most to the underlying manifold, but does not
consider the factors such as mutual information (He, Cai,
and Niyogi 2005). Therefore, it is hard to get rid of feature
redundancy. On the other hand, methods considering mu-
tual information may not explicitly explore underlying data
structure (Peng, Long, and Ding 2005), which is important
in clustering tasks. It should be noted that although filter
proxy measure may not be related to the target task, it is
usually simple and computationally efficient.

Wrapper method works usually associated with learn-
ing algorithms, or specifically, predictive model in most
cases (Kim, Street, and Menczer 2002). Therefore, such pre-
dictive model can guide the feature selection process with
certain objective. Since clustering is the core problem in un-
supervised learning, a few learning algorithms and criteria

such as maximum likelihood, scatter separability, mixture
of Gaussian are learned or checked for the purpose of fea-
ture selection and clustering. In (Wolf and Shashua 2005;
Dy and Brodley 2004; Zeng and Cheung 2011), the selected
features firstly train a predictive model and then are eval-
uated on a fixed validation set. Other criteria, e.g., least
square, spectral theory, sparse regularizer, have been re-
cently proposed towards this problem (Wolf and Shashua
2005; Cai, Zhang, and He 2010).

Embedded methods incorporate the unsupervised fea-
ture selection as part of the learning objective (Law, Jain,
and Figueiredo 2002; Constantinopoulos, Titsias, and Likas
2006; Shao et al. 2015). For example, feature selection
is considered as the missing variable of a probabilistic
model jointly learning both clusters, and feature sets (Law,
Jain, and Figueiredo 2002). Recently, sparsity has drawn
considerable attentions in feature selection and classifica-
tion tasks (Lee et al. 2006; Wright et al. 2009). A highly
sparse vector can be approximately seen as a feature se-
lection process, where redundant or irrelevant features are
shrunk via l1 or l2,1 norm. In addition, spectral analysis has
been widely adopted in unsupervised feature selection for
pseudo label/indicator learning due to its global solution to
graph partition problems (Li et al. 2013; Yang et al. 2011;
Li et al. 2012).

Another related area is consensus clustering, also known
as ensemble clustering, which fuses several basic parti-
tions into an integrated one. As a pioneering work, (Strehl
and Ghosh 2003) transformed this problem into a hyper-
graph partition problem. Followed by this topic, some graph-
based methods (Fern and Brodley 2004), co-association ma-
trix based (Fred and Jain 2005) and K-means-based meth-
ods (Topchy, Jain, and Punch 2003; Wu et al. 2015; Liu et
al. 2015a; 2015b) are proposed to fuse these basic partitions
via different optimization objectives in an efficient way. To
our best knowledge, we are probably the first to apply con-
sensus clustering to obtain a robust and clean pseudo labels
for getting rid of the irrelevant and reductant features.

The Proposed Framework

In this section, some notations used throughout this pa-
per are firstly illustrated; then some preliminary knowledge
about consensus clustering and sparse learning for feature
selection is showcased; finally we demonstrate our frame-
work of Consensus Guided Unsupervised Feature Selection
and give the corresponding objective function.

Notations

Bold uppercase and lowercase characters are used to denote
matrices and vectors, respectively. For an arbitrary matrix
A ∈ Rn×m, ai denotes the i-th row of A, Aij denotes

the (i, j)-th element of A, ||A||F =
√∑n

i=1

∑m
j=1 A

2
ij is

well-known Frobenius norm of A and tr(A) is the trace of
a squared matrix, and its �2,1-norm is defined as ||A||2,1 =∑n

i=1

√∑m
j=1A

2
ij . Let X ∈ Rn×m represent the data ma-

trix with n instances and m features. A partition of these
instances into K disjointed subsets can be represented as an
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indicator matrix H ∈ {0, 1}n×K , where hij = 1 represents
that xi belongs to the j-th cluster.

