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Abstract

Within the framework of probably approximately cor-
rect Markov decision processes (PAC-MDP), much the-
oretical work has focused on methods to attain near op-
timality after a relatively long period of learning and
exploration. However, practical concerns require the at-
tainment of satisfactory behavior within a short period
of time. In this paper, we relax the PAC-MDP condi-
tions to reconcile theoretically driven exploration meth-
ods and practical needs. We propose simple algorithms
for discrete and continuous state spaces, and illustrate
the benefits of our proposed relaxation via theoretical
analyses and numerical examples. Our algorithms also
maintain anytime error bounds and average loss bounds.
Our approach accommodates both Bayesian and non-
Bayesian methods.

Introduction

The formulation of sequential decision making as a Markov
decision process (MDP) has been successfully applied to a
number of real-world problems. MDPs provide the ability to
design adaptable agents that can operate effectively in un-
certain environments. In many situations, the environment
we wish to model has unknown aspects, and thus the agent
needs to learn an MDP by interacting with the environment.
In other words, the agent has to explore the unknown aspects
of the environment to learn the MDP. A considerable amount
of theoretical work on MDPs has focused on efficient ex-
ploration, and a number of principled methods have been
derived with the aim of learning an MDP to obtain a near-
optimal policy. For example, Kearns and Singh (2002) and
Strehl and Littman (2008a) considered discrete state spaces,
whereas Bernstein and Shimkin (2010) and Pazis and Parr
(2013) examined continuous state spaces.

In practice, however, heuristics are still commonly used
(Li 2012). The focus of theoretical work (learning a near-
optimal policy within a polynomial yet long time) has appar-
ently diverged from practical needs (learning a satisfactory
policy within a reasonable time). In this paper, we modify
the prevalent theoretical approach to develop theoretically
driven methods that come close to practical needs.
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Preliminaries

An MDP (Puterman 2004) can be represented as a tu-
ple (S,A,R, P, γ), where S is a set of states, A is a set
of actions, P is the transition probability function, R is
a reward function, and γ is a discount factor. The value
of policy π at state s, V π(s), is the cumulative (dis-
counted) expected reward, which is given by: V π(s) =

E

[ ∞∑
i=0

γiR (si, π(si), si+1) | s0 = s, π

]
, where the expecta-

tion is over the sequence of states si+1 ∼ P (S|si, π(si))
for all i ≥ 0. Using Bellman’s equation, the value of the op-
timal policy or the optimal value, V ∗(s), can be written as
V ∗(s) = maxa

∑
s′ P (s′|s,a))[R(s, a, s′) + γV ∗(s′)].

In many situations, the transition function P and/or the
reward function R are initially unknown. Under such condi-
tions, we often want a policy of an algorithm at time t, At,
to yield a value V At(st) that is close to the optimal value
V ∗(st) after some exploration. Here, st denotes the current
state at time t. More precisely, we may want the following:
for all ε > 0 and for all δ = (0, 1), V At(st) ≥ V ∗(st) − ε,
with probability at least 1 − δ when t ≥ τ , where τ is the
exploration time. The algorithm with a policyAt is said to
be “probably approximately correct” for MDPs (PAC-MDP)
(Strehl 2007) if this condition holds with τ being at most
polynomial in the relevant quantities of MDPs. The notion of
PAC-MDP has a strong theoretical basis and is widely appli-
cable, avoiding the need for additional assumptions, such as
reachability in state space (Jaksch, Ortner, and Auer 2010),
access to a reset action (Fiechter 1994), and access to a par-
allel sampling oracle (Kearns and Singh 1999).

However, the PAC-MDP approach often results in an al-
gorithm over-exploring the state space, causing a low reward
per unit time for a long period of time. Accordingly, past
studies that proposed PAC-MDP algorithms have rarely pre-
sented a corresponding experimental result, or have done so
by tuning the free parameters, which renders the relevant al-
gorithm no longer PAC-MDP (Strehl, Li, and Littman 2006;
Kolter and Ng 2009; Sorg, Singh, and Lewis 2010). This
problem was noted in (Kolter and Ng 2009; Brunskill 2012;
Kawaguchi and Araya 2013). Furthermore, in many prob-
lems, it may not even be possible to guarantee V At close
to V ∗ within the agent’s lifetime. Li (2012) noted that, de-
spite the strong theoretical basis of the PAC-MDP approach,
heuristic-based methods remain popular in practice. This
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would appear to be a result of the above issues. In summary,
there seems to be a dissonance between a strong theoretical
approach and practical needs.

