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Abstract

Tensor decomposition methods are effective tools for mod-
elling multidimensional array data (i.e., tensors). Among
them, nonparametric Bayesian models, such as Infinite
Tucker Decomposition (InfTucker), are more powerful than
multilinear factorization approaches, including Tucker and
PARAFAC, and usually achieve better predictive perfor-
mance. However, they are difficult to handle massive data due
to a prohibitively high training cost. To address this limita-
tion, we propose Distributed infinite Tucker (DINTUCKER),
a new hierarchical Bayesian model that enables local learning
of InfTucker on subarrays and global information integration
from local results. We further develop a distributed stochas-
tic gradient descent algorithm, coupled with variational in-
ference for model estimation. In addition, the connection be-
tween DINTUCKER and InfTucker is revealed in terms of
model evidence. Experiments demonstrate that DINTUCKER
maintains the predictive accuracy of InfTucker and is scalable
on massive data: On multidimensional arrays with billions
of elements from two real-world applications, DINTUCKER
achieves significantly higher prediction accuracy with less
training time, compared with the state-of-the-art large-scale
tensor decomposition method, GigaTensor.

Introduction

Real-world datasets with multiple aspects are usually de-
scribed by multidimensional arrays, i.e., tensors. For exam-
ple, a file access log can be depicted by a three-mode ar-
ray (user, file, action) and patient-medicine responses by a
four mode array (person, medicine, biomarker, time). Given
tensor-valued data, tensor analysis aims to capture complex
interactions embedded in data and to predict missing entries
(e.g., unknown medicine responses in patient-medicine re-
sponses data).

Despite the success of traditional tensor analysis methods,
such as Tucker (Tucker 1966), CANDECOMP/PARAFAC
(CP) (Harshman 1970) and their generalizations (Chu and
Ghahramani 2009), they are mostly multilinear methods and
are difficult to handle complex interactions among tensor
modes. Therefore, nonlinear tensor decomposition methods
based on nonparametric Bayesian, such as InfTucker (Xu,
Yan, and Qi 2012; 2015) and its generalization, random
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function prior models (Lloyd et al. 2012), have been pro-
posed. Theoretically justified by the generalization of de
Finetti’s theorem for RCE arrays (Aldous 1981; Lauritzen
2006), these models are able to capture the nonlinear rela-
tionship between array elements and often leads to a supe-
rior predictive performance. However, a critical bottleneck
of InfTucker and its generalization is that they mainly op-
erate on data that can fit in the memory of a singe com-
puter and cannot employ the parallel computing power from
computer clusters or graphics processing units (GPUs). This
largely stems from a global Gaussian process (GP) assump-
tion, which treats the vectorized whole array as one GP pro-
jection, and makes them infeasible for real-world large data.

To address this issue, we propose Distributed infinite
Tucker (DINTUCKER) decomposition, a new nonlinear ten-
sor decomposition model based on local GP assumption. It
splits the whole array into multiple small subarrays, each of
which is sampled from a local tensor-variate GP. By con-
ducting infinite Tucker decomposition on the subarrays in
a distributed manner, DINTUCKER is scalable to massive
multidimensional array data, while keeps the nonlinear mod-
elling power. The major contributions of this work are sum-
marized as follows:
1. Model and Algorithm. A new hierarchical Bayesian

model for tensor analysis is proposed, which enables dis-
tributed training of InfTucker on subarrays and informa-
tion integration from all local training results. For fast
inference, a distributed variational inference algorithm
based on stochastic gradient descent is developed.

2. Scalability. The local training scheme enables DIN-
TUCKER scale to array data with more than 50 billion el-
ements (as demonstrated in Table 1). Furthermore, DIN-
TUCKER enjoys almost linear scalability on the number
of computational nodes.

3. Analysis. We show a close connection between DIN-
TUCKER and InfTucker: Under certain conditions, the
model evidence of DINTUCKER associates with an evi-
dence lower bound of InfTucker. The conclusions can be
generalized to GP and local GP models.