Consensus Clustering

Consensus clustering aims to fuse several existing partitions
into the integrated one. Let H = {H(1),H(2), · · · ,H(r)} of
X be the set of r basic partitions and each basic partition
H(i) contains Ki clusters, the goal consensus clustering is to
obtain a consensus partition H∗ from H. Here we focus on
the consensus clustering with utility function, which has the
following formulation.

H
∗ = argmax

H∗

r∑

i=1

U(H∗,H
(i)), (1)

where U is a utility function measuring the similarity of two
clustering results in the partition-level.

For better understanding the utility function, A contin-
gency matrix is often used for calculating the similarity of
two partitions. Let p(i)kj denote the joint probability of one

instance simultaneously belongs to cluster C(i)
j in H(i) and

cluster Ck in H∗, and pk+, p
(i)
+j denote the cluster size por-

tion of H∗ and H(i), respectively. Based on the above nota-
tions, we have the computation of the widely used Category
Utility Function (Mirkin 2001) as follows:

Uc(H
∗,H

(i)) =

K∑

k=1

pk+

Ki∑

j=1

(p
(i)
kj /pk+)

2 −
Ki∑

j=1

(p
(i)
+j)

2. (2)

Although consensus clustering outperforms traditional
clustering methods in terms of effectiveness and robustness,
it suffers from high computational cost. In the following sec-
tions, we apply fast optimization methods to update H∗ in
the framework of unsupervised feature selection.

Sparse Learning Analysis

In the scenario of unsupervised feature selection, discrimi-
native features are selected according to pseudo labels. Let
Z ∈ Rn×K denote the feature selection matrix, which plays
a key role in mapping the original features to the cluster in-
dicator. Therefore, we calculate the loss function between
selected features and pseudo labels and add a regularization
function with sparsity; by this means, the sparse learning is
formulated as:

||XZ − H
∗||2F + β||Z||2,1. (3)

Here �2,1-norm regularization is adopted on Z to guaran-
tee that Z is sparse in rows and β is the trade-off parameter.
The joint minimization of the loss function and �2,1-norm
regularization makes Z serve as a bridge between the se-
lected features and pseudo labels. Specially speaking, zi, the
i-th row of Z shrinks to zeros if the i-th feature contributes
little to predicting pseudo labels. Once Z is learned, top p
features are selected by sorting ||zi||2 in descending order.

Framework Formulation

As we know, there exist many noisy or ineffective features
especially in high dimensional data. A lot of existing work
utilizes pseudo-labels to select the discriminative features in
the unsupervised setting, which makes the selected features
contain the structural information as much as possible. One
drawback of these methods is that they employ all features
to generate the pseudo-labels. This means the pseudo-labels
might be inconsistent with the true cluster structure due to
irrelevant and ineffective features.

Inspired by the huge success of ensemble clustering, we
propose the framework of unsupervised feature selection
with consensus guidance to overcome the above limita-
tion. Generally speaking, robust consensus labels are derived
from multiple basic partitions to guide the feature selection
process. By this means, the features which are most related
to the pseudo class labels are selected. In this framework, we
simultaneously explore the consensus cluster structure and
select informative features in a one-step framework. Here
we give the objective function of our unsupervised feature
selection with consensus guidance.

min
H∗,G,Z

αJ (H∗,H) + ||XZ − H
∗
G||2F + β||Z||2,1, (4)

where J (·) is the cost of consensus clustering, G is a K ×
K alignment matrix between XZ and H∗; α and β are two
trade-off parameters to control the importance of consensus
clustering and sparse learning, respectively.

Our objective function consists of three parts, the first
term is for consensus clustering, and the second term is for
feature selection and the last one is a regularizer. Compared
with the existing unsupervised feature selection methods,
our framework has two major differences. One is that we
make use of consensus clustering to learn the pseudo class
labels, which are more effective to capture the true cluster
structure than tradition single clustering algorithms. Another
is that a crisp indicator matrix H∗ is used to represent the
cluster structure instead of a scaled indicator matrix, which
might contain the mixed signs and make itself severely de-
viate from the ideal cluster indicator. Since clustering is an
orderless process, an alignment matrix G is introduced to
shuffle the order of H∗.

