
Discriminative Vanishing Component Analysis

Chenping Hou1, Feiping Nie2, Dacheng Tao3

1College of Science, National University of Defense Technology
2Center for OPTical IMagery Analysis and Learning (OPTIMAL), Northwestern Polytechnical University

3Center for Quantum Computation and Intelligent Systems and the Faculty of Engineering and Information Technology,
University of Technology, Sydney

hcpnudt@hotmail.com, feipingnie@gmail.com, dacheng.tao@uts.edu.au

Abstract

Vanishing Component Analysis (VCA) is a recently proposed
prominent work in machine learning. It narrows the gap be-
tween tools and computational algebra: the vanishing ideal
and its applications to classification problem. In this paper,
we will analyze VCA in the kernel view, which is also an-
other important research direction in machine learning. Un-
der a very weak assumption, we provide a different point of
view to VCA and make the kernel trick on VCA become pos-
sible. We demonstrate that the projection matrix derived by
VCA is located in the same space as that of Kernel Principal
Component Analysis (KPCA) with a polynomial kernel. Two
groups of projections can express each other by linear trans-
formation. Furthermore, we prove that KPCA and VCA have
identical discriminative power, provided that the ratio trace
criteria is employed as the measurement. We also show that
the kernel formulated by the inner products of VCA’s projec-
tions can be expressed by the KPCA’s kernel linearly. Based
on the analysis above, we proposed a novel Discriminative
Vanishing Component Analysis (DVCA) approach. Experi-
mental results are provided for demonstration.

Introduction

Feature extraction is one of the most important topics in ma-
chine learning. Primarily, it addresses the problem of finding
the most relevant and informative set of features. It has been
commonly recognized that the effectiveness of feature ex-
traction takes great influence on the subsequent procedures,
such as classification and clustering (Guyon and Elisseeff
2003). Because of its importance, feature extraction still at-
tracts a lot of research efforts nowadays, although it is a tra-
ditional topic and there is much literature already.

In the literature, there are mainly two distinct ways for
feature extraction. The first kind of approaches are per-
formed in the original data space. They use the statistical
characteristics or similarity measurements of the original
data for feature extraction. Typical statistical property based
methods include ReliefF (Robnik-Sikonja and Kononenko
2003), Fisher Score (Koller and Sahami 1996) and Lapla-
cian Score (He, Cai, and Niyogi 2006), etc. Similarity-based
methods include linear methods, e.g., Principal Component
Analysis (PCA) and Linear Discriminative Analysis (LDA)
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(Bishop 2006), and other nonlinear dimensionality reduction
approaches (Van der Maaten, Postma, and den Herik 2009).

The second way to do feature extraction is to transform
the original data into another space first. For example, the
kernel methods can characterize the original data in a Re-
producing Kernel Hilbert Space (RKHS). By kernel trick,
they just need the kernel matrix, without knowing the ex-
plicit mapping function from the original data space to RHS
(Schölkopf and Smola 2001). Due to their effectiveness, the
kernel methods have been regarded as one of the most im-
portant tools for data mining. Compared with the first kind
of approaches, the second type of methods have more flexi-
bility in characterizing original data and have attracted a lot
of research interests.

Recently, Livni et al have proposed a novel approach
named Vanishing Component Analysis (VCA) (Livni et al.
2013), which belongs to the above-mentioned second cat-
egory. VCA uses the concept vanishing ideal in computa-
tional algebra for data transformation and feature selection,
solving the feature extraction problem in a distinctive way.
It has sound theoretical foundation and great values in ap-
plications. It not only provides a new perspective on the fea-
ture extraction problem in machine learning, but also makes
contributions to the mathematical area concerning vanishing
ideal.

