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Abstract

We consider the off-policy evaluation problem in Markov de-
cision processes with function approximation. We propose a
generalization of the recently introduced emphatic temporal
differences (ETD) algorithm (Sutton, Mahmood, and White
2015), which encompasses the original ETD()), as well
as several other off-policy evaluation algorithms as special
cases. We call this framework ETD(\, [3), where our intro-
duced parameter /3 controls the decay rate of an importance-
sampling term. We study conditions under which the pro-
jected fixed-point equation underlying ETD(A, () involves a
contraction operator, allowing us to present the first asymp-
totic error bounds (bias) for ETD(, /3). Our results show that
the original ETD algorithm always involves a contraction op-
erator, and its bias is bounded. Moreover, by controlling /3,
our proposed generalization allows trading-off bias for vari-
ance reduction, thereby achieving a lower total error.

1 Introduction

In Reinforcement Learning (RL; Sutton and Barto, 1998),
policy-evaluation refers to the problem of evaluating the
value function — a mapping from states to their long-term
discounted return under a given policy, using sampled ob-
servations of the system dynamics and reward. Policy-
evaluation is important both for assessing the quality of a
policy, but also as a sub-procedure for policy optimization.
For systems with large or continuous state-spaces, an
exact computation of the value function is often impossi-
ble. Instead, an approximate value-function is sought using
various function-approximation techniques (a.k.a. approxi-
mate dynamic-programming; Bertsekas, 2012). In this ap-
proach, the parameters of the value-function approximation
are tuned using machine-learning inspired methods, often
based on temporal-differences (TD;Sutton and Barto, 1998).
The source generating the sampled data divides policy
evaluation into two cases. In the on-policy case, the samples
are generated by the target-policy — the policy under eval-
uation; In the off-policy setting, a different behavior-policy
generates the data. In the on-policy setting, TD methods are
well understood, with classic convergence guarantees and
approximation-error bounds, based on a contraction prop-
erty of the projected Bellman operator underlying TD (Bert-
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sekas and Tsitsiklis 1996). These bounds guarantee that the
asymptotic error, or bias, of the algorithm is contained. For
the off-policy case, however, standard TD methods no longer
maintain this contraction property, the error bounds do not
hold, and these methods might even diverge (Baird 1995).

The standard error-bounds may be shown to hold for an
importance-sampling TD method (IS-TD), as proposed by
Precup, Sutton, and Dasgupta (2001). However, this method
is known to suffer from a high variance of its importance-
sampling estimator, limiting its practicality.

Lately, Sutton, Mahmood, and White (2015) proposed the
emphatic TD (ETD) algorithm: a modification of the TD
idea, which converges off-policy (Yu 2015), and has a re-
duced variance compared to IS-TD. This variance reduc-
tion is achieved by incorporating a certain decay factor over
the importance-sampling ratio. However, to the best of our
knowledge, there are no results that bound the bias of ETD.
Thus, while ETD is assured to converge, it is not known how
good its limit actually is.

In this paper, we propose the ETD()\, 3) framework — a
modification of the ETD()\) algorithm, where the decay rate
of the importance-sampling ratio, 3, is a free parameter, and
A is the same bootstrapping parameter employed in TD(\)
and ETD()). By varying the decay rate, one can smoothly
transition between the IS-TD algorithm, through ETD, to the
standard TD algorithm.

We investigate the bias of ETD()\, ), by studying the
conditions under which its underlying projected Bellman
operator is a contraction. We show that the original ETD
possesses a contraction property, and present the first error
bounds for ETD and ETD(, /). In addition, our error bound
reveals that the decay rate parameter balances between the
bias and variance of the learning procedure. In particular,
we show that selecting a decay equal to the discount factor
as in the original ETD may be suboptimal in terms of the
mean-squared error.

The main contributions of this work are therefore a unifi-
cation of several off-policy TD algorithms under the ETD(\,
) framework, and a new error analysis that reveals the bias-
variance trade-off between them.