4. Applications. DINTUCKER has been applied to analyze
knowledge bases (Carlson et al. 2010) and user access log
from an Internet company. On both cases, DINTUCKER
achieves significantly higher prediction accuracy with less
training time compared with GigaTensor, the state-of-the-
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art large-scale tensor decomposition algorithm.

Background

Tensor Decomposition

We denote a K-mode multidimensional array or tensor by
M ∈ R

m1×m2...×mK , where the k-th mode has mk dimen-
sions. We use mi (i = (i1, . . . , iK)) to denote M’s entry at
location i. Using the vectorization operation, we can stack
all of M’s entries in a vector, vec(M), with size

∏K
k=1 mk

by 1. In vec(M), the entry i = (i1, . . . , iK) ofM is mapped
to the entry at position j = iK +

∑K−1
i=1 (ik − 1)

∏K
k+1 mk.

Given a tensor W ∈ R
r1×...×rK and a matrix U ∈ R

s×rk ,
a mode-k tensor-matrix multiplication between W and U
is denoted by W ×k U, which is a tensor of size r1 ×
. . . × rk−1 × s × rk+1 × . . . × rK . The entry-wise defi-
nition is (W ×k U)i1...ik−1jik+1...iK =

∑rk
ik=1 wi1...iKujik .

The Tucker decomposition of a K-mode tensor M is M =
W×1U

(1)×2 . . .×K U(K) = [[W;U(1), . . . ,U(K)]] where
W ∈ R

r1×...×rK is the core tensor, and U(k) ∈ R
mk×rk is

the k-th latent factor matrix. If we enforce r1 = . . . = rK
and restrict the core tensorW to be diagonal (i.e., Wi1...iK �=
0 only if i1 = . . . = iK), it reduces to PARAFAC decompo-
sition.

Infinite Tucker Decomposition

The infinite Tucker (InfTucker) decomposition (Xu, Yan,
and Qi 2012) generalizes the Tucker decomposition in
an infinite feature space based on a tensor-variate GP.
The tensor-variate GP is a collection of random vari-
ables {m(u(1), . . . ,u(K))}, u(k) ∈ R

r, whose finite joint
probability over any set of input locations follows the
tensor-variate normal distribution. Specifically, given U =
{U(1), . . . ,U(k)}, the zero mean tensor-variate GP on M
has the probability density function

p(M|U(1), . . . ,U(K))

= N (vec(M);0,Σ(1) ⊗ . . .⊗ Σ(K)) (1)

where Σ(k) = k(U(k),U(k)) is the covariance matrix in
mode k, and ⊗ is the Kronecker product.

The InfTucker model assumes the latent factors U are
sampled from element-wise Laplace priors p(U), which en-
courage sparse estimation for easy model interpretation.
Given U , a latent real-valued tensor M is sampled from the
tensor variate GP. Then, given M, the observed tensor Y is
sampled from a noisy model p(Y|M). For example, we can
use Gaussian models for continuous observations and probit
models for binary observations. Thus the joint distribution
is p(Y,M,U) = p(U)p(M|U)p(Y|M). By using nonlin-
ear covariance function k(ui,ui), InfTucker maps the latent
factors in each mode into an infinite feature space and then
performs the Tucker decomposition with the core tensor W
of infinite size. Based on a feature mapping, InfTucker can
capture nonlinear relationships between latent factors.

Hierachical Bayesian model for DinTucker
A major bottleneck of InfTucker is that it cannot scale up
to large arrays. This stems from a global GP assumption

used by InfTucker: It assumes all elements of the tensor
M are sampled from a global Gaussian process given la-
tent factors U . As a result, computing the distribution for
the global M—p(M|U(1), . . . ,U(K)) in Equation (1)—
requires computing the Kronecker-product of the covari-
ance matrices and its inverse. This matrix inversion is pro-
hibitively expensive. Although InfTucker (Xu, Yan, and
Qi 2012) explores properties of the Kronecker product to
avoid naive computation, it still needs to perform eigen-
decomposition over the covariance matrix for each mode,
which is infeasible for a large dimension mk. Moreover, all
the latent factors are coupled in p(M|U(1), . . . ,U(K)) so
that we cannot distribute the computation over many com-
putational units.