In this paper, we aim to analyze this prominent work
from the kernel view. Under a weak assumption, we prove
that the projection matrix derived by VCA is located in the
same space as that of Kernel Principal Component Analysis
(KPCA) (Schölkopf, Smola, and Müller 1998) with polyno-
mial kernel on each category respectively. The explicit linear
transformation matrices between two groups of transformed
data points are derived. Furthermore, we demonstrate that
different mapping results of KPCA and VCA have equal
discriminative power if the ratio trace criteria in traditional
LDA is adopted for measurement. The linear relations be-
tween the kernels of KPCA and VCA are also revealed.
Based on the above analysis, we propose a new Discrim-
inative Vanishing Component Analysis (DVCA) approach.
The main contributions of this paper include,

(1) We have analyzed VCA in kernel view. The results
reveal the relationship between the two types of prominent
research, kernel methods and VCA. It also provides a new
perspective of VCA and deepens the understanding of the
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relations of these approaches.
(2) We have proposed an improved approach, i.e., DVCA.

Compared with VCA, it takes the discriminative informa-
tion among different classes into consideration while VCA
does not. Experimental results are provided to show its ad-
vantages.

VCA Revisited

VCA is a novel supervised approach which provides us a
new perspective of feature extraction and tightens the re-
lationship between the concept of vanishing ideal in alge-
bra and its application in machine learning. Let us introduce
some notation and basic definitions first.

Assume that Xi = [x
(i)
1 ,x

(i)
2 , · · · ,x(i)

ni ] represents the
data points in the ith category and X = [X1,X2, · · · ,Xc]
contains all data points in the original D-dimensional space.
Here, ni is the number of points in the class i, c is the num-
ber of classes and n is the total number of training points,
i.e., n =

∑c
i=1 ni. The set of all polynomials f(x) that sat-

isfied f(x) = 0 for any x ∈ S is known as the vanishing
ideal of S, where S is a data set. It is denoted as I(S). If
a set of polynomials can generate I(S) by common opera-
tions between them, then this set of polynomials is called a
set of generators of I(S). The elements of such a finite set
of generators is named as Vanishing Components.

The basic idea of VCA is finding a finite set of gener-
ators or vanishing components for the data points in each
category. Then, it combines all the vanishing components of
each category and uses this combination as the transforma-
tion function for all data points. Intuitively, if a function is
a vanishing component of the vanishing ideal of Xi, then
it will attain zero values on the points belonging to the ith

class, but not necessary to be zero on data points of other
categories. By this way, VCA extracts the discriminative in-
formation from the data and consequently, it is more con-
venient to use this kind of representations for the following
classification task. In (Livni et al. 2013), the authors provide
a quick and effective way to fulfill this goal. It can also be
regarded as great progress in the mathematical fields con-
cerning vanishing ideal computation. See more details about
VCA there.

VCA vs KPCA

Since VCA focuses on finding the polynomials with the van-
ishing property, we directly investigate polynomial kernels.
Recalling the results in kernel theory, we know that the poly-
nomial kernel element computed by (1 + xTy)d can be for-
mulated by the inner product of two vectors φ(x) and φ(y),
where φ(·) is the mapping function corresponding to this
kernel. If we use the polynomial kernel with degree d, previ-
ous results show that the function φ(·) can be derived explic-
itly. It is just the linear combination of all the scaled versions
of the monomials with degrees no larger than d (Schölkopf
and Smola 2001). Since we only refer to linear transforma-
tion, we use the monomials with degrees no larger than d for
simplicity in the following deduction, and it takes no effects
on the following theoretical results.

KPCA with polynomial kernels can be regarded as per-
forming traditional PCA on the mapping data. The kernel
trick is an elegant method to avoid manipulation in high di-
mensional space explicitly. Using the kernel trick, we just
need the kernel and it is not necessary to know the exact
mapping function φ(·). In the following, unless otherwise
specified, the kernel that KPCA uses is polynomial.

Based on the results in Proposition 3.1, Theorem 3.2 and
the procedures of VCA in (Livni et al. 2013), for the ith

class, VCA aims to find the generators of the null space of
Φi, where Φi = [φ(x

(i)
1 ), φ(x

(i)
2 ), · · · , φ(x(i)

ni )] consists of
the mapping results of the data points in the ith category, by
above-mentioned φ(·). Denote Si as the matrix formulated
by vectors that span the null space of Φi. Si is the ith group
of projecting vectors of VCA, satisfying ST

i Φi = 0.
Before analyzing VCA in kernel view, we would like

to explain the intuition of our work. The Theorem 3.2 in
(Livni et al. 2013) argues that the kernel trick cannot be
used to find the vanishing components. The reason is that
the authors only use the kernel feature maps of the train-
ing points on which the polynomials should vanish. To over-
come this problem, we manage to construct vanishing com-
ponents from the linear combinations of kernel feature maps
using all training points across classes.