Bounded Optimal Learning

The practical limitations of the PAC-MDP approach lie in
their focus on correctness without accommodating the time
constraints that occur naturally in practice. To overcome the
limitation, we first define the notion of reachability in model
learning, and then relax the PAC-MDP objective based on
it. For brevity, we focus on the transition model.

Reachability in Model Learning

For each state-action pair (s, a), let M(s,a) be a set of all
transition models and P̂t(·|s, a) ∈ M(s,a) be the current
model at time t (i.e., P̂t(·|s, a) : S → [0,∞)). Define
S′
(s,a) to be a set of possible future samples as S′

(s,a) =

{s′|P (s′|s, a) > 0}. Let f(s,a) : M(s,a) × S′
(s,a) → M(s,a)

represent the model update rule; f(s,a) maps a model (in
M(s,a)) and a new sample (in S′

(s,a)) to a corresponding
new model (in M(s,a)). We can then write L = (M, f) to
represent a learning method of an algorithm, where M =
∪(s,a)∈(S,A)M(s,a) and f = {f(s,a)}(s,a)∈(S,A).

The set of h-reachable models, ML,t,h,(s,a), is recur-
sively defined as ML,t,h,(s,a) = {P̂ ′ ∈ M(s,a)|P̂ ′ =

f(s,a)(P̂ , s′) for some P̂ ∈ ML,t,h−1,(s,a) and s′ ∈ S′
(s,a)}

with the boundary conditionMt,0,(s,a) = {P̂t(·|s, a)}.
Intuitively, the set of h-reachable models, ML,t,h,(s,a) ⊆

M(s,a), contains the transition models that can be obtained if
the agent updates the current model at time t using any com-
bination of h additional samples s′1, s

′
2, ..., s

′
h ∼ P (S|s, a).

Note that the set of h-reachable models is defined separately
for each state-action pair. For example,ML,t,h,(s1,a1) con-
tains only those models that are reachable using the h addi-
tional samples drawn from P (S|s1, a1).

We define the h-reachable optimal value V d∗
L,t,h(s) with

respect to a distance function d as

V d∗
L,t,h(s) = max

a

∑
s′

P̂ d∗
L,t,h(s

′|s, a)[R(s, a, s′) + γV d∗
L,t,h(s

′)],

where

P̂ d∗
L,t,h(·|s, a) = argmin

̂P∈ML,t,h,(s,a)

d(P̂ (·|s, a), P (·|s, a)).

Intuitively, the h-reachable optimal value, V d∗
L,t,h(s), is the

optimal value estimated with the “best” model in the set of
h-reachable models (here, the term “best” is in terms of the
distance function d(·, ·)).
PAC in Reachable MDP

Using the concept of reachability in model learning, we
define the notion of “probably approximately correct” in an
h-reachable MDP (PAC-RMDP(h)). Let P(x1, x2, ..., xn)
be a polynomial in x1, x2, ..., xn and |MDP| be the com-
plexity of an MDP (Li 2012).

Definition 1. (PAC-RMDP(h)) An algorithm with a
policy At and a learning method L is PAC-RMDP(h) with
respect to a distance function d if for all ε > 0 and for all
δ = (0, 1),
1) there exists τ = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|, h)) such

that for all t ≥ τ ,

V At(st) ≥ V d∗
L,t,h(st)− ε

with probability at least 1− δ, and
2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|))

such that for all t ≥ 0,

|V ∗(st)− V d∗
L,t,h∗(ε,δ)(st)|≤ ε.

with probability at least 1− δ.

The first condition ensures that the agent efficiently learns
the h-reachable models. The second condition guarantees
that the learning method L and the distance function d are
not arbitrarily poor.

In the following, we relate PAC-RMDP(h) to PAC-
MDP and near-Bayes optimality. The proofs are given
in the appendix. The appendix is included in an ex-
tended version of the paper that can be found here:
http://lis.csail.mit.edu/new/publications.php.

