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Abstract

While recent techniques for discriminative dictionary learn-
ing have attained promising results on the classification tasks,
their performance is highly dependent on the number of la-
beled samples available for training. However, labeling sam-
ples is expensive and time consuming due to the signifi-
cant human effort involved. In this paper, we present a novel
semi-supervised dictionary learning method which utilizes
the structural sparse relationships between the labeled and un-
labeled samples. Specifically, by connecting the sparse recon-
struction coefficients on both the original samples and dictio-
nary, the unlabeled samples can be automatically grouped to
the different labeled samples, and the grouped samples share
a small number of atoms in the dictionary via mixed �2,p-
norm regularization. This makes the learned dictionary more
representative and discriminative since the shared atoms are
learned by using the labeled and unlabeled samples poten-
tially from the same class. Minimizing the derived objective
function is a challenging task because it is non-convex and
highly non-smooth. We propose an efficient optimization al-
gorithm to solve the problem based on the block coordinate
descent method. Moreover, we have a rigorous proof of the
convergence of the algorithm. Extensive experiments are pre-
sented to show the superior performance of our method in
classification applications.

Introduction

In the recent decade, Compressed Sensing (CS) and its re-
lated works have led to state-of-the-art results in image
analysis, such as image denoising (Protter and Elad 2009;
Zhang et al. 2014), image restoration (Mairal, Elad, and
Sapiro 2008; Mairal et al. 2009a), image alignment (Zhang
et al. 2013) and image classification (Wright et al. 2009;
Harandi et al. 2013). The success is partly owes to the fact
that many natural images are sparse or compressible in the
sense that they can be coded by a few of atoms in some dic-
tionaries. Learning the dictionary is critical for the perfor-
mance of sparse coding. Wright et al. (Wright et al. 2009)
directly use the entire set of training samples as the dictio-
nary for sparse coding, and achieve impressive performance
on face recognition. However, due to the uncertain and noisy
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information in the original training images, it may not be ef-
fective enough to fully exploit the discriminative informa-
tion hidden in the training samples.

To exploit the discriminative ability of the dictionary, Su-
pervised Dictionary Learning (SDL) for classification tasks
has gained a lot of attention. The dictionaries are learned
by optimizing a unified objective function combining recon-
structive and discriminative terms(Mairal et al. 2008; 2009b;
Zhang and Li 2010; Yang et al. 2011; Jiang, Lin, and Davis
2011; 2013; Mairal, Bach, and Ponce 2012; Shen et al. 2013;
2015). Different from above works, some researchers make
use of the structural sparsity on the coefficient matrix via
mix regularization. This exploits the fact that once an atom
of a dictionary has been selected to represent a samples, it
may as well be used to represent other samples of the same
class. Mixed regularization can promotes the use of a small
subset of atoms for each class. Thus, sharing of dictionary
atoms for data in the same class could increase the discrimi-
native power of the dictionary (Bengio et al. 2009; Chi et al.
2013b; 2013a). Bengio et al. (Bengio et al. 2009) propose
the method of group sparse coding by using the same dic-
tionary words for all the images in a class, which provides a
discriminative signal in the construction of image represen-
tations. Chi et al. (Chi et al. 2013b) propose an intra-block
coherence suppression dictionary learning algorithm by em-
ploying the block and group regularized sparse modeling.
They also present a novel affine-constrained group sparse
coding framework (Chi et al. 2013a) to extend the current
sparse representation-based classification (SRC) framework
for classification problems with multiple inputs.