To analyze this problem, we first reveal the intrinsic rela-
tionship between KPCA and VCA. Let us discuss the rela-
tionship between the linear spaces that they are located in.
Denote Φ = [Φ1,Φ2, · · · ,Φc]. Commonly, the dimension-
ality of the mapped data is very high. Thus, it is reasonable
to assume that the columns of Φ consist of linearly indepen-
dent vectors. Besides, we can also neglect the projections de-
rived by Si if they locate in the null space of all data points,
because they project all data points to zero values and elim-
inating these dimensions with totally zero values makes no
difference. For this reason, without loss of generality, we as-
sume that span(Si) ⊂ span(Φ), where span(·) denotes the
space spanned by the columns of the corresponding matri-
ces.

Under these weak assumptions, the space spanned by the
projection matrix of VCA is the same as that of the space
spanned by all data points.

Theorem 1. Assume that the columns of Φ are linear inde-
pendent. Then, span([S1,S2, · · · ,Sc]) = span(Φ).

Proof. For any i �= j, we will prove that span([Si,Sj ]) =
span(Φ).

On one side, we know that span(Si) ⊂ span(Φ) for i =
1, 2, · · · , c. Then, we know that span([Si,Sj ]) ⊂ span(Φ).

On the other side, for any vector ξ ∈ span(Φi), it is
not orthogonal to span(Sj). Otherwise, ξ ∈ span(Φj). In
other words, there is a vector located in both span(Φi) and
span(Φj). It conflicts with the assumption that the columns
of Φ are linear independent.

Moreover, if span([Si,Sj ]) �= span(Φ), there is a vector
ξ ∈ span(Φ) which is orthogonal to span([Si,Sj ]). It indi-
cates that ξ ∈ span(Φi) and ξ is orthogonal to span(Sj). It
conflicts with the above statement. �

We will show that the projections derived by KPCA and
VCA are related by a linear transformation. Based on the
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above theorem, [S1,S2, · · · ,Sc] can be formulated as
[S1,S2, · · · ,Sc] = ΦG, (1)

where G is a matrix formulated by all coefficients. It has full
row rank since rank([S1,S2, · · · ,Sc]) = rank(Φ).

Assume that the SVD decomposition of Φ is Φ =
UΣVT and B = GTVΣ, where we only pick up the non-
zero singular values and the corresponding singular vectors.
It is named as thin SVD in the following parts. Denote the
projection results derived by KPCA and VCA as P and P̄ re-
spectively. Then, P = UTΦ and P̄ = [S1,S2, · · · ,Sc]

TΦ.
Their relationship is shown in Theorem 2.
Theorem 2. P̄ = BP and P = (BTB)−1BT P̄.

Proof. Note that
P̄ = [S1,S2, · · · ,Sc]

TΦ = (ΦG)TΦ

= (UΣVTG)TΦ = GTVΣUTΦ = BP.
(2)

Recall the definition B = GTVΣ and the fact that G
is a matrix with full row rank, we know that B is a matrix
with full column rank. In other words, BTB is an invertible
matrix. Then,

P̄ = BP ⇒ BT P̄ = BTBP

⇒ P = (BTB)−1BT P̄.
(3)

�
From Theorem 1 we know that these two projections

share the same linear space, therefore, it is not surprising
that they can express each other by linear transformations.
Intuitively, they should have similar discriminative power.
The following results show that the discriminative power of
the two projections is equal, provided that the ratio trace cri-
teria in LDA is employed for measurement. The reason why
we use ratio trace criteria is that it is one of the most popular
metrics in supervised learning. Before going into the details,
we provide some lemmas.
Lemma 1. For any matrix A, if UTU = I, we have the
equation (UAUT )+ = UA+UT , where (·)+ denotes the
Moore-Penrose inverse of a matrix.