Related Work: In recent years, several different off-
policy policy-evaluation algorithms have been studied, such
as importance-sampling based least-squares TD (Yu 2012),



and gradient-based TD (Sutton et al. 2009; Liu et al. 2015).
These algorithms are guaranteed to converge, however, their
asymptotic error can be bounded only when the target and
behavior policies are similar (Bertsekas and Yu 2009), or
when their induced transition matrices satisfy a certain
matrix-inequality suggested by Kolter (2011), which lim-
its the discrepancy between the target and behavior policies.
When these conditions are not satisfied, the error may be ar-
bitrarily large (Kolter 2011). In contrast, the approximation-
error bounds in this paper hold for general target and behav-
ior policies.

2 Preliminaries
We consider an MDP M = (S, A, P, R, ), where S is the
state space, A is the action space, P is the transition proba-
bility matrix, R is the reward function, and v € [0, 1) is the
discount factor.
Given a target policy m mapping states to a distribution
over actions, our goal is to evaluate the value function:

ZR(st,at) S0 = s] )

t=0
Linear temporal difference methods (Sutton and Barto
1998) approximate the value function by

V7(s) = 0" o(s),

VT(s) =E"

where (s) € R™ are state features, and § € R™ are weights,
and use sampling to find a suitable 6. Let 1 denote a behavior
policy that generates the samples sq, ag, S1,a1, ... accord-
ing to a; ~ pu(-|sy) and sg41 ~ P(:|s¢,ar). We denote by
py the ratio m(a|st)/p(at|st), and we assume, similarly to
Sutton, Mahmood, and White (2015), that i and 7 are such
that p; is well-defined’ for all ¢.

Let T" denote the Bellman operator for policy 7, given by

T(V) = R" +~P"V,

where R™ and P are the reward vector and transition ma-
trix induced by policy 7, and let ® denote a matrix whose
columns are the feature vectors for all states. Let d,, and d
denote the stationary distributions over states induced by the
policies p and 7, respectively. For some d € RI°! satisfying
d > 0 element-wise, we denote by II; a projection to the
subspace spanned by ¢(s) with respect to the d-weighted
Euclidean-norm.

For A = 0, the ETD(0, 3) (Sutton, Mahmood, and White
2015) algorithm seeks to find a good approximation of the
value function by iteratively updating the weight vector 6:

0111 = 0 + aFpe(Re1 + 70, 011 — 0] 1)
F,=8p1Fi1+1, Fy=1,

where F; is a decaying trace of the importance-sampling ra-
tios, and 3 € (0, 1) controls the decay rate.

Remark 1. The algorithm of Sutton, Mahmood, and White
(2015) selects the decay rate equal to the discount factor,

ey

'Namely, if p(als) = O then 7(a|s) = 0 forall s € S.
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i.e., B = . Here, we provide more freedom in choosing the
decay rate. As our analysis reveals, the decay rate controls
a bias-variance trade-off of ETD, therefore this freedom is
important. Moreover, we note that for 5 = 0, we obtain the
standard TD in an off-policy setting (Yu 2012), and when
B = 1 we obtain the full importance-sampling TD algorithm
(Precup, Sutton, and Dasgupta 2001).

Remark 2. The ETD(0, ~y) algorithm of Sutton, Mahmood,
and White (2015) also includes a state-dependent empha-
sis weight i(s), and a state-dependent discount factor ~(s).
Here, we analyze the case of a uniform weight i(s) = 1 and
constant discount factor -y for all states. While our analysis
can be extended to their more general setting, the insights
from the analysis remain the same, and for the purpose of
clarity we chose to focus on this simpler setting.

An important term in our analysis is the emphatic weight
vector f, defined by
fr=d,(1—-pP)" 2)
It can be shown (Sutton, Mahmood, and White 2015; Yu
2015), that ETD(0, ) converges to 8* - a solution of the
following projected fixed point equation:
vV eRS

V =1I,TV, 3)

For the fixed point equation (3), a contraction property of
IT;T is important for guaranteeing both a unique solution,
and a bias bound (Bertsekas and Tsitsiklis 1996).

It is well known that 7 is a ~y-contraction with respect
to the d,.-weighted Euclidean norm (Bertsekas and Tsitsik-
lis 1996), and by definition II¢ is a non-expansion in f-
norm, however, it is not immediate that the composed op-
erator 117" is a contraction in any norm. Indeed, for the
TD(0) algorithm (Sutton and Barto, 1998; corresponding to
the 8 = 0 case in our setting), a similar representation as a
projected Bellman operator holds, but it may be shown that
in the off-policy setting the algorithm might diverge (Baird
1995). In the next section, we study the contraction proper-
ties of II;T", and provide corresponding bias bounds.