UFS with Consensus Guidance
Based on the framework of CGUFS, we give the concrete
objective function and corresponding solutions in this sec-
tion. According to Eq. 4 and Eq. 1, we have

min
H∗,G,Z

−α

r∑

i=1

Uc(H
∗,H

(i)) + ||XZ − H
∗
G||2F + β||Z||2,1, (5)

The optimization problem of Eq. 5 involves non-matrix
variables and non-smooth derivative, which is difficult to
solve. Consequently, we propose a non-trivial iterative al-
gorithm to update H∗ and Z in an efficient way.

Update H∗, G As Given Z

We can see that H∗ exists in the first and second term in
Eq. 5. Besides H∗ in the first term is not represented in the
matrix formulation, which makes it difficult to optimize. To
better understand the consensus part, we introduce the fol-
lowing Theorem 1 to give another interpretation for H∗.
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Theorem 1. Let B = [H(1),H(2), · · · ,H(r)] be a matrix
concatenating all basic partitions, we have

r∑

i=1

Uc(H∗,H(i)) = −||B − H∗C||2F + constant, (6)

where C = [C(1),C(2), · · · ,C(r)] is the centroid of B.
The proof of Theorem 1 can be found in (Wu et al. 2013;

2015)1.
Remark 1. Theorem 1 uncovers the equivalent relationship
between consensus clustering with Category Utility func-
tion and K-means clustering. Recall that only one element
in each row of H(i) is 1, others are all 0. According to this
property, we even do not build the concatenating B in mem-
ory, instead we use the indexes of positions with 1. As a re-
sult, the time complexity drops to O(IKnr) and the space
complexity drops to O(nr) as well.
Remark 2. Theorem 1 also gives a new insight into the ob-
jective function of Eq. 5, which can be rewritten as:

min
H∗,C,G,Z

α||B − H∗C||2F + ||XZ − H∗G||2F + β||Z||2,1 (7)

Other than utility function to measure the similarity between
two partitions, we can also employ the distance to calcu-
late the disagreement between them. The benefits lies in two
folds: one is that the objective function has a more concise
formulation to understand the essence of the consensus clus-
tering, the other is that the optimization problem is rewritten
in a matrix formulation.

After the transform of Theorem 1, it is easy to find that the
first two terms are very similar to the standard K-means clus-
tering. Therefore, we wonder that if we can update H∗ and
G within a K-mean-like optimization framework as well.

In the following we introduce a concentrating matrix U =
[
√
αB XZ], where ul denote l-th row of U, which consists

of two parts, one is the first
∑r

i=1 Ki columns for the ba-
sic partition u

(1)
l =

〈
ul,1, · · · , ul,

∑r
i=1 Ki

〉
; the other last K

columns u
(2)
l = 〈ul,R+1, · · · , ul,R+K〉 denotes the selected

features. Then we have the following Theorem for updating
H∗,C and G.
Theorem 2. Given the concatenating matrix U, we have

min
H∗,C,G

α||B − H∗C||2F + ||XZ − H∗G||2F

⇔ min
H∗

K∑

k=1

∑

ul∈Ck

f(ul,mk),
(8)

where f is the squared Euclidean distance and mk is the
k-th centroid of the concatenating matrix U.
Remark 3. Theorem 2 gives a neat mathematical way to
update H∗,C and G in a K-means optimization framework,
which can be solved in roughly linear time complexity. G is
the last K columns of the centroid of U.

By Theorem 1 and Theorem 2, we can update H∗ and G
by just running K-means on the the concentrating matrix D.

1The proof of other theorems can be found at http://www.
northeastern.edu/smilelab/.

Algorithm 1 UFS with Utility Function
Require: X: the data matrix;

B: the matrix concatenating of r basic partitions;
α, β: the trade-off parameters.