Proof. Assume that the thin SVD decomposition of A is
A = UAΣAV

T
A. Then,

(UAUT )+ = (UUAΣAVT
AU

T
)+

=(UUAΣA(UVA)
T )+ = UVAΣ

−1
A (UUA)

T

=U(VAΣ
−1
A UT

A)U
T = UA+UT .

(4)

�
Lemma 2. Assume that A is an invertible matrix and B
is a matrix with full column rank, we have the equation
(BABT )+ = BA+BT .

Proof. Assume the thin SVD decomposition of B is B =
UBΣBV

T
B . Then,

(BABT )+ = (UBΣBV
T
BAVBΣBU

T
B)

+

=UB(ΣBV
T
BAVBΣB)

+UT
B

=UB(ΣBV
T
BAVBΣB)

−1UT
B

=UBΣ
−1
B VT

BA
−1VBVBΣ

−1
B UT

B = (BT )+A−1B+.
(5)

In the above deduction, the second equation holds based on
Lemma 1. The third equation holds since B is a matrix with
full column rank. �
Lemma 3. If B is a matrix with full column rank, then
BT (BT )+ = B+B = I

Proof. Assume that the thin SVD decomposition of B is
B = UBΣBV

T
B . Then,

BT (BT )+ = VBΣBU
T
BUBΣ

−1
B VT

B = VBV
T
B = I,

B+B = VBΣ
−1
B UT

BUBΣBV
T
B = VBV

T
B = I.

(6)

�
Lemma 4. Assume that A is an invertible matrix and B is a
matrix with full column rank. For any matrix C, we have
Tr((BABT )+BCBT ) = Tr(A−1C), where Tr(·) repre-
sents the trace of a matrix.

Proof. Recalling Lemma2 and Lemma3, we have

Tr((BABT )+BCBT ) = Tr((BT )+A−1B+BCBT )

=Tr(A−1B+BCBT (BT )+) = Tr(A−1C).
(7)

�
Based on the above four lemmas, we show our main re-

sults on the relationship between KPCA and VCA in terms
of the discriminative power.
Theorem 3. Recall that the projections derived by KPCA
and VCA are P and P̄ respectively. If we adopt the same
ratio trace criteria as in traditional LDA for measurement,
then P and P̄ have the same discriminative power. In other
words, the following equation holds.

Tr((P̄LwP̄
T )+(P̄LbP̄

T )) = Tr((PLwP
T )−1(PLbP

T )),
(8)

where Lb and Lw are the matrices concerning the between-
and within- scatters and they are defined as follows.

Lw = I−H(HTH)−1HT .

Lb = H(HTH)−1HT − 1

n
1n1

T
n .

where H = {0, 1}n×C is an indicator matrix, i.e., Hij = 1
if xi belongs to the jth class and Hij = 0 otherwise.

Proof. Recalling the results in Theorem 2, we know that
P̄ = BP and B is a matrix with full column rank. Based on
Lemma 4, we have

Tr((P̄LwP̄
T )+(P̄LbP̄

T ))

=Tr((BPLwP
TBT )+(BPLbP

TBT ))

=Tr((PLwP
T )−1(PLbP

T )).

(9)

The second equation holds since PLwP
T is an invertible

matrix as in traditional LDA.
Finally, we would like to reveal the relationship between

KPCA and VCA. Interestingly, the kernel formulated by the
inner products of VCA’s projections can be expressed by that
of KPCA linearly. �
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Theorem 4. Note that the projections derived by KPCA and
VCA are P and P̄ respectively. The corresponding kernels
are K = PTP and K̄ = P̄T P̄ respectively. Then, K̄ =
KQ = RK, where Q = GGTΦTΦ and R = ΦTΦGGT .

Proof. Note that Φ = UΣVT and P = UTΦ, we have

K = PTP = ΦTUUTΦ = VΣUTUUTUΣVT

= VΣUTUΣVT = ΦTΦ.
(10)

Since [S1,S2, · · · ,Sc] = ΦG,

K̄ = P̄T P̄ = ([S1,S2, · · · ,Sc]
TΦ)T [S1,S2, · · · ,Sc]Φ

=((ΦG)TΦ)T (ΦG)TΦ = ΦTΦGGTΦTΦ

=KQ = RK.

