
Reinforcement Learning with Parameterized Actions

Warwick Masson and Pravesh Ranchod
School of Computer Science and Applied Mathematics

University of Witwatersrand
Johannesburg, South Africa

warwick.masson@students.wits.ac.za
pravesh.ranchod@wits.ac.za

George Konidaris
Department of Computer Science

Duke University
Durham, North Carolina 27708

gdk@cs.duke.edu

Abstract

We introduce a model-free algorithm for learning in Markov
decision processes with parameterized actions—discrete ac-
tions with continuous parameters. At each step the agent must
select both which action to use and which parameters to use
with that action. We introduce the Q-PAMDP algorithm for
learning in these domains, show that it converges to a local
optimum, and compare it to direct policy search in the goal-
scoring and Platform domains.

1 Introduction

Reinforcement learning agents typically have either a dis-
crete or a continuous action space (Sutton and Barto 1998).
With a discrete action space, the agent decides which distinct
action to perform from a finite action set. With a continuous
action space, actions are expressed as a single real-valued
vector. If we use a continuous action space, we lose the abil-
ity to consider differences in kind: all actions must be ex-
pressible as a single vector. If we use only discrete actions,
we lose the ability to finely tune action selection based on
the current state.

A parameterized action is a discrete action parameterized
by a real-valued vector. Modeling actions this way intro-
duces structure into the action space by treating different
kinds of continuous actions as distinct. At each step an agent
must choose both which action to use and what parameters
to execute it with. For example, consider a soccer playing
robot which can kick, pass, or run. We can associate a con-
tinuous parameter vector to each of these actions: we can
kick the ball to a given target position with a given force,
pass to a specific position, and run with a given velocity.
Each of these actions is parameterized in its own way. Pa-
rameterized action Markov decision processes (PAMDPs)
model situations where we have distinct actions that require
parameters to adjust the action to different situations, or
where there are multiple mutually incompatible continuous
actions.

We focus on how to learn an action-selection policy
given pre-defined parameterized actions. We introduce the
Q-PAMDP algorithm, which alternates learning action-
selection and parameter-selection policies and compare it to

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a direct policy search method. We show that with appropri-
ate update rules Q-PAMDP converges to a local optimum.
These methods are compared empirically in the goal and
Platform domains. We found that Q-PAMDP out-performed
direct policy search and fixed parameter SARSA.

2 Background

A Markov decision process (MDP) is a tuple 〈S,A, P,R, γ〉,
where S is a set of states, A is a set of actions, P (s, a, s′) is
the probability of transitioning to state s′ from state s after
taking action a, R(s, a, r) is the probability of receiving re-
ward r for taking action a in state s, and γ is a discount factor
(Sutton and Barto 1998). We wish to find a policy, π(a|s),
which selects an action for each state so as to maximize the
expected sum of discounted rewards (the return).

The value function V π(s) is defined as the expected dis-
counted return achieved by policy π starting at state s

V π(s) = Eπ

[∞∑
t=0

γtrt

]
.

Similarly, the action-value function is given by

Qπ(s, a) = Eπ [r0 + γV π(s′)] ,

as the expected return obtained by taking action a in state
s, and then following policy π thereafter. While using the
value function in control requires a model, we would prefer
to do so without needing such a model. We can approach
this problem by learning Q, which allows us to directly se-
lect the action which maximizes Qπ(s, a). We can learn Q
for an optimal policy using a method such as Q-learning
(Watkins and Dayan 1992). In domains with a continuous
state space, we can represent Q(s, a) using parametric func-
tion approximation with a set of parameters ω and learn this
with algorithms such as gradient descent SARSA(λ) (Sutton
and Barto 1998).

For problems with a continuous action space (A ⊆ R
m),

selecting the optimal action with respect to Q(s, a) is non-
trivial, as it requires finding a global maximum for a func-
tion in a continuous space. We can avoid this problem using
a policy search algorithm, where a class of policies param-
eterized by a set of parameters θ is given, which transforms
the problem into one of direct optimization over θ for an
objective function J(θ). Several policy search approaches

Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16)

1934

(a) The discrete action space
consists of a finite set of distinct
actions.

(b) The continu-
ous action space
is a single contin-
uous real-valued
space.

(c) The parameterized action space has multiple discrete ac-
tions, each of which has a continuous parameter space.