To overcome these limitations, we propose DINTUCKER
that assumes the data are sampled from many, smaller GP
models, and the latent variables for these GP models are cou-
pled together in a hierarchical Bayesian model. The local GP
enables fast computation over subarrays and the hierarchical
Bayesian model allows information sharing across different
subarrays—making distributed inference possible.

Specifically, we first break the observed multidimen-
sional array Y into N subarrays {Y1, . . . ,YN} for multi-
ple computational units (e.g., one per MAPPER in MAPRE-
DUCE). Each subarray is sampled from a GP based on
latent factors Ũn = {Ũ(1)

n , . . . , Ũ
(K)
n }. Then we tie

these latent factors to the common latent factors U =
{U(1), . . . ,U(K)} via a prior distribution p(Ũn|U) =∏K

k=1N (vec(Ũ
(k)
n )|vec(U(k)), λI) where λ is a variance

parameter that controls the similarity between U and Ũn.
Furthermore, we use stochastic gradient descent (SGD) to

optimize {Ũn} and U due to its computational efficiency and
theoretical guarantees. The use of SGD naturally enables us
to deal with dynamic array data with increasing sizes over
time. To use SGD, we break each Yn into Tn smaller subar-
rays Yn = {Yn1, . . . ,YnTn}. We allow the subarrays from
each Yn to share the same latent factors {Ũn}. The reason
that we do not need to explicitly introduce another set of la-
tent factors, say, {Ũnt}t, for subarrays in each Yn is the fol-
lowing: suppose we have a prior p(Ũnt|Ũn) to couple these
Ũnt, we can set p(Ũnt|Ũn) = δ(Ũnt − Ũn) (δ(a) = 1 if and
only if a = 0) without causing conflicts between updates
over Ũnt—since they are updated sequentially. This situa-
tion is different from parallel inference over Ũn for which,
if we simply set Ũn = U for all n, we will have conflicts
between inconsistent Ũn estimated in parallel from different
computational units.

Given Ũn, a latent real-valued subarray Mnt is sam-
pled from the corresponding local GP. Then we sam-
ple the noisy observations Ynt from the latent subar-
ray Mnt. Denoting {Mnt}Tn

t=1 by Mn, we have the
joint probability of our model: p(U , {Ũn,Mn,Yn}Nn=1) =∏N

n=1 p(Ũn|U)
∏Tn

t=1 p(Mnt|Ũn)p(Ynt|Mnt). Note that
Mnt depends only on its corresponding elements in Ũn, so
that the computation of p(Mnt|Ũn) is efficient.

Compared with InfTucker, the joint probability of DIN-
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TUCKER replaces the global term p(M|U(1), . . . ,U(K))
(which couples all the latent factors and the whole latent
multidimensional array M) by smaller local terms. These
local terms require much less memory and processing time
than the global term. More important, the additive nature of
these local terms in the log domain enables distributed infer-
ence.

Distributed inference on MAPREDUCE

Now we present our distributed inference algorithm in
MAPREDUCE framework. We focus on binary tensor data,
for which we use the probit model for p(Ynt|Mnt). It is
straightforward to modify the following presentation to han-
dle continuous and count data.

First, we use data augmentation to decompose the pro-
bit model into p(yi|mi) =

∫
p(yi|zi)p(zi|mi)dzi, where

p(yi|zi) = δ(yi = 1)δ(zi > 0) + δ(yi = 0)δ(zi ≤ 0) and
p(zi|mi) = N (zi|mi, 1). Here δ(·) is the binary indicator
function. For eachMnt ∈Mn, we introduce an augmented
Znt. Let us denote Zn = {Znt}Tn

t=1. The joint probability of
the augmented model is

p(U , {Ũn,Mn,Zn,Yn}Nn=1)

=
N∏

n=1

p(Ũn|U)
Tn∏
t=1

p(Mnt|Ũn)p(Znt|Mnt)p(Ynt|Znt).