The performance of the SDL methods is highly depen-
dent on the number of labeled training samples. Insufficient
labeled training samples yield a dictionary with potentially
bad generalization power. However, labeling samples is ex-
pensive and time consuming due to the significant human
effort involved. On the other hand, one can easily obtain
large amounts of unlabeled samples from public datasets.
This has motivated researchers to develop semi-supervised
algorithms for learning a better dictionary. Shrivastava et al.
(Shrivastava et al. 2012) propose a Semi-Supervised Dis-
criminative Dictionary (S2D2) learning algorithm for clas-
sification tasks, which iteratively estimates the confidence
matrix of unlabeled samples and uses it to refine the learned
dictionaries. In (Zhang, Jiang, and Davis 2012), it proposes
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an online semi-supervised dictionary learning (OSSDL) al-
gorithm, which integrates the reconstruction error of la-
beled and unlabeled data, the discriminative sparse-code er-
ror, and the classification error into an objective function
to enhance the dictionary’s representative and discrimina-
tive power. One major drawback of the above approaches
is that the training samples in one class are used for com-
puting the atoms in the dictionary, irrespective the train-
ing samples from other classes. More importantly, these
approaches may lead to a large dictionary, as the size of
the composed dictionary grows linearly with the number of
classes. Babagholami-Mohamadabadi et al. (Babagholami-
Mohamadabadi et al. 2013) propose a probabilistic semi-
supervised dictionary learning method by introducing a dis-
crimination term based on Local Fisher Discriminant Anal-
ysis(LFDA) and Locally Linear Embedding (LLE)(Roweis
and Saul 2000). Wang et al. (Wang et al. 2013) propose a
novel Semi-Supervised Robust Dictionary (SSR-D) learn-
ing method by exploiting the structural sparse regularization
of labeled and unlabeled samples. In the training process,
the algorithm can automatically select prominent dictionary
atoms, such that the optimal dictionary size is learned from
input data. However, it has the following two problems: (1)
They impose �2,0+ regularization to the sparse coefficient
matrix corresponding to unlabeled samples which enforces
all unlabeled samples to share a small subset of dictionary.
This is unreasonable because the unlabeled samples can be
potentially from different classes. (2) The underlying struc-
tural relationships between the labeled and unlabeled data
are not exploited which are useful for classification.

Inspired by the foregoing discussion, we propose a novel
semi-supervised Dictionary Learning algorithm based on the
Structural Sparse Preserving (SSP-DL). In detail, by con-
necting the sparse reconstruction coefficients on both the
original samples and dictionary, the unlabeled samples can
be automatically grouped to the different labeled samples,
and the grouped samples are enforced to share a small num-
ber of atoms in the dictionary learning process. The main
features of our work are as follows: (1) the dictionary are
learned from both the labeled and unlabeled samples poten-
tially from the same class, which is more representative and
discriminative; (2) a compact and size-free dictionary is ob-
tained because of the share mechanism of the grouped sam-
ples; (3) an efficient and non-trial optimization algorithm is
presented to learn the dictionary with the convergence guar-
anteed.

Motivation

The key point of semi-supervised dictionary learning is to
effectively use the label information of the labeled samples
and the underlying structural relationships between the la-
beled and unlabeled samples. Consider the following sparse
representation problem

min
G

‖G‖pp,p s.t. X = XG, gii = 0, i = 1, · · · , u+ l (1)

where X is the column-wised training data matrix, and
G is the representing coefficient matrix, and u and l are
the numbers of unlabeled and labeled samples respectively.

(a) (b)

Figure 1: Illustrations. (a) Visualization of a sub-matrix of Ĝ
computed by the �p-optimization problem (1) on the dataset
COIL-20. (b) The coefficients relationships (the coefficients
corresponding to the color locations are non-zero).

‖G‖p,p is the �p,p-norm (0 < p < 1). Here, we prefer �p,p-
norm to �1-norm since �p,p-norm serve as a better alterna-
tive to �1-norm (Chen, Xu, and Ye 2010; Lyu et al. 2013;
Wang et al. 2013). The optimal solution of problem (1) is
denoted by Ĝ = [ĝ1, · · · , ĝu+l], where ĝi is the sparse rep-
resentation of xi under other training samples. Fig. 1(a) is
the visualization of a sub-matrix of Ĝ on dataset COIL-
20, which shows that Ĝ is very close to be block-diagonal.
That means, if an unlabeled sample xi is sparsely repre-
sented by the other samples as xi =

∑κ
k=1 ĝjkixjk , where

κ is a very small number and ĝjki(k = 1, · · · , κ) are the
non-zero entries of the sparse coefficient vector ĝi, then the
samples xi and xj1 ,xj2 , · · · ,xjκ are likely from the same
class. The motivation of our work is how to effectively uti-
lize this discriminative information contained in Ĝ for the
semi-supervised dictionary learning.