Figure 1: Three types of action spaces: discrete, continuous,
and parameterized.

exist, including policy gradient methods, entropy-based ap-
proaches, path integral approaches, and sample-based ap-
proaches (Deisenroth, Neumann, and Peters 2013).

Parameterized Tasks

A parameterized task is a problem defined by a task parame-
ter vector τ given at the beginning of each episode. These pa-
rameters are fixed throughout an episode, and the goal is to
learn a task dependent policy. Kober et al. (2012) developed
algorithms to adjust motor primitives to different task pa-
rameters. They apply this to learn table-tennis and darts with
different starting positions and targets. Da Silva et al. (2012)
introduced the idea of a parameterized skill as a task depen-
dent parameterized policy. They sample a set of tasks, learn
their associated parameters, and determine a mapping from
task to policy parameters. Deisenroth et al. (2014) applied
a model-based method to learn a task dependent parame-
terized policy. This is used to learn task dependent policies
for ball-hitting task, and for solving a block manipulation
problem. Parameterized tasks can be used as parameterized
actions. For example, if we learn a parameterized task for
kicking a ball to position τ , this could be used as a parame-
terized action kick-to(τ).

3 Parameterized Action MDPs

We consider MDPs where the state space is continuous (S ⊆
R

n) and the actions are parameterized: there is a finite set of
discrete actions Ad = {a1, a2, . . . , ak}, and each a ∈ Ad

has a set of continuous parameters Xa ⊆ R
ma . An action

is a tuple (a, x) where a is a discrete action and x are the
parameters for that action. The action space is then given by

A =
⋃

a∈Ad

{(a, x) | x ∈ Xa},

which is the union of each discrete action with all possible
parameters for that action. We refer to such MDPs as pa-
rameterized action MDPs (PAMDPs). Figure 1 depicts the
different action spaces.

We apply a two-tiered approach for action selection: first
selecting the parameterized action, then selecting the param-
eters for that action. The discrete-action policy is denoted
πd(a|s). To select the parameters for the action, we define
the action-parameter policy for each action a as πa(x|s).
The policy is then given by

π(a, x|s) = πd(a|s)πa(x|s).
In other words, to select a complete action (a, x), we sample
a discrete action a from πd(a|s) and then sample a parame-
ter x from πa(x|s). The action policy is defined by the pa-
rameters ω and is denoted by πd

ω(a|s). The action-parameter
policy for action a is determined by a set of parameters θa,
and is denoted πa

θ (x|s). The set of these parameters is given
by θ = [θa1

, . . . , θak
].

The first approach we consider is direct policy search. We
use a direct policy search method to optimize the objective
function.

J(θ, ω) = Es0∼D[V πΘ(s0)].

with respect to (θ, ω), where s0 is a state sampled according
to the state distribution D. J is the expected return for a
given policy starting at an initial state.

Our second approach is to alternate updating the
parameter-policy and learning an action-value function for
the discrete actions. For any PAMDP M = 〈S,A, P,R, γ〉
with a fixed parameter-policy πa

θ , there exists a correspond-
ing discrete action MDP, Mθ = 〈S,Ad, Pθ, Rθ, γ〉, where

Pθ(s
′|s, a) =

∫
x∈Xa

πa
θ (x|s)P (s′|s, a, x)dx,

Rθ(r|s, a) =
∫

x∈Xa

πa
θ (x|s)R(r|s, a, x)dx.

We represent the action-value function for Mθ using func-
tion approximation with parameters ω. For Mθ, there exists
an optimal set of representation weights ω∗

θ which maxi-
mizes J(θ, ω) with respect to ω. Let

W (θ) = argmax
ω

J(θ, ω) = ω∗
θ .

We can learn W (θ) for a fixed θ using a Q-learning algo-
rithm. Finally, we define for fixed ω,

Jω(θ) = J(θ, ω),

H(θ) = J(θ,W (θ)).

H(θ) is the performance of the best discrete policy for a
fixed θ.