�
In summary, we have provided some theoretical results

which can reveal the intrinsic relationship between KPCA
and VCA from different aspects.

Why kernel can help

We would like to explain why kernel can help. In VCA, the
authors have proved the following result.
Theorem 5. (Livni et al. 2013) Let Ki be the reproducing
kernel and function f ∈ span(Ki(·,x(i)

j )) such that f van-

ishes on all x(i)
j for j = 1, 2, · · · , ni. Then f is the zero

function.
In this theorem, it is assumed that the function should

have the form f ∈ span(Ki(·,x(i)
j )). It only concerns the

points in the i-th class. Different from the setting of this
theorem, we assume that the function should satisfy f ∈
span(K(·,x(i)

j )), which is formulated on all training points.
In other words, Livin et al only use the kernel feature maps
of the training points on which the polynomials should van-
ish, while we manage to construct vanishing components
from the linear combinations of kernel feature maps using
all training points across classes. It is more common in real
applications as in most kernel learning algorithm (Schölkopf
and Smola 2001). Thus, our results do not conflict with The-
orem 5 proved by Livin et al., but provide a different point
of view to VCA and make the kernel trick on VCA become
possible.

Interestingly, if we constrain the function as the form con-
cerning only the ith kernel Ki, it is not surprising that the
function f with vanishing property is the zero function since
it is located in the null space of Ki.

Discriminative Vanishing Component Analysis

In the section, we first reformulate VCA in the kernel format
based on the above analysis. Then, by adding a discrimina-
tive objective function, we present our Discriminative Van-
ishing Component Analysis (DVCA) approach.

Kernel Formulation of VCA

Based on the above explanations and the results in Theorem
1, we can reformulate VCA by finding {Si} that satisfies:

ST
i Φi = 0, ST

i Si = I, Si = ΦGi, (11)

where Gi is formulated by the corresponding columns of G
in formulating Si as shown in Eq. (1).

Recall that Hilbert’s basis theorem (Cox, Little, and
O’Shea 2007) guarantees the existence of vanishing compo-
nent. Considering the results in Theorem 1, we can approxi-
mate the above-mentioned problem in Eq. (11) as follows.

min
S1,S2,··· ,Sc

c∑
i=1

ni∑
j=1

‖ST
i φ(x

(i)
j )‖22

s.t. Si = ΦGi, ST
i Si = I, i = 1, 2, · · · , c.

(12)

where ‖ · ‖2 denotes the 2-norm of a vector. Commonly, the
objective function can attain zero value since the dimension
of φ(x

(i)
j ) is often much larger than the number of points

belonging to the ith category.
This problem can be separated into c sub-problems. For

the ith problem, the objective function can be represented by
kernel K = ΦTΦ as defined in Theorem 4.

ni∑
j=1

‖ST
i φ(x

(i)
j )‖22 =

ni∑
j=1

‖GT
i Φ

Tφ(x
(i)
j )‖22

=Tr(GT
i Φ

TΦiΦ
T
i ΦGi) = Tr(GT

i KiK
T
i Gi),

(13)

where Ki is part of K and it is formulated by inner products
between data points in Φ and Φi, i.e., Ki = ΦTΦi.

Correspondingly, the constraints become

ST
i Si = I ⇒ GT

i Φ
TΦGi = I ⇒ GT

i KGi = I. (14)

Discriminative Vanishing Component Analysis

In essence, VCA tries to find Si that satisfy ST
i Φi = 0 . In

other words, it computes the projection matrix Si which can
map the data points in the ith class to zero values. It does
not consider the projections for points in other categories.
Apparently, mapping data points in the ith category close to
zeros and simultaneously mapping the points in other cat-
egories as far away from zeros as possible will benefit the
subsequent classification.

In the literature, there are many approaches consider-
ing the dissimilarities between samples from different cat-
egories, such as Linear Discriminative Analysis (LDA) and
its kernel extension (Mika et al. 1999), and Biased Discrim-
inative Analysis (BDA) (Zhou and Huang 2001). In this pa-
per, we adopt the idea from BDA. By adding the require-
ment that the mapping results of data points in different cat-
egories should be as far away from each other as possible,
we propose our Discriminative Vanishing Component Anal-
ysis (DVCA) approach.