Variational approximation

We then apply variational EM to optimize the latent
factors U , {Ũn}: in the E-step, we use the varia-
tional approximation and, in the M-step, we apply
SGD to maximize the variational lower bound over
the latent factors. Specifically, in the E-step, we use
a fully factorized distribution q({Zn,Mn}Nn=1) =∏N

n=1

∏Tn

t=1 q(Znt)q(Mnt) to approximate the posterior
distribution p({Zn,Mn}Nn=1|{Yn, Ũn}Nn=1,U). The varia-
tional inference minimizes the Kullback-Leibler (KL) diver-
gence between the approximate and the exact posteriors by
coordinate descent. The variational updates for q(Znt) and
q(Mnt) are the same as those for q(Z) and q(M) in (Xu,
Yan, and Qi 2012).

Estimating latent factors

Given the variational distributions, we estimate the group-
specific latent factors {Ũn}Nn=1 and the common latent fac-
tors U by maximizing the expected log joint probability,
Eq

[
log p(U , {Ũn,Yn,Zn,Mn}Nn=1)

]
. Specifically, we op-

timize the group-specific latent factors {Ũn}Nn=1 via SGD in
the MAP step and update the common latent factors U in the
REDUCE step.

Estimating the group-specific latent factors {Ũn} via
MAPPER Given U , the expected log likelihood function

with respect to Ũn is

f(Ũn) = log(p(Ũn|U)) +
Tn∑
t=1

Eq

[
log(p(Mnt|Ũn))

]

+

Tn∑
t=1

Eq [log(p(Znt|Mnt))] . (2)

We have investigated L-BFGS to maximize Equation (2)
over Ũk

n but SGD turns out to give better performance.
To perform SGD, we first rearrange the objective func-
tion in Equation (2) as a summation form fn(Ũn) =∑Tn

t=1 gnt(Ũn), and

gnt(Ũn) = 1

Tn
log(p(Ũn|U)) + Eq

[
log(p(Mnt|Ũn))

]

+ Eq [log(p(Znt|Mnt))]

= − 1

2Tnλ

K∑
j=1

‖vec(U(j))− vec(Ũ(j)
n )‖2

+ ‖[[Eq [Mnt] ; (Σ
(1)
nt )

− 1
2 , . . . , (Σ

(K)
nt )−

1
2 ]]‖2

+

K∑
k=1

mnt

mnt,k
log |Σ(k)

nt |+ tr
(
Λnt

−1Υnt

)
(3)

where mnt,k is the dimension of k-th mode in Ynt,
mnt =

∏K
k=1 mnt,k, Λnt = Σ

(1)
nt ⊗ . . . ⊗ Σ

(K)
nt , Σ(k)

nt =

k(Ũ
(k)
nt , Ũ

(k)
nt ) is the k-th mode covariance matrix over the

sub-factors of Ũn, and Υnt is the statistics computed in the
variational E-step.

We randomly shuffle the subarrays in Yn and sequentially
process each subarray. For each subarray Ynt, we have the
update: Ũn = Ũn + η∂gnt(Ũn). The gradient ∂gnt(Ũn) has
a form similar to that of the expected log joint probability
with respect to global latent factors U in InfTucker. We omit
the detailed equation here and refer the detail to the paper of
InfTucker (Xu, Yan, and Qi 2012). The SGD optimization
for each Ũn is implemented by a MAP task in the MAPRE-
DUCE system.

Estimating the parent latent factors U via RE-

DUCER Given {Ũ1, . . . , ŨN}, the expected log
joint probability as a function of U is f(U) =∑N

n=1

∑K
k=1 logN (Ũ

(k)
n |U(k), λI). Setting this gradient

to zero, we have the simple update for U : U(k) = 1
N Ũ

(k)
n .

This is implemented in the REDUCE step of MAPREDUCE.