1935

Algorithm 1 Q-PAMDP(k)

Input:
Initial parameters θ0, ω0

Parameter update method P-UPDATE
Q-learning algorithm Q-LEARN
Algorithm:

ω ← Q-LEARN(∞)(Mθ, ω0)
repeat

θ ← P-UPDATE(k)(Jω, θ)

ω ← Q-LEARN(∞)(Mθ, ω)
until θ converges

Algorithm 1 describes a method for alternating updating
θ and ω. The algorithm uses two input methods: P-UPDATE
and Q-LEARN and a positive integer parameter k, which
determines the number of updates to θ for each iteration.
P-UPDATE(f, θ) should be a policy search method that op-
timizes θ with respect to objective function f . Q-LEARN
can be any algorithm for Q-learning with function approxi-
mation. We consider two main cases of the Q-PAMDP algo-
rithm: Q-PAMDP(1) and Q-PAMDP(∞).

Q-PAMDP(1) performs a single update of θ and then re-
learns ω to convergence. If at each step we only update θ
once, and then update ω until convergence, we can optimize
θ with respect to H . In the next section we show that if we
can find a local optimum θ with respect to H , then we have
found a local optimum with respect to J .

4 Theoretical Results

We now show that Q-PAMDP(1) converges to a local or
global optimum with mild assumptions. We assume that it-
erating P-UPDATE converges to some θ∗ with respect to a
given objective function f . As the P-UPDATE step is a de-
sign choice, it can be selected with the appropriate conver-
gence property. Q-PAMDP(1) is equivalent to the sequence

ωt+1 = W (θt)

θt+1 = P-UPDATE(Jωt+1
, θt),

if Q-LEARN converges to W (θ) for each given θ.
Theorem 4.1 (Convergence to a Local Optimum). For any
θ0, if the sequence

θt+1 = P-UPDATE(H, θt), (1)

converges to a local optimum with respect to H , then Q-
PAMDP(1) converges to a local optimum with respect to J .

Proof. By definition of the sequence above ωt = W (θt), so
it follows that

Jωt = J(θ,W (θ)) = H(θ).

In other words, the objective function J equals H if ω =
W (θ). Therefore, we can replace J with H in our update
for θ, to obtain the update rule

θt+1 = P-UPDATE(H, θt).

Therefore by equation 1 the sequence θt converges to a local
optimum θ∗ with respect to H . Let ω∗ = W (θ∗). As θ∗ is a
local optimum with respect to H , by definition there exists
ε > 0, s.t.

||θ∗ − θ||2 < ε =⇒ H(θ) ≤ H(θ∗).
Therefore for any ω,∣∣∣∣

∣∣∣∣
(
θ∗
ω∗

)
−
(
θ
ω

)∣∣∣∣
∣∣∣∣
2

< ε =⇒ ||θ∗ − θ||2 < ε

=⇒ H(θ) ≤ H(θ∗)
=⇒ J(θ, ω) ≤ J(θ∗, ω∗).

Therefore (θ∗, ω∗) is a local optimum with respect to J .

In summary, if we can locally optimize θ, and ω = W (θ)
at each step, then we will find a local optimum for J(θ, ω).
The conditions for the previous theorem can be met by as-
suming that P-UPDATE is a local optimization method such
as a gradient based policy search. A similar argument shows
that if the sequence θt converges to a global optimum with
respect to H , then Q-PAMDP(1) converges to a global opti-
mum (θ∗, ω∗).

One problem is that at each step we must re-learn W (θ)
for the updated value of θ. We now show that if updates to θ
are bounded and W (θ) is a continuous function, then the re-
quired updates to ω will also be bounded. Intuitively, we are
supposing that a small update to θ results in a small change
in the weights specifying which discrete action to choose.
The assumption that W (θ) is continuous is strong, and may
not be satisfied by all PAMDPs. It is not necessary for the
operation of Q-PAMDP(1), but when it is satisfied we do
not need to completely re-learn ω after each update to θ. We
show that by selecting an appropriate α we can shrink the
differences in ω as desired.
Theorem 4.2 (Bounded Updates to ω). If W is continuous
with respect to θ, and updates to θ are of the form

θt+1 = θt + αtP-UPDATE(θt, ωt),

with the norm of each P-UPDATE bounded by
0 < ||P-UPDATE(θt, ωt)||2 < δ,

for some δ > 0, then for any difference in ω ε > 0, there is
an initial update rate α0 > 0 such that

αt < α0 =⇒ ||ωt+1 − ωt||2 < ε.

Proof. Let ε > 0 and

α0 =
δ

||P-UPDATE(θt, ωt)||2
.

As αt < α0, it follows that
δ > αt ||P-UPDATE(θt, ωt)||2
= ||αtP-UPDATE(θt, ωt)||2
= ||θt+1 − θt||2 .