3 Bias of ETD(0, ()

In this section we study the bias of the ETD(0, 3) algorithm.
Let us first introduce the following measure of discrepancy
between the target and behavior policies:

K = min duu(s)

s fls)

Lemma 1. The measure k obtains values ranging from xk =
0 (when there is a state visited by the target policy, but not
the behavior policy), to k = 1 —  (when the two policies
are identical).

The technical proof is available in an extended version of
the paper (Hallak et al. 2015). The following theorem shows
that for ETD(0, /3) with a suitable f3, the projected Bellman
operator II;T" is indeed a contraction.



Theorem 1. For 3 > ~%(1 — k), the projected Bellman

operator 11T is a 4/ %2(1 — K)-contraction with respect to

the Euclidean f-weighted norm, namely, Yv1, vy € RI9!:

,YZ

[ Tvy — T ol < g(l — K)[lvr — vally.

Proof. Let F = diag(f). We have
||v|\§ - ||Pv||§ =v'Fv—pv' PTFPv
> Ty — BuTdiag(f" P)v
= v [F — Bdiag(f" P)]v
=o' [diag (fT(I — ,BP))} v
=®) T diag(d,)o = vl |

where (a) follows from Jensen inequality:

'UTPTFP'U — Zf'(s)(z P(3’|5)’U(S/))2
<N f(5) Y P(s|s)v3(s)

=Y () D f(s)P(s]s)
s’ s
= v " diag(f" P)v,
and (b) is by the definition of f in (2).
Notice that for every v:

o)1, = D du(s)v*(s) = D wf(s)o*(s) = w0l

Therefore:
ol > BlIPulF +llvllz, = BIPIIT + sllv]f,
= BlPvl}<1—r)ol}
and:
ITv1 = Tws |} = [y P(vr — w2}
=72 ||P(v1 — o)l
< Tl - wl?.

Hence, T is a 4/ %2(1 — k)-contraction. Since II; is a non-
expansion in the f-weighted norm (Bertsekas and Tsitsiklis

1996),II;T is a %2(1 — K)-contraction as well. O

Recall that for the original ETD algorithm (Sutton, Mah-
mood, and White 2015), we have that 5 = +, and the con-
traction modulus is \/(1 — &) < 1, thus the contraction of
IT;T always holds.

Also note that in the on-policy case, the behavior and tar-
get policies are equal, and according to Lemma 1 we have
1 — k = f. In this case, the contraction modulus in Theorem
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1 is v, similar to the result for on-policy TD (Bertsekas and
Tsitsiklis 1996).

We remark that Kolter (2011) also used a measure of
discrepancy between the behavior and the target policy to
bound the TD-error. However, Kolter (2011) considered the
standard TD algorithm, for which a contraction could be
guaranteed only for a class of behavior policies that satisfy a
certain matrix inequality criterion. Our results show that for
ETD(0, B) with a suitable 3, a contraction is guaranteed for
general behavior policies. We now show in an example that
our contraction modulus bounds are tight.

Example 1. Consider an MDP with two states: Left and
Right. In each state there are two identical actions leading
to either Left or Right deterministically. The behavior policy
will choose Right with probability €, and the target policy
will choose Left with probability €, hence 1 — k =~ 1. Calcu-
lating the quantities of interest:
e 1—e¢
P= ( e 1—¢

). d=-co)

1
f= W(H%B_E_B’_%BJFHﬁ)T'
So forv=(0,1)":
2 €+ B —2p 2 (1—¢)?
HU”f = ﬁ’ ||PUHf = ﬁa
and for small € we obtain that ”"{‘PITJIQ ~ %
vlily

An immediate consequence of Theorem 1 is the following
error bound based on Lemma 6.9 of Bertsekas and Tsitsiklis
(1996):

Corollary 1. We have

Hqﬁe* —v| <
f

v = v,
1—2(1 - k)
<

1
v (- Ea-w)

Up to the weights in the norm, the error || V™ — V7|,
is the best approximation we can hope for, within the capa-
bility of the linear approximation architecture. Corollary 1
guarantees that we are not too far away from it.