Proposition 1. (PAC-MDP) If an algorithm is PAC-
RMDP(h∗(ε, δ)), then it is PAC-MDP, where h∗(ε, δ) is
given in Definition 1.

Proposition 2. (Near-Bayes optimality) Consider model-
based Bayesian reinforcement learning (Strens 2000). Let
H be a planning horizon in the belief space b. Assume
that the Bayesian optimal value function, V ∗

b,H , converges
to the H-reachable optimal function such that, for all
ε > 0, |V d∗

L,t,H(st) − V ∗
b,H(st, bt)|≤ ε for all but poly-

nomial time steps. Then, a PAC-RMDP(H) algorithm
with a policy At obtains an expected cumulative reward
V At(st) ≥ V ∗

b,H(st, bt) − 2ε for all but polynomial time
steps with probability at least 1− δ.

Note that V At(st) is the actual expected cumulative
reward with the expectation over the true dynamics P ,
whereas V ∗

b,H(st, bt) is the believed expected cumulative
reward with the expectation over the current belief bt and its
belief evolution. In addition, whereas the PAC-RMDP(H)
condition guarantees convergence to an H-reachable
optimal value function, Bayesian optimality does not1.
In this sense, Proposition 2 suggests that the theoretical
guarantee of PAC-RMDP(H) would be stronger than that of
near-Bayes optimality with an H step lookahead.

Summarizing the above, PAC-RMDP(h∗(ε, δ)) implies
PAC-MDP, and PAC-RMDP(H) is related to near-Bayes op-
timality. Moreover, as h decreases in the range (0, h∗) or

1A Bayesian estimation with random samples converges to the
true value under certain assumptions. However, for exploration, the
selection of actions can cause the Bayesian optimal agent to ig-
nore some state-action pairs, removing the guarantee of the con-
vergence. This effect was well illustrated by Li (2009, Example 9).
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Algorithm 1 Discrete PAC-RMDP
Parameter: h ≥ 0

for time step t = 1, 2, 3, ... do

Action: Take action based on Ṽ A(st) in Equation (1)
Observation: Save the sufficient statistics
Estimate: Update the model P̂t,0

(0, H), the theoretical guarantee of PAC-RMDP(h) becomes
weaker than previous theoretical objectives. This accommo-
dates the practical need to improve the trade-off between the
theoretical guarantee (i.e., optimal behavior after a long pe-
riod of exploration) and practical performance (i.e., satisfac-
tory behavior after a reasonable period of exploration) via
the concept of reachability. We discuss the relationship to
bounded rationality (Simon 1982) and bounded optimality
(Russell and Subramanian 1995) as well as the correspond-
ing notions of regret and average loss in the appendix of the
extended version.

Discrete Domain

To illustrate the proposed concept, we first consider a sim-
ple case involving finite state and action spaces with an un-
known transition function P . Without loss of generality, we
assume that the reward function R is known.

Algorithm

Let Ṽ A(s) be the internal value function used by the algo-
rithm to choose an action. Let V A(s) be the actual value
function according to true dynamics P . To derive the algo-
rithm, we use the principle of optimism in the face of uncer-
tainty, such that Ṽ A(s) ≥ V d∗

L,t,h(s) for all s ∈ S. This can
be achieved using the following internal value function:

Ṽ A(s) = max
a,

P̃∈ML,t,h,(s,a)

∑
s′

P̃ (s′|s, a)[R(s, a, s′) + γṼ A(s′)] (1)

The pseudocode is shown in Algorithm 1. In the fol-
lowing, we consider the special case in which we use
the sample mean estimator (which determines L). That is,
we use P̂t(s

′|s, a) = nt(s, a, s
′)/nt(s, a), where nt(s, a)

is the number of samples for the state-action pair (s, a),
and nt(s, a, s

′) is the number of samples for the tran-
sition from s to s′ given an action a. In this case, the
maximum over the model in Equation (1) is achieved
when all future h observations are transitions to the state
with the best value. Thus, Ṽ A can be computed by
Ṽ A(s) = maxa

∑
s′∈S

nt(s,a,s
′)

nt(s,a)+h [R(s, a, s′) + γṼ A(s′)] +

maxs′
h

nt(s,a)+h [R(s, a, s′) + γṼ A(s′)].