Mathematically, for the ith category, the discriminative re-
quirement has the following objective function:

max
∑
j �=i

nj∑
t=1

∥∥∥∥∥ST
i

(
φ(x

(j)
t )− 1

ni

ni∑
s=1

φ(x(i)
s )

)∥∥∥∥∥
2

. (15)

It indicates that the mapping results of data from other cat-
egories should be far away from the center of {φ(x(i)

s )}ni
s=1.
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Denote ei = [1, 1, · · · , 1]Tni
as a size ni column vector

with all elements being 1. Note that Si = ΦGi, the above
function can be reformulated as follow

∑
j �=i

nj∑
t=1

Tr(GT
i Φ

T (φ(x
(j)
t )− 1

ni
Φiei)

(φ(x
(j)
t )− 1

ni
Φiei)

TΦGi).

(16)

Denote Φ̃i as the matrix formulated by the points which
do not belong to the ith category. Denote ñi as the number of
columns of Φ̃i. Denote fi = [1, 1, · · · , 1]Tñi

as a column vec-
tor with size ñi and all 1 elements. Then, the above objective
function can be reformulated as follows.

Tr
(
GT

i Φ
T Φ̃i(Φ̃i)

TΦGi

)
+(ñi/n

2
i )Tr

(
GT

i Φ
TΦieie

T
i Φ

T
i ΦGi

)
−(2/ni)Tr

(
GT

i Φ
TΦieif

T
i Φ̃T

i ΦGi

)
.

(17)

Likewise, denote K̃i as part of K, which is formulated by
inner products between data points in Φ and Φ̃i, i.e., K̃i =
ΦT Φ̃i. The above formulation in Eq. (17) becomes

Tr
(
GT

i

(
K̃i(K̃i)

T+(ñi/n
2
i )Kieie

T
i K

T
i

−(2/ni)Kieif
T
i (K̃i)

T
)
Gi

)
.

(18)

By combining the objective functions in Eq. (13) and Eq.
(18), and using the constraints in Eq. (14), we have the fol-
lowing formulation of DVCA.

min
G1,··· ,Gc

c∑
i=1

Tr(GT
i KiK

T
i Gi)− λTr

(
GT

i

(
K̃i(K̃i)

TGi

+ (ñi/n
2
i )Kieie

T
i K

T
i − (2/ni)Kieif

T
i (K̃i)

T
)
Gi

)
s.t. GT

i KGi = I.
(19)

where λ is a parameter to balance two factors, i.e., the van-
ishing property and the discriminative requirement.

Solution

The optimization problem of DCA in Eq. (19) can be divided
into c sub-problems. Thus, in the following derivation, we
only focus on the ith sub-problem.

Denote the eigen-decomposition of K as K = ΓΛΓT ,
where Λ consists of all the non-zero eigen-values. Denote Γ̃
as the matrix formulated by vectors that span the null space
of K. Gi can be expressed as Gi = ΓWi + Γ̃Fi.

For the sake of convenience, denote

M = K̃i(K̃i)
T+(ñi/n

2
i )Kieie

T
i K

T
i

−(2/ni)Kieif
T
i (K̃i)

T .

Then, the objective function and constraints in Eq. (19)
become:

Tr(GT
i (KiK

T
i + λM)Gi)

=Tr((ΓWi + Γ̃Fi)
T (KiK

T
i + λM))(ΓWi + Γ̃Fi)

=Tr
(
WT

i Γ
T (KiK

T
i + λM)ΓWi

)
.

(20)

GT
i KGi = I ⇒ (ΓWi + Γ̃Fi)

TK(ΓWi + Γ̃Fi) = I

⇒ WT
i Γ

TKΓWi = I ⇒ WT
i ΛWi = I.

(21)

The above two equations hold since Γ̃ is in the null spaces
of K, and K̃i and Ki are parts of K.