Algorithm complexity

The time complexity of InfTucker is O(
∑K

k=1 m
3
k +mkm)

where mk is the dimension of mode k and m =
∏K

k=1 mk.
If any mk is large, InfTucker is computationally too expen-
sive to be practical. For DINTUCKER, if the dimension of a
subarray in mode k is mk, the time complexity of analyzing
it is O(

∑K
k=1 m

3
k+mkm) where m =

∏K
k=1 mk is the total

number of entries in a subarray. When we set identical mk

for any k, the time complexity becomes O(m(1+ 1
K )). Given
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L subarrays and N MAPPER nodes, the time complexity for
each MAPPER node is O( L

Nm(1+ 1
K )), nearly linear in the

number of elements in each small subarray.
The space complexity of InfTucker is O(m+

∑K
k=1 m

2
k+

mkrk) because it needs to store the whole array and the co-
variance matrices for all modes in the memory of a com-
puter, in addition to latent factors. This is obviously infeasi-
ble for large data. By contrast, DINTUCKER only needs to
store one small subarray and its covariance matrices in each
MAPPER node via streaming, and the space complexity is
O(m+

∑K
k=1 m

2
k +mkrk).

Prediction via bagging of local GPs

To predict unknown entries, InfTucker needs to compute the
posterior of the whole latent array, which is infeasible for
large arrays. To address this issue, we use a collection lo-
cal GP models on subarrays to predict missing entries and
aggregate the predictions by bagging. Specifically, we first
sample subarrays, find their corresponding latent factors,
and then use them to calculate predictive means of the un-
known elements with GP prediction, and finally aggregate
the predictive means by averaging. Because DINTUCKER
can quickly provide predictions on the small subarrays, it
achieves fast final predictions. Note that Bagging (Hastie,
Tibshirani, and Friedman 2001) has been widely used to im-
prove many machine learning methods and recently has also
shown effective on GP models (Bratieres et al. 2014).

Connection to InfTucker

We now investigate the connection between DINTUCKER
and InfTucker in terms of model evidence.

First, for simplicity, we consider real-valued arrays and
use a Gaussian noise model for p(Y|M) in InfTucker and
DINTUCKER, i.e., p(Y|M) = N (vec(Y)|vec(M), τI); ac-
cording to (1), the marginal probability of InfTucker is given
by pI(Y|U) = N (

vec(Y)|0,Σ(U ,U)), where Σ(U ,U) =

k(U(1),U(1))⊗ . . .⊗ k(U(K),U(K)) + τI. Now we parti-
tion the indices of each mode into multiple segments with
the same size. Each segment corresponds to a set of la-
tent factors (in that mode). Using the segments from dif-
ferent modes, we form a grid partition of the whole array,
Y = {Y1, . . . ,Yn}, where each subarray contains d ele-
ments. Let us index i-th subarray by (is1 , . . . , isK ) where
isk represents the segment in mode k. The corresponding
latent factors are denoted by {U(1)

is1
, . . . ,U

(K)
isK
}. Then we

can obtain a block form for the covariance of InfTucker:
Σ(U ,U) = {Σij}1≤i,j≤n, where Σij = k(U

(1)
is1

,U
(1)
js1

) ⊗
. . .⊗k(U

(K)
isK

,U
(K)
jsK

)+ δ(i− j)τI and, it describes the sim-
ilarity between the elements of subarrays i and j.

Next, we derive a variational evidence lower bound for In-
fTucker. Specifically, we first decompose Σ(U ,U) into the
summation of two block matrices using the following theo-
rem.
Theorem 1. Given a block matrix Σ = {Σij} � 0, there
exists α ∈ [0, 1], such that Σ = Σ(1) +Σ(2) where Σ

(1)
ii =

(1− α)Σii and Σ
(1)
ij = Σij(i �= j), Σ(2) is block diagonal:

Σ(2) = diag({αΣii}) , and Σ(1) � 0,Σ(2) � 0.
Based on the decomposition, we can construct an equiva-

lent augmented model for InfTucker, by introducing a latent
variable f :

f ∼ N (f |0,Σ(1)), Y|f ∼ N (vec(Y)|f ,Σ(2)). (4)

The log marginal likelihood (i.e., log evidence)
of InfTucker can be written as log(pI(Y|U)) =

log
( ∫ N (f |0,Σ(1))N (vec(Y)|f ,Σ(2))df

)
.