Suppose that αj1 ,αj2 , · · · ,αjκ are the sparse codings
of xj1 ,xj2 , · · · ,xjκ under a given dictionary D ∈ Rd×m

(xjk = Dαjk ), where d is the dimension of samples and m
is the number of atoms, thus we have

xi =

κ∑
k=1

ĝjkixjk =

κ∑
k=1

D (ĝjkiαjk) =D

(
κ∑

k=1

ĝjkαjk

)
.

(2)
Let αi =

∑κ
k=1 ĝjkiαjk , then αi is a coefficient of xi under

the dictionary D. As shown in the top row of Fig. 1(b), gen-
erally, the coefficient αi can not be guaranteed to be sparse
although all the parameters αj1 ,αj2 , · · · ,αjκ are sparse.
But if we add the sparse constraint to αi, then the equation
αi =

∑κ
k=1(ĝjkiαjk) will enforce the nonzero elements

appear in the same location of αj1 ,αj2 , · · · ,αjκ , which is
illustrated by the bottom row of Fig. 1(b). In other words,
the unlabeled and labeled samples potentially from the same
class should share a small subset of D’s atoms, since the
samples from the same class most likely have the linear re-
lationships αi =

∑κ
k=1(ĝjkiαjk). The above relationship

between the labeled and unlabeled samples is called struc-
tural sparsity in the following sections.

Therefore, as shown in Fig. 2, by using the structural
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Figure 2: Dictionary learning based on the structural sparse relationships between labeled and unlabeled samples.

sparse relationships, the unlabeled samples can be auto-
matically grouped to the different labeled samples, and the
grouped samples are enforced to share a small number of
atoms in the dictionary learning process. The advantages
of this procedure are two-fold: (1) the dictionary is learned
from both the labeled and unlabeled samples potentially
from the same class, which is more representative and dis-
criminative; (2) a compact and size-free dictionary is ob-
tained because of the share mechanism of the grouped sam-
ples.

Proposed Semi-Supervised Dictionary

Learning Method

Based on the above motivation, we propose a novel method
for dictionary learning which utilizes the underlying struc-
tural sparse relationships between the labeled and unlabeled
samples. In this section, we first present the formulation of
the proposed semi-supervised dictionary method, and then
show how the optimization problem is solved with conver-
gence guaranteed. Finally, we present how the learned dic-
tionary is applied for classification.

Problem Formulation

We first introduce the notations used in the remaining parts
of the paper. Matrices are written as uppercase letters while
vectors are written as boldface lowercase letters. Given a real
m× n matrix A = (αij)m×n, αi ∈ Rn(i = 1, · · · ,m) and
αj ∈ Rm(j = 1, · · · , n) are respectively the i-th row and j-
th column vectors of A. The Frobenius norm of the matrix A
is denoted as ‖A‖F . The �p,p-norm and the mixed �2,p-norm

of A are defined as ‖A‖p,p =
(∑m

i=1

∑n
j=1 |aij |p

) 1
p

and

‖A‖2,p =
(∑m

i=1 ‖αi‖p2
) 1

p =
(∑m

i=1

(√∑n
j=1 a

2
ij

)p) 1
p

respectively, where 0 < p < 1.
Given a classification task with K class, denote by X =

[X0, X1, · · · , XK ] ∈ Rd×(u+l) the matrix of all training
samples. Xc ∈ Rd×nc is the matrix of the c-th class con-
sisting of nc training samples such that

∑K
c=1 nc = l, and

X0 ∈ Rd×u is the unlabeled data matrix. Denote by A
the sparse coding matrix of X over the dictionary D. Note
that A can be rewritten as A = [A0, A1, · · · , AK ], where
Ac(c = 1, · · · ,K) is the sparse coding matrix for the sam-

ples belonging to the c-th class and A0 is that for the unla-
beled samples. Thus, the objective function for our dictio-
nary learning is defined as

〈D̂, Â〉 = arg min
D∈C,A

1

2
‖X −DA‖2F + λ1

K∑
c=1

‖Ac‖p2,p

+λ2‖A0‖pp,p +
λ3

2
‖A−AĜ�‖2F (3)

where C = {D ∈ Rd×m, s.t. d�
j dj ≤ 1, ∀j = 1, · · · ,m}.