1: Initialize H∗, Z and F;
2: repeat
3: Build the matrix U =

[√
αB XZ

]
;

4: Run K-means on U to update H∗ and G;
5: Update Z = (X�X + βF)−1X�H∗G;
6: Update F according to Z;
7: until The objective function value of Eq. 5 remains un-

changed.
Ensure: Sort all m features according to ||zi||2 and select

the certain number of ranked features with large values.

Update Z As Given H∗, G

Let L = ||XZ−H∗G||2F +β||Z||2,1, which is only related to
Z. Next we take the derivative of L over Z, and have

∂L
∂Z

= 2X
�(XZ − H

∗
G) + βFZ, (9)

where F is diag( 1
2||z1||2 , · · · , 1

2||zm||2 ). When ∂L
∂Z

= 0, we
have the update rule for Z.

Z = (X�
X + βF)−1

X
�

H
∗
G. (10)

Finally, we summarize the proposed iterative algorithm to
solve Eq. 5 in Algorithm 1.

Convergence Analysis

In the above solution, we decompose the optimization prob-
lem in Eq. 5 into two sub problems. Here we show that the
proposed iterative procedure can converge to the local mini-
mum by the following Theorem 3.

Theorem 3. The objective function value of Eq. 5 contin-
uously decreases by the alternative updating rules in Algo-
rithm 1.

Computational Complexity Analysis

Next we analyse the computational complexity of CGUFS.
When updating H∗ and G, the time complexity is O(In(R+
K)K), where I is the number of iteration for K-means and
R =

∑r
i=1 Ki. Recall that K � n, therefore the time com-

plexity during this sub problem is roughly linear to n. Dur-
ing the process of updating Z, it takes O(m3) for the matrix
inverse. Thus, the overall cost is O(tn+tm3), where t is the
iteration number for the whole algorithm.

Experimental Results

Here we first evaluate the performance of CGUFS on sev-
eral public data sets compared with several state-of-the-art
methods. Then convergence study and parameter analysis
are given to show the robustness of our algorithms. Finally
we analyse the impact of different strategies of basic parti-
tions to CGUFS.
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Table 1: Experimental Data Sets.
Domain Data set #instance #feature #class

Image

Coil20 1440 1024 20
MNIST 4000 784 10

ORL 400 1024 40
Yale 165 1024 15

Text

tr11 414 6429 9
tr41 878 7454 10
oh15 913 3100 10
re1 1657 3758 25

Experimental Setup

Data sets. Eight public data sets are used to evaluate the per-
formance of CGUFS including 4 image data sets and 4 text
data sets. Table 1 summarizes some important characteris-
tics of these 8 benchmark data sets.

Comparative algorithms. In the unsupervised feature se-
lection scenario, six competitive methods are chosen for
comparisons including Baseline, which means that all fea-
tures are used for clustering, MaxVar, in which fea-
tures with maximum variance are selected for clustering,
LS (He, Cai, and Niyogi 2005) in which features are se-
lected with the most consistency with Gaussian Laplacian
matrix, MCFS (Cai, Zhang, and He 2010) which selects
features based on spectral analysis and spare regression,
UDFS (Yang et al. 2011) which selects features in a joint
framework of discriminative analysis and �2,1-norm regu-
larization and NDFS (Li et al. 2012) in which nonnegative
spectral analysis and �2,1-norm regularization are used for
selecting features.

Parameter setting. For LS, MCFA and NDFS, the number
of neighbors is set to be 5 for the Laplacian graph. In the
CGUFS framework, we employ Random Parameter Selec-
tion strategy to generate basic partitions. Generally speak-
ing, k-means is conducted on all features with different clus-
ter numbers from K to

√
n; for ORL and Yale data sets, the

range of the numbers of clusters varies in [2, 2K], where K
is the true cluster number. 100 basic partitions are produced
for robustness. Here we set the cluster structural parameter
α = 104 and the sparse regularization parameter β = 1. The
numbers of selected features vary from 50 to 300 with 50 as
the interval, then k-means is used on the selected features to
validate the performance. Each algorithm runs 20 times, and
the average result and standard deviation are reported.