Furthermore, Λ is invertible as Λ only consists of the non-
zero eigen-values. Denote W̄i = Λ1/2Wi. By combining
the objective function in Eq. (20) and the constraint in Eq.
(21), DVCA can be reformulated as

min
W̄i

Tr
(
W̄T

i Λ
−1/2ΓT (KiK

T
i + λM)ΓΛ−1/2W̄i

)
s.t. W̄T

i W̄i = I.
(22)

The optimal solution to the above problem can be derived
by the eigen-decomposition strategy. After deriving the op-
timal W̄i, we compute Wi = Λ−1/2W̄i and Gi = ΓWi.
We drop Γ̃Fi since it locates in the null space of K and it
contributes no discriminative information.

Another problem of the above solution is to determine
how many eigen-vectors should be selected to form W̄i. Re-
calling the intuition of VCA, in our algorithm, we only pick
up the eigen-vectors which corresponds to the negative and
zero eigen-values.

Finally, as in VCA, the ith group of projections of training
points and testing points can also be computed by kernel
trick. In other words, the ith projection of any training point
x
(t)
j can be calculated by

ST
i φ(x

(t)
j ) = GT

i Φ
Tφ(x

(t)
j ) = GT

i K
(t)
j , (23)

where K
(t)
j is the column of K corresponding to φ(x

(t)
j ).

Similarly, for any testing point y, its ith projection can also
be computed by

GT
i Φ

Tφ(y) = GT
i Ky, (24)

where Ky is a n-dimensional column vector whose elements
are calculated by (1+xTy)d, where x represents the training
data point. After calculating all the projections, we simply
connect these c projections to formulate a new representa-
tion of y as in VCA.

The procedure of DVCA is listed in Algorithm 1.
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Algorithm 1 Discriminative Vanishing Component Analy-
sis (DVCA)

Run: Calculate the polynomial kernel matrix K by x
(i)
j .

Calculate the polynomial kernel Ky between {x(i)
j } and

y if testing point is available.
for i=1:c do

Compute W̄i by solving Eq.(22).
Compute Wi = Λ−1/2W̄i and Gi = ΓWi.
Compute the ith group of projections for training points
and testing points (if available) using the kernel trick as
shown in Eq. (23) and Eq. (24).

end for
Formulate the new representations by all the projections
as in VCA.

Computational Complexity Comparison

In the training process, the most time consumption step of
VCA is the decomposition of the matrix A ∈ R

ni×l, where
l is the number of candidate functions. It is no larger than
|F |2 min{|F |, s} where |F | ≤ ni and s is the total num-
ber of monomials whose degrees are less than d. Corre-
spondingly, the most time consumption step of DVCA is the
eigen-decomposition of an matrix with scale n. Since eigen-
decomposition and SVD decomposition has similar compu-
tational complexity and different implementations may have
different time costs, it is difficult to compare the time effi-
ciency of two methods.

In the testing process, VCA only involves the evaluation
of testing points on the generators. Its computational time is
linear with respect to the size of generators. Using DVCA,
we need to compute the kernel formulated by the testing
points and training points. Commonly, it needs more time
than VCA, especially when the size of data is large.

Experimental results

We would like to provide two groups of experimental results
for illustration. VCA is a supervised method and the first
group contains results for classification. The second is the
numerical result concerning computational time. As the em-
phases of this paper are the kernel view of VCA and the im-
provement of VCA, we would like to just make comparisons
between DVCA, KPCA and VCA. VCA is implemented by
the code provided by the authors1.

There are totally six various data sets collected from dif-
ferent real applications, including DNA data, images, voice
data, etc. They are DNA data, ORL data, VOWEL data, VE-
HICLE data, COIL20 data and ISOLET5 data. All the data
are downloaded from open sources2,3. The dimensionality
ranges from about 10 to 1000 and all the data are scaled as
suggested by the providers.

Similar to VCA, we also use KPCA and DVCA as the
method of feature selection and use its projections for classi-
fication. Linear classifier is conducted by using the LibSvm

1http://www.cs.huji.ac.il/ rlivni73/
2http://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/
3http://www.cad.zju.edu.cn/home/dengcai/Data/data.html

software (Chang and Lin 2011). The common parameter d is
tuned using 5-fold cross validation. Besides, in DVCA, we
also determine λ by cross validation.