In problem (3), ‖X − DA‖2F represents the reconstruction
error. ‖A − AĜ�‖2F measures the error in preserving the
sparse relationships between labeled and unlabeled samples,
which is followed from the equation αi =

∑κ
k=1(ĝjkiαjk).

As illustrated in Fig. 1(b), the minimization of ‖A0‖pp,p and
‖A − AĜ�‖2F enforces the unlabeled and labeled samples
from the same class share a small number of D’s atoms in
the learning process. ‖Ac‖p2,p is the mixed �2,p-norm regu-
larization for class c. It is the supervised term and indicates
which atoms in D should be shared for class c.

Optimization Procedure

Solving (3) is a challenging task because the objective func-
tion is non-convex and highly non-smooth. In the follow-
ing, we will iteratively optimize A0, Ac and D based on the
block coordinate descent (BCD) method.

Let W = I− Ĝ, and denote by W = [W0,W1, · · · ,WK ]
where Wc are the sub-matrices of W corresponding to
Xc(c = 0, 1, · · · ,K). Thus, (3) can be written as

min
D∈C,A

1

2
‖X −DA‖2F + λ1

K∑
c=1

‖Ac‖p2,p + λ2‖A0‖pp,p

+
λ3

2

∥∥∥∥∥A0W
�
0 +

K∑
c=1

AcW
�
c

∥∥∥∥∥
2

F

. (4)

Updating Sparse Codes A0 We fixed D and Ac(c =
1, · · · ,K) and rewrite the symbols A0, X0 and W0 as A,
X and W respectively for convenience, then the optimiza-
tion problem for A0 can be formulated as

min
A

I1(A) =
1

2
‖X−DA‖2F+λ2‖A‖pp,p+λ3

2

∥∥∥AW�+Q
∥∥∥
2

F
(5)
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where Q =
∑K

c=1 AcW
�
c . Based on the majorization-

minimization (MM) technique (Toh and S.Yun 2010;
Oliveira, Bioucas-Dias, and Figueiredo 2009), we use the
optimization results in Theorem 1 in (Marjanovic and Solo
2012) to derive a MM-based algorithm for iteratively reduc-
ing I1. For any given A(k), we introduce the following can-
didate majorizer of I1.

J1(A,A(k))

� 1

2
‖X −DA(k)‖2F + 〈D�(DA(k) −X), A−A(k)〉

+
η1
2
‖A−A(k)‖2F+λ2‖A‖pp,p+λ3

(
1

2
‖A(k)W�+Q‖2F

+〈(A(k)W� +Q)W,A−A(k)〉+η3
2
‖A−A(k)‖2F

)
(6)

=
η1+η3λ3

2

∥∥∥A−Z(k)
∥∥∥2
F
+λ2‖A‖pp,p+Constant (7)

where

Z(k)=A(k)− 1

η1+η3λ3

(
D�(DA(k)−X)+λ3(A

(k)W�+Q)W
)
.

(8)
Thus, we have

argmin
A

J1(A,A(k))=argmin
A

1

2
‖A−Z(k)‖2F + λ‖A‖pp,p

= argmin
A

m∑
i=1

u∑
j=1

{
1

2

(
aij − z

(k)
ij

)2
+λ|aij |p

}
(9)

where λ = λ2

η1+η3λ3
. Using the optimization result in The-

orem 1 in (Marjanovic and Solo 2012), the solution for the
problem (9) is

Â = [âij ]m×u =
[
Tλ
(
z
(k)
ij

)]
m×u

(10)

where

Tλ(z) =
{

0 if |z| < τ
{0, sgn(z)â} if |z| = τ
sgn(z)â∗ if |z| > τ

. (11)