Validation metric. Since we evaluate the feature selection
performance via the clustering and all data sets provide the
true labels, normalized mutual information (NMI) is used
as an external metric for cluster validity. Note that NMI is
a positive measure between 0 and 1, and the larger the better.

Performance Comparison

Here we empirically evaluate the performance of CGUFS
and other comparative algorithms. Table 2 demonstrates the
best results of each algorithm on different numbers of se-
lected features from 50 to 300. The best results are high-
lighted in bold and the second best results are represented in
italic. From this table, we have the following observations.

(1) Generally speaking, compared with the baseline method,
feature selection is effective by getting rid of many noisy,
redundant and non-informative features. Even though there
exists a little gap between the performance with feature se-
lection or not on COIL20 and MNIST, it is still appealing to
achieve the matchable results with only small partial of the
features. (2) CGUFS methods achieve better performance on
these 8 data sets than the one of others in most scenarios,
which indicates the effectiveness of the consensus guide for
unsupervised feature selection. In UFS, pseudo labels are
used to guide the process of feature selection; thus the qual-
ity of pseudo labels have great impact on the final results.
For the comparative methods, all features are employed for
the pseudo labels; since there might exist noisy or irrele-
vant features, the pseudo labels generated from all features
might have large difference from the true cluster structure.
Thanks to the robustness of consensus clustering, more ac-
curacy labels are used to lead a better feature subset. For in-
stance, CGUFS outperforms the best comparative method by
almost 10% on Yale and tr11. Besides, our model gives the
high level guide by a crisp partition, rather than the mapping
matrix used in (Cai, Zhang, and He 2010; Yang et al. 2011;
Li et al. 2012). It indicates we can get rid of complex com-
positions of different constraints such as non-negative by
the built in crisp indicator of our model, which reduces the
model complexity. (3) On these 8 data sets, CGUFS obtains
the best results 6 times and the second best 1 time; for the
rest data set, CGUFS also achieves the competitive perfor-
mance.

Next we show the concrete performance of these algo-
rithms on different selected numbers in Figure 1. On Yale,
CGUFS outperforms other methods with all different num-
bers of selected features by a large margin and UDFS pro-
vides unstable results on these three data sets. It is worthy to
note that CGUFS enjoys higher performance only with 50
features, which is preferred by the real-world applications to
achieve satisfactory results with as few as features.

Convergence Study

The convergence of CGUFS has been proven in the previous
section, here we experimentally study the speed of conver-
gence of CGUFS. Figure 2 shows the convergence curves
of COIL20 and MNIST. We can see that CGUFS converges
fast within 10 iterations, which demonstrates high quality
pseudo labels generated from consensus clustering are con-
ductive to the convergence speed of CGUFS.

Parameter Sensitivity

In the following we explore the impact of these two param-
eters on the final performance. Generally speaking, we vary
α and β as from 1e − 4 to 1e + 4. The results on ORL and
oh15 are shown in Figure 3.

In our CGUFS model, α controls the quality of consensus
clustering and β determines the degree of sparseness during
the feature selection. Intuitively, we expect a high quality H∗

and a sparse Z. Figure 3 validates our conjecture. In general,
the performance of CGUFS has been improved with increase
of α and β. A larger α leads to a high quality of H∗, which
contributes to the final feature selection; with the increase of
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Table 2: Performance of different algorithms on real-world data sets via NMI .
Data set Baseline MaxVar LS MCFS UDFS NUFS CGUFS
COIL20 0.7675 ± 0.0219 0.7247 ± 0.0146 0.7156 ± 0.0148 0.7461 ± 0.0181 0.7328 ± 0.0208 0.7305 ± 0.0213 0.7555 ± 0.0191