Notice that the error ||<I>T0* -V Hdu uses a measure d,,

which is independent of the target policy; This could be use-
ful in further analysis of a policy iteration algorithm, which
iteratively improves the target policy using samples from a
single behavior policy. Such an analysis may proceed simi-
larly to that in Munos (2003) for the on-policy case.

[TIpV7™ —

VT,

H@To* _yT

3.1 Numerical Illustration

We illustrate the importance of the ETD(0, ) bias bound in
a numerical example. Consider the 2-state MDP example of
Kolter (2011), with transition matrix P = (1/2)1 (where 1
is an all 1 matrix), discount factor v = 0.99, and value func-
tion V = [1,1.05] " (with R = (I—~P)V). The features are
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Figure 1: Mean squared error in value function approxima-
tion for different behavior policies.

® = [1,1.05+¢] ", with e = 0.001. Clearly, in this example
we have d = [0.5,0.5]. The behavior policy is chosen such
that d,, = [p, 1 — p].

In Figure 1 we plot the mean-squared error
||<I>T6* - Vde,,’ where 0* is either the fixed point of
the standard TD equation V' = TI;,T'V, or the ETD(0, 5)
fixed point of (3), with 3 = ~. We also show the optimal
error |[IIg, V — V|| ; achievable with these features. Note
that, as observed by Kolter (2011), for certain behavior
policies the bias of standard TD is infinite. This means that
algorithms that converge to this fixed point, such as the
GTD algorithm (Sutton et al. 2009), are hopeless in such
cases. The ETD algorithm, on the other hand, has a bounded
bias for all behavior policies.

4 The Bias-Variance Trade-Off of ETD(0, /)

From the results in Corollary 1, it is clear that increasing
the decay rate 0 decreases the bias bound. Indeed, for the
case § = 1 we obtain the importance sampling TD algo-
rithm (Precup, Sutton, and Dasgupta 2001), which is known
to have a bias bound similar to on-policy TD. However, as
recognized by Precup, Sutton, and Dasgupta (2001) and Sut-
ton, Mahmood, and White (2015), the importance sampling
ratio F} suffers from a high variance, which increases with
(. The quantity F} is important as it appears as a multiplica-
tive factor in the definition of the ETD learning rule, so its
amplitude directly impacts the stability of the algorithm. In
fact, the asymptotic variance of F; may be infinite, as we
show in the following example:

Example 2. Consider the same MDP given in Example 1,
only now the behavior policy chooses Left or Right with
probability 0.5, and the target policy chooses always Right.
For ETD(0, 3) with 8 € [0, 1), we have that when Sy = Left
then Fy = 1 (since pi—1 = 0). When S; = Right, F; may
take several values depending on how many steps, T(t), was

the last transition from Left to Right, i.e. T(t) ef min{i >
0: S;—; = Left}. We can write this value as F™® where:

T . i_(2ﬁ)7+1_1

=0
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if 23 # 1. Let us assume that 23 > 1 since interesting cases
happen when (3 is close to 1.

Let’s compute F;’s average over time: Following the sta-
tionary distribution of the behavior policy, Sy = Left with
probability 1/2. Now, conditioned on S; = Right (which
happens with probability 1/2), we have T(t) = i with prob-
ability 271, Thus the average (over time) value of F} is

ZiBiJrl_l _ 1
226-1)  2(1-5)

1 - —i—1 1
EFt:§§2 Fi=

Thus Fy amplifies the TD update by a factor of ﬁ
in average. Unfortunately, the actual values of the (random
variable) F; does not concentrate around its expectation,
and actually Fy does not even have a finite variance. Indeed

the average (over time) Oth2 is

) 2i27((28) 1 1)
B 4(28 —1)2

= 00,

1
EF? = 1 » 27(FY)
=0

as soon as 23% > 1.

So although ETD(0, 3) converges almost surely (as shown
by Yu, 2015), the variance of the estimate may be infinite,
which suggests a prohibitively slow convergence rate.

In the following proposition we characterize the depen-
dence of the variance of F} on 3.

Proposition 1. Define the mismatch matrix P, . such that
~ 2 =
[(Puxlss = >, p(s]3, d)l(gf‘ls)) and write o(p, ) the
largest magnitude of its eigenvalues. Then for any f <

1/+/a(p, ) the average variance of Fy (conditioned on any

state) is finite, and

62 (1+B) Hpu,ﬂ

E, [Var[F;|S; = s]] < 2+ ~ =SB I
17[3 1_52”]3“’”

where ‘]Bu,ﬂ is the loo-induced norm which is the maxi-

mum absolute row sum of the matrix.