In (11), â = [2λ(1−p)]
1

2−p , τ = â+λpâp−1. â∗ ∈ (â, |hij |)
is the lager solution of

a+ λpap−1 = |z|, where a > 0 (12)
which can be obtained from the following iteration

a(t+1) = |z| − λpap−1
(t) (13)

with the initial value a(0) ∈ (â, |hij |).
Propostion 1. If η1 ≥ λmax(D

�D) and η3 ≥ λmax(W
�W ),

then we have
I1(A) ≤ J1(A,A(k)), for ∀A,A(k) . (14)

Let
A(k+1) = argmin

A
J1(A,A(k)) (15)

and combine Proposition 1 and the fact I1(A
(k)) =

J1(A
(k), A(k)), we have

I1(A
(k+1)) ≤ J1(A

(k+1), A(k)) ≤ I1(A
(k)) . (16)

Motivated by Eq. (16), we propose an iterative scheme to
obtain the solution of the objective function I1, which is de-
scribed in Algorithm 1.

Algorithm 1: Updating Sparse Codes A0

Input: Given an integer ι and a real number ε.
1: Initialize A(0), dif = inf , and let k = 0.
2: while k < ι & dif > ε do
3: Compute Z(k) via (8).
4: Compute A(k+1)=argminA J1(A,A(k)) via (10).
5: Let dif = |J1(A(k+1), A(k))− J1(A

(k), A(k))|,
and k = k + 1.

6: end while

Output: The sparse codes A0 = A(k).

Updating Sparse Codes Ac Without loss of generality,
we fixed D, A0 and A1, · · · , Ac−1, Ac+1, · · · , AK and
rewritten Ac, Xc and Wc as A, X and W respectively for
convenience, then the optimization problem for Ac can be
formulated as

min
A

I2(A) =
1

2
‖X −DA‖2F + λ1‖A‖p2,p +

λ3

2

∥∥∥AW�+Q
∥∥∥
2

F
(17)

where Q =
∑

i�=c AiW
�
i . Similar as J1, we also introduce

the candidate majorizer of I2 as follows.

J2(A,A(k))

� 1

2
‖X −DA(k)‖2F + 〈D�(DA(k) −X), A−A(k)〉

+
η1
2
‖A−A(k)‖2F +λ1‖A‖p2,p+λ3

(
1

2
‖A(k)W�+Q‖2F

+〈(A(k)W�+Q)W,A−A(k)〉+η3
2
‖A−A(k)‖2F

)
(18)

=
η1+η3λ3

2

∥∥∥A−Z(k)
∥∥∥2
F
+λ1‖A‖p2,p+Constant (19)

where Z(k) is defined by (8). Then

argmin
A

J2(A,A(k))=argmin
A

1

2
‖A−Z(k)‖2F +λ‖A‖p2,p

(20)
where λ = λ1

η1+η3λ3
. Before solving problem (20), we give

the following non-trivial �2,p penalized least square problem
which is closely related to (20)

α̂ = argmin
α

Q(α) =
1

2
‖α− z‖22 + λ‖α‖p2 (21)

where z is a vector constant. The solution of problem (21)
can be obtained from the following proposition.

Propostion 2. Let δ = λ

‖z‖2−p
2

, then the solution α̂ to the
problem (21) is

α̂ = Tδ(1) ∗ z . (22)

According to Proposition 2, problem (20) can be solved by

Â =

⎛
⎜⎜⎝

Tδ1(1) 0 · · · 0
0 Tδ2(1) · · · 0
...

...
. . .

...
0 0 · · · Tδm(1)

⎞
⎟⎟⎠ ∗ Z(k) (23)
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Algorithm 2: The optimization procedure for the objec-
tive function (3).

Input: The data matrix of training samples
X = [X0, X1, · · · , XK ] ∈ Rd×(u+l).

1: Compute the sparse representation matrix Ĝ via
problem (1), and let W = I − Ĝ.

2: Initialize the dictionary D(0), and sparse codings
A(0) = [A

(0)
0 , A

(0)
1 , · · · , A(0)

K ]. Let t = 0.
3: Repeat for fixed number of iterations (or until

convergence):
4: loop

5: Let Q =
∑K

c=1 A
(t)
c W�

c , and update coefficients
A

(t+1)
0 =argminA I1(A) via Algorithm 1.