Using Jensen’s inequality, we have log(pI(Y|U)) ≥∑n
i=1

∫
log

(N (vec(Yi)|fi, αΣii)
)N (fi|0, (1 − α)Σii)df .

Note that we use the property that Σ(2) is block diagonal.
The resulted bound is a variational lower bound and the
equality is achieved by setting the partition number n to 1
and α to 0. When α > 0, we obtain log(pI(Y|U)) ≥ L(α)
where

L(α) =

n∑
i=1

−1

2
log |2πΣii| − 1

2α
vec(Yi)

�Σ−1
ii vec(Yi)

− nd

2
log(α)− nd

2α
(1− α). (5)

Now we consider DINTUCKER built on subarrays
{Y1, . . . ,Yn}. For simplicity, we set λ = 0 in the prior of
group-specific latent factors so that p(Ũn|U) = δ(U − Ũn).
Then the log marginal likelihood of DINTUCKER becomes

log(pD(Y|U)) =
m∑
i=1

log(N (vec(Yi)|0,Σii))

=
n∑

i=1

−1

2
log |2πΣii| − 1

2
vec(Yi)

�Σ−1
ii vec(Yi). (6)

Comparing (5) and (6), we obtain the following conclusions.
Conclusion 1. The log evidence of DINTUCKER is identical
to L(α) in (5) when α = 1. However, L(1) is not guaranteed
to be the evidence lower bound of InfTucker, because Σ(1)

can be indefinite and the augmented model (4) can be invalid
when α = 1.
Theorem 2. When τ ≥ 1

2π , DINTUCKER’s evidence asso-
ciates with an evidence lower bound of InfTucker. Specifi-
cally, there exits α ∈ (0, 1) such that

log(pI(Y|U)) ≥ L(α) ≥ 1

α
log(pD(Y|U))

− nd

2
log(α)− nd

2α
(1− α).

Note that the above analysis is general for GP models:
If we partition GP input X into {X1, . . . ,Xn}, responses
y into {y1, . . . ,yn} and use local GP to model each yi as
an independent GP projection on Xi, we obtain the same
conclusions and theorems. Thereby, our analysis reveals the
connection not only between InfTucker and DINTUCKER,
but also between general GP and local GP models.
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Related work

Many works have been proposed for multidimensional ar-
ray decomposition, such as (Shashua and Hazan 2005a;
Chu and Ghahramani 2009; Sutskever, Tenenbaum, and
Salakhutdinov 2009; Acar et al. 2011; Hoff 2011; Yang and
Dunson 2013; Rai et al. 2014; Sun et al. 2015; Hu, Rai, and
Carin 2015; Rai et al. 2015). The majority of them are based
on multilinear factorization schemes. Despite their success,
they lack of flexibility to capture nonlinear interactions and
complex patterns in data. To overcome this limit, nonlinear
tensor decomposition models are developed, including In-
fTucker (Xu, Yan, and Qi 2012) based on global GP and
(Zhe et al. 2015) based on Dirichlet process and local GP.
However, InfTucker is severally restricted by scalability and
impractical for real-world applications; (Zhe et al. 2015) de-
scribes an online VB-EM algorithm to decompose large ar-
rays in a single computer, but it cannot use multiple compu-
tational resources in parallel and may take a long time for
very large array analysis. By contrast, DINTUCKER is built
with divide-and-conquer strategy and its hierarchical mod-
elling nature enables efficient parallel inference and soft in-
formation sharing from different local GPs on subarrays. As
a distributed extension of InfTucker, DINTUCKER maintains
the modelling power of InfTucker and is more practical for
real-world large array analysis.

The learning of local GPs is not new, for example, (Ras-
mussen and Ghahramani 2002) proposed an infinite GP mix-
ture model; (Kim, Mallick, and Holmes 2005) used parti-
tions of GP to analyze spatial data; (Gramacy and Lee 2008)
proposed treed GP; and (Dunson and Fox 2012) proposed
multiresolution GP coupling nestedly partitioned GPs for
time-series analysis. However, all these works are based on
GP models with known inputs, while in our model, the in-
puts (i.e., latent factors) are unknown and need to be esti-
mated.