So we have
||θt+1 − θt||2 < δ.

As W is continuous, this means that
||W (θt+1)−W (θt)||2 = ||ωt+1 − ωt||2 < ε.

1936

In other words, if our update to θ is bounded and W is
continuous, we can always adjust the learning rate α so that
the difference between ωt and ωt+1 is bounded.

With Q-PAMDP(1) we want P-UPDATE to optimize
H(θ). One logical choice would be to use a gradient update.
The next theorem shows that gradient of H is equal to the
gradient of J if ω = W (θ). This is useful as we can apply
existing gradient-based policy search methods to compute
the gradient of J with respect to θ. The proof follows from
the fact that we are at a global optimum of J with respect to
ω, and so the gradient ∇ωJ is zero. This theorem requires
that W is differentiable (and therefore also continuous).
Theorem 4.3 (Gradient of H(θ)). If J(θ, ω) is differentiable
with respect to θ and ω and W (θ) is differentiable with re-
spect to θ, then the gradient of H is given by ∇θH(θ) =
∇θJ(θ, ω

∗), where ω∗ = W (θ).

Proof. If θ ∈ R
n and ω ∈ R

m, then we can compute the
gradient of H by the chain rule:

∂H(θ)

∂θi
=

∂J(θ,W (θ))

∂θi

=

n∑
j=1

∂J(θ, ω∗)
∂θj

∂θj
∂θi

+

m∑
k=1

∂J(θ, ω∗)
∂ω∗

k

∂ω∗
k

∂θi

=
∂J(θ, ω∗)

∂θi
+

m∑
k=1

∂J(θ, ω∗)
∂ω∗

k

∂ω∗
k

∂θi
,

where ω∗ = W (θ). Note that as by definitions of W ,

ω∗ = W (θ) = argmax
ω

J(θ, ω),

we have that the gradient of J with respect to ω is zero
∂J(θ, ω∗)/∂ω∗

k = 0, as ω is a global maximum with respect
to J for fixed θ. Therefore, we have that

∇θH(θ) = ∇θJ(θ, ω
∗).

To summarize, if W (θ) is continuous and P-UPDATE
converges to a global or local optimum, then Q-PAMDP(1)
will converge to a global or local optimum, respectively, and
the Q-LEARN step will be bounded if the update rate of
the P-UPDATE step is bounded. As such, if P-UPDATE is a
policy gradient update step then Q-PAMDP by Theorem 4.1
will converge to a local optimum and by Theorem 4.4 the
Q-LEARN step will require a fixed number of updates. This
policy gradient step can use the gradient of J with respect to
θ.

With Q-PAMDP(∞) each step performs a full optimiza-
tion on θ and then a full optimization of ω. The θ step would
optimize J(θ, ω), not H(θ), as we do update ω while we
update θ. Q-PAMDP(∞) has the disadvantage of requiring
global convergence properties for the P-UPDATE method.
Theorem 4.4 (Local Convergence of Q-PAMDP(∞)). If at
each step of Q-PAMDP(∞) for some bounded set Θ:

θt+1 = argmax
θ∈Θ

J(θ, ωt),

ωt+1 = W (θt+1),

then Q-PAMDP(∞) converges to a local optimum.

Proof. By definition of W , ωt+1 = argmaxω J(θt+1, ω).
Therefore this algorithm takes the form of direct alternat-
ing optimization. As such, it converges to a local optimum
(Bezdek and Hathaway 2002).

Q-PAMDP(∞) has weaker convergence properties than
Q-PAMDP(1), as it requires a globally convergent P-
UPDATE. However, it has the potential to bypass nearby
local optima (Bezdek and Hathaway 2002).

5 Experiments

We first consider a simplified robot soccer problem (Kitano
et al. 1997) where a single striker attempts to score a goal
against a keeper. Each episode starts with the player at a
random position along the bottom bound of the field. The
player starts with the ball in possession, and the keeper is
positioned between the ball and the goal. The game takes
place in a 2D environment where the player and the keeper
have a position, velocity and orientation and the ball has a
position and velocity, resulting in 14 continuous state vari-
ables.