6: for c = 1, . . . ,K do

7: Let Q=
∑c−1

i=0A
(t+1)
i W�

i +
∑K

i=c+1A
(t)
i W�

i .

8: Update coefficients A(t+1)
c =argminA I2(A)

via the similar procedure of Algorithm 1.
9: end for

10: Update the dictionary D(t+1) by using the opti-
mization process in Eq. (26).

11: Let t = t+ 1.
12: end loop

Output: The dictionary D̂ = D(T ) and sparse codings
Â=[Â0,Â1,· · · ,ÂK ]=[A

(T )
0 ,A

(T )
1 ,· · · ,A(T )

K ],
where T is the iteration number at which the
learning algorithm converges.

where δr = λ

‖zr
(k)

‖2−p
2

, and zr
(k) is the r-th row of Z(k) (r =

1, · · · ,m). Similar as the relationship between I1 and J1,
we also have

I2(A
(k+1)) ≤ J2(A

(k+1), A(k)) ≤ I2(A
(k)) . (24)

The algorithm for solving problem (17) is similar with Al-
gorithm 1 and is skipped due to space limit.

Updating Dictionary D With fixed A (including A0 and
Ac), the optimization problem for D can be formulated as

min
D∈C

I3(D) =
1

2
‖X −DA‖2F . (25)

Denote by IC the indicator of C, and introduce the auxiliary
variable H , then the problem (25) changes to

min
D,H

1

2
‖X −DA‖2F + IC(H)

s.t. D = H

A typical iterative process based on the alternating direction
method of multipliers(ADMM) (Ren and Lin 2013; Lin, Liu,
and Li 2015) for computing D can be written explicitly as⎧⎨
⎩

D(k+1) : = (XA�−Y (k) + μ ∗H(k))(AA�+μI)−1

H(k+1) : = ΠC
(
D(k+1) + Y (k)/μ

)
Y (k+1) : = Y (k) + μ(D(k+1) −H(k+1))

(26)

where Y is the Lagrange multiplier, μ is a positive scalar and
ΠC is the projection operator on C.

The optimization procedure of problem (3) is described in
Algorithm 2. Note that in the training process, if the entries
in some rows of A are all zeros or very small values, then the
corresponding atoms in D are useless and can be deleted.
Hence, we reconstruct the dictionary D by using all dj in
the following set as its columns:

D = {dj | ‖αj‖2 > ε} (27)

where ε is a very small value. Therefore, the dictionary size
can be automatically learned in the training process. The
convergence of Algorithm 2 is guaranteed by the following
theorem.
Theorem 1. If the parameters satisfy η1 ≥ λmax(D

�D)
and η3 ≥ λmax(W

�W ) in the training process, Algorithm 2
decreases the objective value in (3) in each iteration.

The detail proofs of Proposition 1, Proposition 2, and
Theorem 1 are skipped due to space limit and will be pro-
vided in the extended version of the paper.

Class Label Prediction

Once we obtain the discriminative dictionary D̂ from Algo-
rithm 2, we define the atoms set of the c-th class as

Dc = {d̂j | ‖α̂j
c‖2 > 0}, c = 1, · · · ,K (28)

where α̂j
c is the j-th row of the c-th class sparse codings Âc

and d̂j is the j-th atom of D̂. Thus, the c-th class specific
dictionary D̂c ∈ Rd×|Dc| is constructed by using all d̂j ∈
Dc as its columns.

After obtaining the specific dictionaries D̂c(c =
1, · · · ,K), classifying an unlabeled sample x is performed
by the following three steps:
Step 1: Compute the sparse codings of x over the c-th class

specific dictionary D̂c, denoted by α̂c(c = 1, · · · ,K), via

α̂c = argmin
αc

‖αc‖1, s.t. x = D̂cαc . (29)

Step 2: Compute the reconstruction error of x with respect
to Dc(c = 1, · · · ,K)

ec = ‖x− D̂cα̂c‖2 . (30)

Step 3: The predicted class label of the sample x is the one
that minimizes the reconstruction error

yx = arg min
c=1,··· ,K

ec . (31)