Classification Accuracy

The original data are randomly split into two parts, train-
ing and testing samples. We select fixed number of points
for training and the rest are used as testing examples. In
VCA, KPCA and DVCA, we use training samples for deriv-
ing transformation. Then linear SVM is trained and tested on
the transformed data, including training and testing points.
With 100 independent runs, the mean classification accuracy
with different numbers of training samples are shown in Fig.
1.

As shown in Figure 1, we have the following observations.
(1) It is clear that DVCA performs better than VCA in al-
most all cases. This is mainly due to the fact that we take the
dissimilarities between data points of different classes into
account by adding the objective function of BDA shown in
Eq. (17). (2) With the increase of the number of the train-
ing points, the classification accuracy also increases, as is
often the case. (3) Although KPCA and VCA have a linear
relationship between their projections, their classification re-
sults are different. The reason may be that we evaluate their
performances by the classification accuracy of linear SVM,
while linear SVM does not produce equal results when its
inputs have linear relationship.

Computational Time Comparison

We have tested the algorithm by a naive Matlab implementa-
tion on a workstation with 12 processor (3.33G for each) and
47.2GB memory. We separate all the procedure into training
and testing sets. The training process includes transforma-
tion computation and linear SVM model learning. The test-
ing process includes projecting testing points and classifying
testing points by linear SVM. We have selected three repre-
sentative data sets with largest sample size, dimensionality
and class number, and report their time consumptions with
different numbers of training samples. The training time and
testing time are shown in Table 1.

As seen from the results in Table 1, we have the following
observations. (1) The computational time of different meth-
ods is dominated by different factors. For example, when the
number of classes is large, DVCA consumes more time. (2)
The training time of VCA is largely determined by the num-
ber of training samples. For instance, on DNA data, when the
number of training points is large, the training time of VCA
increases drastically. (3) The real testing time consumption
of DVCA is comparable to that of VCA, especially when the
number of training points is small.

Discussion and Further Work

The insight into VCA has tightened the relationship between
results in algebra and their applications in machine learning.
There are also some related works concerning the computa-
tion of vanishing ideal for a data set, such as the Approxi-
mately Vanishing Ideal (AVI) algorithm (Heldt et al. 2009).
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Figure 1: Classification results of different methods on six different data sets with different numbers of training points. (a) DNA
(b) ORL (c) VOWEL (d) VEHICLE (e) COIL20 (f) ISOLET5.

Table 1: Computational time of training and testing different
methods on DNA, ORL and VEHICLE. For brief, we refer
VCA as VCA for feature extraction and Linear SVM for
classification. Similarly for DVCA.

TRAINING TIME TESTING TIME
NO. VCA DVCA VCA DVCA

DNA
300 52.1712 0.5531 1.0729 0.8531
600 61.0889 2.2633 2.9889 2.6550
900 82.6519 6.3136 3.6290 6.1642
1200 219.394 13.948 4.5547 9.3746
1600 115.349 19.788 4.5775 10.942

ORL
80 0.7246 0.2731 0.1404 0.1636
160 0.9686 1.7563 0.1248 0.6469
240 1.1515 4.3979 0.1088 1.0721
320 1.8888 9.0895 0.0782 1.3240

VEHICLE
40 0.0074 0.0108 0.0082 0.0078
220 0.3042 0.2534 0.0644 0.0881
400 2.5052 0.5893 0.1098 0.1261
580 3.4999 1.1103 0.1108 0.1367
760 7.3911 1.6921 0.0538 0.0636

Nevertheless, it is limited to the functions with a small num-
ber of monomials. Kernel methods has attracted plenty of
research interests and the results are fruitful. Our paper aims
to deepen the understanding of VCA from the well-known
kernel view. It facilitates the understanding and using VCA
from both theoretical and practical aspects.

There are still some further works. In theory, we have
eliminated the null spaces of Φ. It is still interesting to in-
vestigate its influence. Although the null space of training
samples does not take influence on training classifier, it takes
effects on testing process. In practice, although we have pro-
posed DVCA to improve VCA, there still exists some other
problems to be studied, such as how to reduce the computa-
tional complexities and determine the parameter.
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