An episode ends when the keeper possesses the ball, the
player scores a goal, or the ball leaves the field. The reward
for an action is 0 for non-terminal state, 50 for a terminal
goal state, and −d for a terminal non-goal state, where d
is the distance of the ball to the goal. The player has two
parameterized actions: kick-to(x, y), which kicks to ball to-
wards position (x, y); and shoot-goal(h), which shoots the
ball towards a position h along the goal line. Noise is added
to each action. If the player is not in possession of the ball, it
moves towards it. The keeper has a fixed policy: it moves to-
wards the ball, and if the player shoots at the goal, the keeper
moves to intercept the ball.

To score a goal, the player must shoot around the keeper.
This means that at some positions it must shoot left past the
keeper, and at others to the right past the keeper. However at
no point should it shoot at the keeper, so an optimal policy
is discontinuous. We split the action into two parameterized
actions: shoot-goal-left, shoot-goal-right. This allows us to
use a simple action selection policy instead of complex con-
tinuous action policy. This policy would be difficulty to rep-
resent in a purely continuous action space, but is simpler in
a parameterized action setting.

We represent the action-value function for the discrete ac-
tion a using linear function approximation with Fourier ba-
sis features (Konidaris, Osentoski, and Thomas 2011). As
we have 14 state variables, we must be selective in which
basis functions to use. We only use basis functions with
two non-zero elements and exclude all velocity state vari-
ables. We use the soft-max discrete action policy (Sutton
and Barto 1998). We represent the action-parameter pol-
icy πa

θ as a normal distribution around a weighted sum of
features πa

θ (x|s) = N (θTa ψa(s),Σ), where θa is a ma-
trix of weights, and ψa(s) gives the features for state s,
and Σ is a fixed covariance matrix. We use specialized fea-
tures for each action. For the shoot-goal actions we are us-
ing a simple linear basis (1, g), where g is the projection
of the keeper onto the goal line. For kick-to we use lin-
ear features (1, bx, by, bx2, by2, (bx−kx)/ ||b− k||2 , (by−

1937

ky)/ ||b− k||2), where (bx, by) is the position of the ball
and (kx, ky) is the position of the keeper.

For the direct policy search approach, we use the episodic
natural actor critic (eNAC) algorithm (Peters and Schaal
2008), computing the gradient of J(ω, θ) with respect to
(ω, θ). For the Q-PAMDP approach we use the gradient-
descent Sarsa(λ) algorithm for Q-learning, and the eNAC
algorithm for policy search. At each step we perform one
eNAC update based on 50 episodes and then refit Qω using
50 gradient descent Sarsa(λ) episodes.

Figure 2: Average goal scoring probability, averaged over
20 runs for Q-PAMDP(1), Q-PAMDP(∞), fixed parameter
Sarsa, and eNAC in the goal domain. Intervals show stan-
dard error.

Return is directly correlated with goal scoring probability,
so their graphs are close to indentical. As it is easier to in-
terpret, we plot goal scoring probability in figure 2. We can
see that direct eNAC is outperformed by Q-PAMDP(1) and
Q-PAMDP(∞). This is likely due to the difficulty of opti-
mizing the action selection parameters directly, rather than
with Q-learning.

For both methods, the goal probability is greatly in-
creased: while the initial policy rarely scores a goal, both
Q-PAMDP(1) and Q-PAMDP(∞) increase the probability
of a goal to roughly 35%. Direct eNAC converged to a lo-
cal maxima of 15%. Finally, we include the performance
of SARSA(λ) where the action parameters are fixed at
the initial θ0. This achieves roughly 20% scoring proba-
bility. Both Q-PAMDP(1) and Q-PAMDP(∞) strongly out-
perform fixed parameter SARSA, but eNAC does not. Figure
3 depicts a single episode using a converged Q-PAMDP(1)
policy— the player draws the keeper out and strikes when
the goal is open.

Next we consider the Platform domain, where the agent
starts on a platform and must reach a goal while avoiding
enemies. If the agent reaches the goal platform, touches an
enemy, or falls into a gap between platforms, the episode
ends. This domain is depicted in figure 4. The reward for a
step is the change in x value for that step, divided by the to-

Figure 3: A robot soccer goal episode using a converged Q-
PAMDP(1) policy. The player runs to one side, then shoots
immediately upon overtaking the keeper.