Experimental Results

In this section, We first perform handwritten digit recog-
nition on the two widely used datasets: MNIST (LeCun
et al. 1998) and USPS (Hull 1994). And then, we apply
the proposed algorithm to Face Recognition on the UMIST
(Wechsler et al. 1998) face dataset. At last, we evaluate our
approach on two public object datasets: SBData (Li and
Allinson 2009) and COIL-20 (Nene, Nayar, and Murase
1996). An overall description of the data sets is presented
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Table 1: Overall description of the datasets.
Datasets DIM Data# Class# τ ν

MNIST 784 2000 10 20 80
USPS 256 1100 10 20 40

UMIST 750 564 20 5 10
SBData 638 3192 40 5 20

COIL-20 1521 1440 20 2∼10 33∼25

in Table 1. In order to clearly illustrate the advantage of
the proposed method, we compare our method with SRC
(Wright et al. 2009), three well-known SDL methods includ-
ing Discriminative K-SVD (DKSVD) (Zhang and Li 2010),
Fisher Discrimination Dictionary Learning (FDDL) (Yang et
al. 2011) and Label Consistent K-SVD (LCKSVD) (Jiang,
Lin, and Davis 2011), as well as three state of the art Semi-
Supervised Dictionary Learning (SSDL) methods including
OSSDL (Zhang et al. 2013), S2D2 (Shrivastava et al. 2012)
and SSR-D (Wang et al. 2013). In the experiments, we use
the whole image as the feature vector, and normalize the vec-
tor to have unit �2-norm. The parameters of all methods are
obtained by using 5-fold cross validation. For each dataset
X , we first rearrange the order of data samples randomly.
Then, in each class of X , we randomly select τ samples as
labeled samples, ν samples as unlabeled samples, and the
rest are left for testing samples. Following the common eval-
uation procedure, we repeat the experiments 10 times with
different random spits of the datasets to report the average
classification accuracy together with standard deviation, and
the best classification results are in boldface.

Experimental results

We present the recognition accuracies together with the stan-
dard deviation in Table 2, from which it is clear that the pro-
posed method performs better than the other methods. SRC
has the lowest accuracy because of the limited number of
labeled samples. The SSDL methods always performs sig-
nificantly better than the SDL methods (except for FDDL
method). This is because the SDL methods cannot utilize the
unlabeled samples for dictionary learning, and may overfit to
the labeled samples when the number of labeled samples is
small. Our method not only considers the unlabeled samples,
but also consider the structural sparse relationships between
labeled and unlabeled samples, which makes the unlabeled
samples be automatically grouped to the different labeled
samples in the training process. Hence, both SDL and SSDL
methods are less accurate than our method.

To further demonstrate the effect of the number of la-
beled samples on our performance in comparison with oth-
ers, we conduct the last experiment on the dataset COIL-20.
For each object, we randomly select 35 samples as train-
ing samples, and the rest 37 are for testing. Out of the 35
training samples, we randomly use 2, 3, · · · , 10 to form the
labeled samples respectively, and the rest as the unlabeled
samples. The average accuracies together with the standard
deviation are presented in Table 3. A first glance at the re-
sults in Table 3 show that, the improvement of SSDL meth-
ods compared to SDL methods is not too obvious when there

Figure 3: Relationship between the cost function values and
the iterations on the USPS dataset.

are more labeled samples. However, the benefit of SSDL
method can be significant when the labeled samples are few.
This is the main focus of the SSDL methods. From Table 3,
SSR-D and our method always have significant better results
than the other two SSDL methods. This is because they use
the structural sparsity on the coefficient matrix which pro-
motes the share of the same dictionary atoms for the sam-
ples in the same class and yields some form of discrimina-
tion. Moreover, since we consider the structural sparse rela-
tionships of the training samples in the dictionary learning
process, which makes the unlabeled samples be automati-
cally grouped to the different labeled samples, our method
performs better than SSR-D method.

Analysis of Optimization Process

To show the effectiveness of the proposed optimization
method, we investigate and analyze the value of cost func-
tion in Eq. (3) in the optimization process. Here, we take the
USPS dataset as an example, as shown in Fig. 3, we can see
that the curve of cost function drops very quickly in the it-
eration process, and can achieve a satisfactory performance
when the iteration number is 20. This curve greatly validates
the claimed advantage of the optimization problem and ver-
ifies the Theorem 1.