MNIST 0.4544 ± 0.0143 0.4683 ± 0.0096 0.4389 ± 0.0184 0.4677 ± 0.0186 0.4090 ± 0.0105 0.4686 ± 0.0113 0.4665 ± 0.0162
ORL 0.4078 ± 0.0150 0.7349 ± 0.0083 0.7344 ± 0.0116 0.7653 ± 0.0165 0.7277 ± 0.0121 0.7352 ± 0.0154 0.7889 ± 0.0176

Yale 0.5126 ± 0.0338 0.4390 ± 0.0147 0.5177 ± 0.0173 0.4588 ± 0.0240 0.4782 ± 0.0161 0.4531 ± 0.0125 0.6118 ± 0.0399

tr11 0.0703 ± 0.0141 0.0764 ± 0.0112 0.0803 ± 0.0205 0.1354 ± 0.0332 0.1375 ± 0.0192 0.1426 ± 0.0301 0.2514 ± 0.0312

tr41 0.2585 ± 0.0903 0.2970 ± 0.0456 0.3475 ± 0.0519 30.36 ± 0.0414 0.2870 ± 0.0410 0.3096 ± 0.0162 0.3345 ± 0.0371
oh15 0.1770 ± 0.0301 0.2219 ± 0.0275 0.2324 ± 0.0282 0.2312 ± 0.0305 0.2181 ± 0.0204 0.2423 ± 0.0274 0.2911 ± 0.0192

re1 0.2914 ± 0.0105 0.3106 ± 0.0187 0.3250 ± 0.0175 0.3037 ± 0.0177 0.2662 ± 0.0113 0.3076 ± 0.0138 0.3604 ± 0.0115
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Figure 1: Clustering performance with different selected features.
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Figure 2: Convergence curve of CGUFS.
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Figure 3: Clustering performance with different α and β.

β, we get much better performance on ORL and oh15, which
validates the capability of �2,1-norm for feature selection. It
is worthy to note that when β is larger than 1, the results
become stable and insensitive to α.

Impact of Generation Strategy of Basic Partitions

Basic partitions have great impact on the pseudo labels, and
they also play important roles to unsupervised feature se-
lection. So far, we use random parameter selection strategy
to generation basic partitions. In this subsection, we explore
another generation strategy of basic partitions, called ran-
dom feature selection. Generally speaking, each time we
only randomly select partial features to produce the basic

10 30 50 70 900.72

0.74

0.76

0.78

0.8

Random feature selection ratio

N
M

I

 

 

COIL20

(a) COIL20

10 30 50 70 900.36

0.38

0.4

0.42

0.44

Radom feature selection ratio

N
M

I

 

 

MNIST

(b) MNIST

Figure 4: Random feature selection on COIL20 and MNIST.

partitions, and this process is repeated r = 100 times. Here
we vary the ratio of random feature selection from 10% to
90% with 20% as the interval. Figure 4 shows the perfor-
mance with random feature selection on COIL20 and MN-
SIT.

As can be seen in Figure 4, the consensus guided unsuper-
vised feature selection achieves stable results with the large
range of the feature selection ratio. Even with 10% features,
CGUFS can also obtain satisfactory results, which demon-
strates the robustness of CGUFS. Compared with the results
in Table 2, we can find that CGUFS with random feature
selection has the comparative results to the one with ran-
dom parameter selection on COIL20; however, on MNIST
there exists a large gap between these two kinds of gener-
ation strategies for basic partitions. We will further explore
the impact of basic partitions on feature selection in the fu-
ture.

Conclusions

In this paper, we employed the consensus pseudo labels to
guide the unsupervised feature selection process and pro-
posed the consensus guided unsupervised feature selection
framework. Generally speaking, one efficient algorithm by
using the utility function was proposed and we provided
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theoretical analysis on consensus clustering and model con-
vergence. Extensive experiments on 8 widely used data sets
demonstrated that our method has significant advantages
over the most recent state-of-the-art works in terms of NMI.
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