Figure 4: A screenshot from the Platform domain. The
player hops over an enemy, and then leaps over a gap.

tal length of all the platforms and gaps. The agent has two
primitive actions: run or jump, which continue for a fixed pe-
riod or until the agent lands again respectively. There are two
different kinds of jumps: a high jump to get over enemies,
and a long jump to get over gaps between platforms. The
domain therefore has three parameterized actions: run(dx),
hop(dx), and leap(dx). The agent only takes actions while
on the ground, and enemies only move when the agent is
on their platform. The state space consists of four variables
(x, ẋ, ex, ėx), representing the agent position, agent speed,
enemy position, and enemy speed respectively. For learning
Qω , as in the previous domain, we use linear function ap-
proximation with the Fourier basis. We apply a softmax dis-
crete action policy based on Qω , and a Gaussian parameter
policy based on scaled parameter features ψa(s).

Figure 5 shows the performance of eNAC, Q-PAMDP(1),
Q-PAMDP(∞), and SARSA with fixed parameters. Both
Q-PAMDP(1) and Q-PAMDP(∞) outperformed the fixed
parameter SARSA method, reaching on average 50% and
65% of the total distance respectively. We suggest that Q-
PAMDP(∞) outperforms Q-PAMDP(1) due to the nature
of the Platform domain. Q-PAMDP(1) is best suited to do-
mains with smooth changes in the action-value function with
respect to changes in the parameter-policy. With the Plat-
form domain, our initial policy is unable to make the first
jump without modification. When the policy can reach the
second platform, we need to drastically change the action-
value function to account for this platform. Therefore, Q-

1938

Figure 5: Average percentage distance covered, averaged
over 20 runs for Q-PAMDP(1), Q-PAMDP(∞), and eNAC
in the Platform domain. Intervals show standard error.

Figure 6: A successful episode of the Platform domain.
The agent hops over the enemies, leaps over the gaps, and
reaches the last platform.

PAMDP(1) may be poorly suited to this domain as the small
change in parameters that occurs between failing to making
the jump and actually making it results in a large change
in the action-value function. This is better than the fixed
SARSA baseline of 40%, and much better than direct op-
timization using eNAC which reached 10%. Figure 6 shows
a successfully completed episode of the Platform domain.

6 Related Work

Hauskrecht et al. (2004) introduced an algorithm for solv-
ing factored MDPs with a hybrid discrete-continuous action
space. However, their formalism has an action space with a
mixed set of discrete and continuous components, whereas
our domain has distinct actions with a different number of
continuous components for each action. Furthermore, they
assume the domain has a compact factored representation,
and only consider planning.

Rachelson (2009) encountered parameterized actions in
the form of an action to wait for a given period of time
in his research on time dependent, continuous time MDPs
(TMDPs). He developed XMDPs, which are TMDPs with
a parameterized action space (Rachelson 2009). He devel-
oped a Bellman operator for this domain, and in a later paper
mentions that the TiMDPpoly algorithm can work with pa-
rameterized actions, although this specifically refers to the

parameterized wait action (Rachelson, Fabiani, and Garcia
2009). This research also takes a planning perspective, and
only considers a time dependent domain. Additionally, the
size of the parameter space for the parameterized actions is
the same for all actions.

Hoey et al. (2013) considered mixed discrete-continuous
actions in their work on Bayesian affect control theory. To
approach this problem they use a form of POMCP, a Monte
Carlo sampling algorithm, using domain specific adjust-
ments to compute the continuous action components (Silver
and Veness 2010). They note that the discrete and contin-
uous components of the action space reflect different con-
trol aspects: the discrete control provides the “what”, while
the continuous control describes the “how” (Hoey, Schroder,
and Alhothali 2013).

In their research on symbolic dynamic programming
(SDP) algorithms, Zamani et al. (2012) considered domains
with a set of discrete parameterized actions. Each of these
actions has a different parameter space. Symbolic dynamic
programming is a form of planning for relational or first-
order MDPs, where the MDP has a set of logical relation-
ships defining its dynamics and reward function. Their algo-
rithms represent the value function as an extended algebraic
decision diagram (XADD), and is limited to MDPs with pre-
defined logical relations.

A hierarchical MDP is an MDP where each action has
subtasks. A subtask is itself an MDP with its own states
and actions which may have their own subtasks. Hierarchi-
cal MDPs are well-suited for representing parameterized ac-
tions as we could consider selecting the parameters for a dis-
crete action as a subtask. MAXQ is a method for value func-
tion decomposition of hierarchical MDPs (Dietterich 2000).
One possiblity is to use MAXQ for learning the action-
values in a parameterized action problem.