Proof. (Partial) Following the same derivation that Sutton,
Mahmood, and White (2015) used to prove that f(s) =
d,,(s)lim¢_, o E[F|S; = s], we have

4(s) = dy(s) Jim E[F2|S, = o

dy(s) Jim E[(1+ pr—18Fi-1)*|S; = 5]
dyu(s) im B[l 4 2pi—1Fy—1 + pi_1B°FE ]S = s].

For the first summand, we get d,,(s). For the second sum-
mand, we get:

26d,,(s) lim Elpe—1F-1]S; = s] =28 Y [Pelss f(5).



The third summand equals

7 (al5)

lim E[F2,|S;(—1 =5
HQ(a‘g) 11 [ t71|St 1 S]

t—o0

B Z d,.(5)p(als)p(s|s, a)

n*(als

= 83 ptsls. ) = g(s) = 2 (B eaa(5).

w(als)

Hence ¢ = d, + 28P] f + 2P,/ _q. Thus for any 8 <
1/+y/a(p, ), all eigenvalues of the matrix Bglf’;ﬂ have
magnitude smaller than 1, and the vector ¢ has finite compo-
nents. The rest of the proof is very technical and is available
in an extended version of the paper (Hallak et al. 2015).

O

Proposition 1 and Corollary 1 show that the decay rate 8
acts as an implicit trade-off parameter between the bias and
variance in ETD. For large /3, we have a low bias but suffer
from a high variance (possibly infinite if 8 > 1/+/a(p, 7)),
and vice versa for small 5. Notice that for the on-policy case,
a(p, ) = 1 thus for any 8 < 1 the variance is finite.

Originally, ETD(0, 5) was introduced with § = ~, and
from our perspective, it may be seen as a specific choice
for the bias-variance trade-off. However, there is no intrin-
sic reason to choose 3 = +, and other choices may be pre-
ferred in practice, depending on the nature of the problem.
In the following numerical example, we investigate the bias-
variance dependence on (3, and show that the optimal 3 in
term of mean-squared error may be quite different from ~.

4.1 Numerical Illustration

We revisit the 2-state MDP described in Section 3.1, with
v =0.9,e = 0.2 and p = 0.95. For these parameter settings,
the error of standard TD is 42.55 (p was chosen to be close
to a point of infinite bias for these parameters).

In Figure 2 we plot the mean-squared error
@76 — Vde,,’ where #* was obtained by running
ETD(0, ) with a step size v = 0.001 for 10, 000 iterations,
and averaging the results over 10, 000 different runs.

First of all, note that for all 3, the error is smaller by two
orders of magnitude than that of standard TD. Thus, algo-
rithms that converge to the standard TD fixed point such
as GTD (Sutton et al. 2009) are significantly outperformed
by ETD(0, () in this case. Second, note the dependence of
the error on (3, demonstrating the bias-variance trade-off dis-
cussed above. Finally, note that the minimal error is obtained
for v = 0.8, and is considerably smaller than that of the orig-
inal ETD with =~ = 0.9.

5 Contraction Property for ETD()\, ()

We now extend our results to incorporate eligibility traces,
in the style of the ETD(\) algorithm (Sutton, Mahmood, and
White 2015), and show similar contraction properties and
error bounds.

The ETD(), ) algorithm iteratively updates the weight
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Figure 2: Mean squared error in value function approxima-
tion for different decay rates (.

vector 6 according to

Orr1 =0 + a(Res1 + 70 oe1 — 0/ @1 )ey

et = pr(yAer—1 + Mypy), e_1=0
Fo=pp1F_1+1, Fy=1,

where e; is the eligibility trace (Sutton, Mahmood, and
White 2015). In this case, we define the emphatic weight
vector m by
m' =d,(I—-P*)7, “
where P%? for some a, b € R denotes the following matrix:
P** =T — (I —baP)~*(I —bP).
The Bellman operator for general A and + is given by:
TO(WV) = (I —y\P)'R+ PV, VRl

For A = 0 we have P)# = BP, P = ~yP,and m = f so
we recover the definitions of ETD(0, ().