Conclusion

By utilizing the structural sparse relationships between the
labeled and unlabeled samples, we propose a novel semi-
supervised method for learning a discriminative dictionary.
Specifically, the sparse reconstruction coefficients on the
original samples is preserved in the dictionary learning pro-
cess. This makes the unlabeled samples be automatically
grouped to the different labeled samples, and the grouped
samples share the same dictionary via the mixed �2,p-norm
regularization. In this way, we enhance the representative
and discriminative power of the dictionary since the shared
atoms are learned from the labeled and unlabeled samples
from the same class. Moreover, an efficient and non-trial op-
timization algorithm based on the block coordinate descent
method is proposed to solve the highly non-smooth and
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Table 2: Classification accuracy of different methods.
Datasets SRC DKSVD FDDL LCKSVD1 LCKSVD2 OSSDL S2D2 SSR-D SSP-DL
MNIST 17.30±0.8 71.44±1.7 82.52±1.3 72.95±1.3 72.95±1.3 73.18±1.8 77.58±0.8 83.83±1.2 85.75±1.2
USPS 30.00±0.9 67.50±1.8 85.22±1.2 76.91±1.5 76.92±1.3 80.78±2.8 86.57±1.6 87.20±0.5 87.84±1.1
UMIST 70.91±4.4 80.78±3.7 85.00±2.3 86.44±2.7 86.76±2.6 85.02±2.9 85.18±3.2 87.25±2.7 88.73±2.5
SBData 36.60±1.4 40.50±2.8 58.63±1.9 52.23±2.2 55.28±1.5 53.86±2.2 56.97±1.9 63.98±1.8 64.33±1.4

Table 3: Classification accuracy of different methods with changing the number of labeled samples on the COIL-20 dataset.
Labeled# SRC DKSVD FDDL LCKSVD1 LCKSVD2 OSSDL S2D2 SSR-D SSP-DL
τ = 2 44.89±0.7 53.34±8.4 70.47±1.1 67.26±1.97 67.77±1.5 65.68±3.3 67.30±3.0 71.99±1.8 74.47±1.7
τ = 3 45.05±2.4 67.16±5.6 76.69±1.9 71.66±3.2 72.74±2.9 72.16±3.0 73.14±2.5 78.78±1.9 80.11±1.8
τ = 4 46.62±2.8 70.07±5.71 80.14±2.3 73.04±3.6 75.64±1.9 76.45±3.4 78.92±1.7 82.64±2.4 83.99±1.7
τ = 5 48.70±1.0 69.16±4.2 82.64±2.4 76.96±3.6 78.07±2.3 79.26±2.9 80.84±2.2 83.72±2.4 86.03±1.4
τ = 6 49.46±2.2 74.49±1.9 85.68±1.0 75.78±4.4 80.95±1.3 81.57±3.9 83.21±0.7 86.25±1.4 88.35±1.1
τ = 7 51.81±1.3 78.07±2.8 87.64±0.7 72.94±2.1 82.70±0.8 82.21±3.3 84.86±1.6 88.55±1.0 89.07±1.2
τ = 8 53.76±1.2 79.76±2.4 88.49±1.4 76.72±3.9 83.61±1.4 82.97±2.9 88.18±1.0 89.66±0.9 90.47±0.9
τ = 9 53.83±1.8 83.24±2.1 90.72±1.2 76.18±0.9 85.81±1.3 84.28±2.2 88.31±1.1 92.10±1.2 91.48±0.7
τ = 10 55.41±1.5 83.92±2.2 90.68±1.0 74.22±3.8 86.05±0.8 85.91±3.2 88.99±0.8 91.35±0.6 91.81±0.6

non-convex optimization problem. Experiments using var-
ious benchmark datasets demonstrate the superiority of the
proposed method over the state-of-the-art SDL and SSDL
methods. Possible future work includes the robustness of
dictionary against outlier samples by replacing the Frobe-
nius norm with the �2,p-norm for the reconstruction error.
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