Analysis

We first show that Algorithm 1 is PAC-RMDP(h) for
all h ≥ 0 (Theorem 1), maintains an anytime error
bound and average loss bound (Corollary 1 and the
following discussion), and is related with previous algo-
rithms (Remarks 1 and 2). We then analyze its explicit
exploration runtime (Definition 3). We assume that

Algorithm 1 is used with the sample mean estimator,
which determines L. We fix the distance function as
d(P̂ (·|s, a), P (·|s, a)) = ‖P̂ (·|s, a) − P (·|s, a)‖1. The
proofs are given in the appendix of the extended version.

Theorem 1. (PAC-RMDP) Let At be a policy of Al-
gorithm 1. Let z = max(h, ln(2|S||S||A|/δ)

ε(1−γ) ). Then, for all
ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most O
(

z|S||A|
ε2(1−γ)2 ln

|S||A|
δ

)
time steps,

V At(st) ≥ V d∗
L,t,h(st)− ε, with probability at least 1− δ,

and

2) there exist h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|))
such that |V ∗(st) − V d∗

L,t,h∗(ε,δ)(st)|≤ ε with probability
at least 1− δ.

Definition 2. (Anytime error) The anytime error εt,h ∈ R is
the smallest value such that V At(st) ≥ V d∗

L,t,h(st)− εt,h.

Corollary 1. (Anytime error bound) With prob-
ability at least 1 − δ, if h ≤ ln(2|S||S||A|/δ)

ε(1−γ) ,

εt,h = O

(
3

√
|S||A|

t(1− γ)3
ln

|S||A|
δ

ln
2|S||S||A|

δ

)
; other-

wise, εt,h = O
(√

h|S||A|
t(1−γ)2

ln |S||A|
δ

)
.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1 −

γT+1−t)εt,h. Moreover, in this simple problem, we can
relate Algorithm 1 to a particular PAC-MDP algorithm and
a near-Bayes optimal algorithm.

Remark 1. (Relation to MBIE) Let m = O( |S|
ε2(1−γ)4

+
1

ε2(1−γ)4
ln |S||A|

ε(1−γ)δ
). Let h∗(s, a) = n(s,a)z(s,a)

1−z(s,a)
, where

z(s, a) = 2
√

2[ln(2|S| − 2)− ln(δ/(2|S||A|m))]/n(s, a).
Then, Algorithm 1 with the input parameter h = h∗(s, a)
behaves identically to a PAC-MDP algorithm, Model
Based Interval Estimation (MBIE) (Strehl and Littman
2008a), the sample complexity of which is O( |S||A|

ε3(1−γ)6 (|S|
+ ln |S||A|

ε(1−γ)δ ) ln
1
δ ln

1
ε(1−γ) )).

Remark 2. (Relation to BOLT) Let h = H , where H
is a planning horizon in the belief space b. Assume that
Algorithm 1 is used with an independent Dirichlet model
for each (s, a), which determines L. Then, Algorithm 1
behaves identically to a near-Bayes optimal algorithm,
Bayesian Optimistic Local Transitions (BOLT) (Araya-
López, Thomas, and Buffet 2012), the sample complexity
of which is O(H

2|S||A|
ε2(1−γ)2 ln

|S||A|
δ ).

As expected, the sample complexity for PAC-RMDP(h)
(Theorem 1) is smaller than that for PAC-MDP (Remark 1)
(at least when h ≤ |S|(1 − γ)−3), but larger than that for
near-Bayes optimality (Remark 2) (at least when h ≥ H).
Note that BOLT is not necessarily PAC-RMDP(h), because
misleading priors can violate both conditions in Definition
1.
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Further Discussion An important observation is that,
when h ≤ |S|

ε(1−γ) ln
|S||A|

δ , the sample complexity of Al-
gorithm 1 is dominated by the number of samples required
to refine the model, rather than the explicit exploration
of unknown aspects of the world. Recall that the internal
value function Ṽ A is designed to force the agent to explore,
whereas the use of the currently estimated value function
V d∗
L,t,0(s) results in exploitation. The difference between Ṽ A

and V ∗
L,t,0(s) decreases at a rate of O(h/nt(s, a)), whereas

the error between V A and V d∗
L,t,0(s) decreases at a rate of

O(1/
√
nt(s, a)). Thus, Algorithm 1 would stop the explicit

exploration much sooner (when Ṽ A and V d∗
L,t,0(s) become

close), and begin exploiting the model, while still refining it,
so that V d∗

L,t,0(s) tends to V A. In contrast, PAC-MDP algo-
rithms are forced to explore until the error between V A and
V ∗ becomes sufficiently small, where the error decreases at
a rate of O(1/