Recall that our goal is to estimate the value function V™.
Thus, we would like to know how well the ETD(A, ) so-
lution approximates V. Mahmood et al. (2015) show that,

under suitable step-size conditions, ETD converges to some
0* that is a solution of the projected fixed-point equation:

0T ® =11, TN (07 ®).

In their analysis, however, Mahmood et al. (2015) did not
show how well the solution ® " 6* approximates V™. Next,
we establish that the projected Bellman operator IT,,, 7 is
a contraction. This result will then allow us to bound the
error H<I>T0* — V"Hm.

Theorem 2. T1,, 7™ is an w-contraction with respect to the
Euclidean m-weighted norm where:

o [rasaspa—n
p=n ”\/ﬁ(lﬂA)Z(l—Aﬁ)’

A= =N

&)




Proof. (sketch) The proof is almost identical to the proof of
Theorem 1, only now we cannot apply Jensen’s inequality
directly, since the rows of P*8 do not sum to 1. However:

PM1=(I-(I-pAP)"Y(I-pP))1=Cl,

B(A=X)

1-XB
B . .

itive. Therefore PTB will hold for Jensen’s inequality. Let

M = diag(m), we have

where ( = . Notice that each entry of P is pos-

2 8T pas
HUHEVL*%HPMBUH :vTMUfCUTPC MPC v
PP

>@ T Moy — Bv" diag(m"

v
: )
— UT[M — diag(mTPA’ﬁ)]v
=v' [diag (mT I- P)\’B))] v
:(b) deiag(du)U = ||UHZ” ’

where (a) follows from the Jensen inequality and (b) from
Equation (4). Therefore:

1 2 1 2
lolly, > = [ PMPoll, + llollg, = =[PPl .
¢ NS
and:
2 2
o -1 =[]
. YL+ BN) oas, 2
(Case A: B> < 7/3(1+7/\)P (v1 — v2) i
2 2
YAAA)TA=A) e
=BT ag
. V1= BN) s ’
(CaseB: B <)< /3(1—’7)\)]3 (1 vz)m
2
YA=BNE=A) e
S T e

The inequalities depending on the two cases originate from
the fact that the two matrices P**#, PA7 are polynomials of
the same matrix P, and mathematical manipulation on the
corresponding eigenvalues decomposition of (v; — v3). The
details are given in an extended version of the paper (Hallak
et al. 2015).

Now, for a proper choice of 3, the operator T™) is a con-
traction, and since II,,, is a non-expansion in the m-weighted
norm, I1,,,7™ is a contraction as well. O

In Figure 3 we illustrate the dependence of the contrac-
tion moduli bound on A and 5. In particular, for A — 1, the
contraction modulus diminishes to 0. Thus, for large enough
A, a contraction can always be guaranteed (this can also be
shown mathematically from the contraction results of Theo-
rem 2). We remark that a similar result for standard TD()\)
was established by Yu, 2012. However, as is well-known
(Bertsekas 2012), increasing A also increases the variance of
the algorithm, and we therefore obtain a bias-variance trade-
off in A as well as /3. Finally, note that for 3 = ~, the con-

Vl(ifyi), and that for A = 0 the

result is the same as in Theorem 1.

traction modulus equals
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Figure 3: Contraction moduli of HmT(A) for different 3’s,
as a function of the bootstrapping parameter A. Notice that
we see a steep decrease in the moduli only for A close to 1.

6 Conclusion

In this work we unified several off-policy TD algorithms un-
der the ETD(], B) framework, which flexibly manages the
bias and variance of the algorithm by controlling the decay-
rate of the importance-sampling ratio. From this perspective,
we showed that several different methods proposed in the lit-
erature are special instances of this bias-variance selection.

Our main contribution is an error analysis of ETD(A, ()
that quantifies the bias-variance trade-off. In particular, we
showed that the recently proposed ETD algorithm of Sut-
ton, Mahmood, and White (2015) has bounded bias for gen-
eral behavior and target policies, and that by controlling the
decay-rate in the ETD(], [3) algorithm, an improved perfor-
mance may be obtained by reducing the variance of the al-
gorithm while still maintaining a reasonable bias.

Possible future extensions of our work includes finite-
time bounds for off-policy ETD(\, ), an error propagation
analysis of off-policy policy improvement, and solving the
bias-variance trade-off adaptively from data.
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