Distributed algorithms to scale up tensor decomposition
to massive data becomes a recent research focus, such as
GigaTensor (Kang et al. 2012) on MAPREDUCE framework,
which exploits data sparseness and avoids the intermediate
data explosion, and DFacTo (Choi and Vishwanathan 2014),
which exploits the properties of the Khatri-Rao product to
reduce the number of sparse matrix-vector products. These
algorithms are very efficient, however, they mainly focus on
improving the alternative least square algorithm (ALS) for
PARAFAC (DFacTo also suits gradient descent algorithm
for PARAFAC). It is not clear that how their ideas can be
applied to the learning of nonlinear tensor decomposition
models.

Experiment

We carried out our experiments on a HADOOP cluster. The
cluster consists of 16 machines, each of which has a 4-quad
Intel Xeon-E3 3.3 GHz CPU, 8 GB RAM, and a 4 Ter-
abyes disk. We implemented DINTUCKER with PYTHON
and used HADOOP streaming for training and prediction.

Small datasets

We first examined DINTUCKER on the following social net-
work datasets, Digg1, Digg2 and Enron. Both Digg1 and
Digg2 datasets are extracted from a social news website
digg.com. Digg1 describes a three-way interaction (news,
keyword ,topic), and Digg2 a four-way interaction (user,
news, keyword, topic). Digg1 contains 581 × 124 × 48
elements and 0.024% of them are non-zero. Digg2 has
22× 109× 330× 30 elements and 0.002% of them are non-
zero. Enron is extracted from the Enron email dataset. It de-
picts a three-way relationship (sender, receiver, time). The
dataset contains 203 × 203 × 200 entries, of which 0.01%
are nonzero.

We compared DINTUCKER with the following tensor de-
composition methods: PARAFAC, nonnegative PARAFAC
(NPARAFAC)(Shashua and Hazan 2005b), high order SVD
(HOSVD) (Lathauwer, Moor, and Vandewalle 2000), Tucker
decomposition and InfTucker. We chose the number of latent
factors from the range {3,5,8,10,15,20}. Since the data are
binary, we evaluated all the approaches by the area-under-
curve (AUC) based on a random 5-fold partition of the data.
Specifically, we split the nonzero entries into 5 folds and
used 4 folds for training. For the test set, we used all the ones
in the remaining fold and randomly chose 0.1% zero entries
(so that the evaluations will not be overwhelmed by zero ele-
ments). We repeated this procedure for 5 times with different
training and test sets each time. For InfTucker, we used cross
validation to tune the hyperparameter of its Laplace prior.
For DINTUCKER, we set the subarray size to 40 × 40 × 40
for Digg1 and Enron, and 20× 20× 20× 20 for Digg2. To
generate subarrays, we used the three sampling strategies in
(Zhe et al. 2015), namely uniform, weighted and grid sam-
pling. For each strategy, we sampled 1, 500 subarrays for
training. We ran our distributed online inference algorithm
with 3 mappers, and set the number of iterations to 5.

We tuned the learning rate η from the range {0.0005,
0.001, 0.002, 0.005, 0.01}. We used another cross-validation
to choose the kernel function from the RBF, linear, Polyno-
mial and Matérn functions and tuned its hyperparameters.
For the Matérn kernel, the order of its Bessel function is ei-
ther 3

2 or 5
2 . For our bagging prediction, we randomly sam-

pled 10 subarrays, each with the same size as the training
subarrays. The results are shown in Figure 1. As we can see,
all versions of DINTUCKER are comparable to InfTucker on
the three datasets. Furthermore, DINTUCKER significantly
outperforms all the alternatives.