√
nt(s, a)). This provides some intuition to

explain why a PAC-RMDP(h) algorithm with small h may
avoid over-exploration, and yet, in some cases, learn the true
dynamics to a reasonable degree, as shown in the experimen-
tal examples.

In the following, we formalize the above discussion.

Definition 3. (Explicit exploration runtime) The ex-
plicit exploration runtime is the smallest integer τ such that
for all t ≥ τ , |Ṽ At(st)− V d∗

L,t,0(st)|≤ ε.

Corollary 2. (Explicit exploration bound) With probability
at least 1− δ, the explicit exploration runtime of Algorithm
1 is O( h|S||A|

ε(1−γ) Pr[AK ] ln
|S||A|

δ ) = O( h|S||A|
ε2(1−γ)2 ln

|S||A|
δ ),

where AK is the escape event defined in the proof of
Theorem 1.

If we assume Pr[AK ] to stay larger than a fixed con-
stant, or to be very small (≤ ε(1−γ)

3Rmax
) (so that Pr[AK ] does

not appear in Corollary 2 as shown in the corresponding
case analysis for Theorem 1), the explicit exploration
runtime can be reduced to O(h|S||A|

ε(1−γ) ln
|S||A|

δ ). Intuitively,
this happens when the given MDP does not have low yet
not-too low probability and high-consequence transition
that is initially unknown. Naturally, such a MDP is difficult
to learn, as reflected in Corollary 2.

Experimental Example

We compare the proposed algorithm with MBIE (Strehl and
Littman 2008a), variance-based exploration (VBE) (Sorg,
Singh, and Lewis 2010), Bayesian Exploration Bonus (BEB)
(Kolter and Ng 2009), and BOLT (Araya-López, Thomas,
and Buffet 2012). These algorithms were designed to be
PAC-MDP or near-Bayes optimal, but have been used with
parameter settings that render them neither PAC-MDP nor
near-Bayes optimal. In contrast to the experiments in previ-
ous research, we present results with ε set to several the-
oretically meaningful values2 as well as one theoretically

2MBIE is PAC-MDP with the parameters δ and ε. VBE is PAC-
MDP in the assumed (prior) input distribution with the parame-
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Figure 1: Average total reward per time step for the Chain
Problem. The algorithm parameters are shown as PAC-
RMDP(h), MBIE(ε, δ), VBE(δ), BEB(β), and BOLT(η).

non-meaningful value to illustrate its property3. Because our
algorithm is deterministic with no sampling and no assump-
tions on the input distribution, we do not compare it with
algorithms that use sampling, or rely heavily on knowledge
of the input distribution.

We consider a five-state chain problem (Strens 2000),
which is a standard toy problem in the literature. In this prob-
lem, the optimal policy is to move toward the state farthest
from the initial state, but the reward structure explicitly en-
courages an exploitation agent, or even an ε-greedy agent,
to remain in the initial state. We use a discount factor of
γ = 0.95 and a convergence criterion for the value iteration
of ε′ = 0.01.

Figure 1 shows the numerical results in terms of the aver-
age reward per time step (average over 1000 runs). As can
be seen from this figure, the proposed algorithm worked bet-
ter. MBIE and VBE work reasonably if we discard the the-
oretical guarantee. As the maximum reward is Rmax = 1,
the upper bound on the value function is

∑∞
i=1 γ

iRmax =
1

1−γRmax = 20. Thus, ε-closeness does not yield any useful
information when ε ≥ 20. A similar problem was noted by
Kolter and Ng (2009) and Araya-López, Thomas, and Buffet
(2012).