7 Conclusion

The PAMDP formalism models reinforcement learning do-
mains with parameterized actions. Parameterized actions
give us the adaptibility of continuous domains and to use
distinct kinds of actions. They also allow for simple repre-
sentation of discontinuous policies without complex param-
eterizations. We have presented three approaches for model-
free learning in PAMDPs: direct optimization and two vari-
ants of the Q-PAMDP algorithm. We have shown that Q-
PAMDP(1), with an appropriate P-UPDATE method, con-
verges to a local or global optimum. Q-PAMDP(∞) with a
global optimization step converges to a local optimum.

We have examined the performance of these approaches
in the goal scoring domain and the Platformer domain.
The robot soccer goal domain models the situation where a
striker must out-maneuver a keeper to score a goal. Of these,
Q-PAMDP(1) and Q-PAMDP(∞) outperformed eNAC and
fixed parameter SARSA. Q-PAMDP(1) and Q-PAMDP(∞)
performed similarly well in terms of goal scoring, learning
policies that score goals roughly 35% of the time. In the
Platform domain we found that both Q-PAMDP(1) and Q-
PAMDP(∞) outperformed eNAC and fixed SARSA.

1939

References
Bezdek, J., and Hathaway, R. 2002. Some notes on alternat-
ing optimization. In Advances in Soft Computing. Springer.
288–300.
da Silva, B.; Konidaris, G.; and Barto, A. 2012. Learning
parameterized skills. In Proceedings of the Twenty-Ninth In-
ternational Conference on Machine Learning, 1679–1686.
Deisenroth, M.; Englert, P.; Peters, J.; and Fox, D. 2014.
Multi-task policy search for robotics. In Proceedings of the
Fourth International Conference on Robotics and Automa-
tion, 3876–3881.
Deisenroth, M.; Neumann, G.; and Peters, J. 2013. A Survey
on Policy Search for Robotics. Number 12. Now Publishers.
Dietterich, T. 2000. Hierarchical reinforcement learning
with the MAXQ value function decomposition. Journal of
Artificial Intelligence Research 13:227–303.
Guestrin, C.; Hauskrecht, M.; and Kveton, B. 2004. Solving
factored MDPs with continuous and discrete variables. In
Proceedings of the Twentieth Conference on Uncertainty in
Artificial Intelligence, 235–242.
Hoey, J.; Schroder, T.; and Alhothali, A. 2013. Bayesian af-
fect control theory. In Proceedings of the Fifth International
Conference on Affective Computing and Intelligent Interac-
tion, 166–172. IEEE.
Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I.; Osawa, E.;
and Matsubara, H. 1997. Robocup: A challenge problem for
AI. AI Magazine 18(1):73.
Kober, J.; Wilhelm, A.; Oztop, E.; and Peters, J. 2012. Rein-
forcement learning to adjust parametrized motor primitives
to new situations. Autonomous Robots 33(4):361–379.
Konidaris, G.; Osentoski, S.; and Thomas, P. 2011. Value
function approximation in reinforcement learning using the
Fourier basis. In Proceedings of the Twenty-Fifth AAAI Con-
ference on Artificial Intelligence, 380–385.
Peters, J., and Schaal, S. 2008. Natural actor-critic. Neuro-
computing 71(7):1180–1190.
Rachelson, E.; Fabiani, P.; and Garcia, F. 2009. TiMDP-
poly: an improved method for solving time-dependent
MDPs. In Proceedings of the Twenty-First International
Conference on Tools with Artificial Intelligence, 796–799.
IEEE.
Rachelson, E. 2009. Temporal Markov Decision Problems:
Formalization and Resolution. Ph.D. Dissertation, Univer-
sity of Toulouse, France.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in Neural Information Pro-
cessing Systems, volume 23, 2164–2172.
Sutton, R., and Barto, A. 1998. Introduction to Reinforce-
ment Learning. Cambridge, MA, USA: MIT Press.
Watkins, C., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Zamani, Z.; Sanner, S.; and Fang, C. 2012. Symbolic dy-
namic programming for continuous state and action MDPs.
In Proceedings of the Twenty-Sixth AAAI Conference on Ar-
tificial Intelligence.

1940