Scalability with regard to the number of machines

To examine the scalability and predictive performance of
DINTUCKER, we used the large datasets in two real-
world applications: The first dataset is NELL, a knowledge
base containing triples (e.g.,’George Harrison’, ’playsInstru-
ment’, ’Guitar’) from the ’Read the Web’ project (Carl-
son et al. 2010). We filtered out the triples with confidence
less than 0.99 and then analyzed the triplets from 20,000
most frequent entities. The second dataset is ACC, an access
log from a source code version control system in a large
company. The log provides information such as user id,
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Figure 1: The prediction results on small datasets. The results are averaged over 5 runs. DINTUCKERU, DINTUCKERW and
DINTUCKERG refer to our method based on the uniform, weighted, and grid sampling strategies, respectively.
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Figure 2: The running time and AUC for the NELL and ACC datasets, averaged over 50 runs.

target resource (i.e., file name), action (i.e., ”FileCheckIn”
and ”FileCheckOut”), the start time and end time of the
action. We used the records from 2000 most active users
and extracted triples (user, action, resource) for analysis.
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Figure 3: The scala-
bility of DINTUCKER
with regard to the
number of machines
on the NELL dataset.

The statistics of the datasets
are summarized in Table 1.
We examined the scalability
of DINTUCKER with regard
to the number of machines
on the NELL dataset. We set
the number of latent factors
to 5 in each mode. We set
the subarray size to 50 ×
50×50. We randomly sampled
590,400 subarrays, so that
the number of array entries
processed by DINTUCKER is
roughly the same as the whole
array: 50×50×50×590400/(20000×12295×280) = 1.07.

The results are shown in Figure 3. The Y-axis shows
R4/Rn, where Rn is the running time for n machines. Note
that the running speed scales up linearly.

Table 1: Statistics of multidimensional array data. B: billion,
K: thousand.

Data I J K Number of entries
NELL 20K 12.3K 280 68.9B
ACC 2K 179 199.8K 71.5B

Running time and prediction accuracy

We compared DINTUCKER with GigaTensor, the state-of-
the-art large scale tensor decomposition algorithm based on

PARAFAC. We used the original GigaTensor implementa-
tion in JAVA on HADOOP and adopted its default setting.
For DINTUCKER, we use the Matérn kernel and 5 MAPRE-
DUCE iterations.

We set the number of latent factors for each mode to
5 for the NELL dataset and 10 for the ACC dataset. The
NELL and ACC datasets contain 0.0001% and 0.003%
nonzero entries, respectively. We randomly chose 80% of
nonzero entries for training and then, from the remaining
entries, we sampled 50 test datasets, each of which consists
of 200 nonzero entries and 2, 000 zero entries. For DIN-
TUCKER’s prediction, we randomly sampled 10 subarrays
of size 50× 50× 50 for bagging.

To make a fair comparison, we trained DINTUCKER and
GigaTensor using the same amount of data, which is the
product of the sizes of the sampled subarrays and the number
of the subarrays in the training. Also, to examine the trade-
off between using fewer larger subarrays vs. using more
smaller subarrays given the same computational cost, we
varied the size of subarrays but kept the total number of en-
tries for training to be the same as the number of entries in
the whole array.

Figure 2 summarizes the running time and AUC of DIN-
TUCKER and GigaTensor on the NELL and ACC datasets.
The training time of DINTUCKER is given in Figures 2a
and c. Note that since the training time only depends on
the number and the size of subarrays, the subarray sam-
pling strategies do no affect the training time. Figures 2a
and c also demonstrate the trade-off between the commu-
nication cost and the training time over the subarrays: If
we use smaller subarrays, it is faster to train the GP model
over each subarray, but it incurs a larger communication/IO
cost. As subarrays get smaller, the overall training time first
decreases—due to less training time on each subarray—and
then increases when the communication/IO cost is too large.
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Figures 2b and d report the AUCs of GigaTensor and DIN-
TUCKER based on different sampling strategies with subar-
ray size 80× 80× 80. They show that regardless the subar-
ray sampling strategy, DINTUCKER outperforms GigaTen-
sor consistently. Although GigaTensor explores data sparsity
for fast computation, DINTUCKER achieves more accurate
prediction in less training time.This confirms the advantage
of nonlinear tensor decomposition on large array data.

Conclusion

We propose DINTUCKER, a nonparametric Bayesian learn-
ing algorithm that scales to large tensors. The core idea is to
generate local GPs linked together via a hierarchical model.
The connection to InfTucker in terms of model evidence is
also revealed. The conclusions are general for GP and local
GP models.
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