In the appendix of the extended version, we present the re-
sults for a problem with low-probability high-consequence
transitions, in which PAC-RMDP(8) produced the best re-
sult.

ter δ. BEB and BOLT are near-Bayes optimal algorithms whose
parameters β and η are fully specified by their analyses, namely
β = 2H2 and η = H . Following Araya-López, Thomas, and
Buffet (2012), we set β and η using the ε′-approximated horizon
H ≈ �logγ(ε′(1−γ))� = 148. We use the sample mean estimator
for the PAC-MDP and PAC-RMDP(h) algorithms, and an indepen-
dent Dirichlet model for the near-Bayes optimal algorithms.

3We can interpolate their qualitative behaviors with values of ε
other than those presented here. This is because the principle be-
hind our results is that small values of ε causes over-exploration
due to the focus on the near-optimality.
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Continuous Domain

In this section, we consider the problem of a continuous
state space and discrete action space. The transition function
is possibly nonlinear, but can be linearly parameterized as:
s
(i)
t+1 = θT(i)Φ(i)(st, at)+ζ

(i)
t , where the state st ∈ S ⊆ R

nS

is represented by nS state parameters (s(i) ∈ R with i ∈
{1, ..., ns}), and at ∈ A is the action at time t. We assume
that the basis functions Φ(i) : S × A → R

ni are known,
but the weights θ ∈ R

ni are unknown. ζ(i)t ∈ R is the
noise term and given by ζ

(i)
t ∼ N (0, σ2

(i)). In other words,

P (s
(i)
t+1|st, at) = N (θT(i)Φ(i)(st, at), σ

2
(i)). For brevity, we

focus on unknown transition dynamics, but our method is di-
rectly applicable to unknown reward functions if the reward
is represented in the above form. This problem is a slightly
generalized version of those considered by Abbeel and Ng
(2005), Strehl and Littman (2008b), and Li et al. (2011).

Algorithm

We first define the variables used in our algorithm, and then
explain how the algorithm works. Let θ̂(i) be the vector
of the model parameters for the ith state component. Let
Xt,i ∈ R

t×ni consist of t input vectors ΦT
(i)(s, a) ∈ R

1×ni

at time t. We then denote the eigenvalue decomposition of
the input matrix as XT

t,iXt,i = Ut,iDt,i(λ(1), . . . , λ(n))U
T
t,i,

where Dt,i(λ(1), ..., λ(n)) ∈ R
ni×ni represents a diag-

onal matrix. For simplicity of notation, we arrange the
eigenvectors and eigenvalues such that the diagonal ele-
ments of Dt,i(λ(1), ..., λ(n)) are λ(1), ..., λ(j) ≥ 1 and
λ(j+1), ..., λ(n) < 1 for some 0 ≤ j ≤ n. We now
define the main variables used in our algorithm: zt,i :=
(XT

t,iXt,i)
−1, gt,i := Ut,iDt,i(

1
λ(1)

, . . . , 1
λ(j)

, 0, . . . , 0)UT
t,i,

and wt,i := Ut,iDt,i(0, . . . , 0, 1(j+1), . . . , 1(n))U
T
t,i. Let

Δ(i) ≥ sups,a|(θ(i) − θ̂(i))
TΦ(i)(s, a)| be the upper bound

on the model error. Define ς(M) =
√

2 ln(π2M2nsh/(6δ))
where M is the number of calls for Ih (i.e., the number of
computing r̃ in Algorithm 2).

With the above variables, we define the h-reachable
model interval Ih as

Ih(Φ(i)(s, a), Xt,i)/[h(Δ
(i) + ς(M)σ(i))]

= |ΦT
(i)(s, a)gt,iΦ(i)(s, a)|+‖ΦT

(i)(s, a)zt,i‖‖wt,iΦ(i)(s, a)‖.

The h-reachable model interval is a function that
maps a new state-action pair considered in the plan-
ning phase, Φ(i)(s, a), and the agent’s experience,
Xt,i, to the upper bound of the error in the model
prediction. We define the column vector consist-
ing of nS h-reachable intervals as Ih(s, a,Xt) =
[Ih(Φ(1)(s, a), Xt,1), ..., Ih(Φ(nS)(s, a), Xt,nS

)]T .
We also leverage the continuity of the internal value

function Ṽ to avoid an expensive computation (to translate
the error in the model to the error in value).

Assumption 1. (Continuity) There exists L ∈ R such
that, for all s, s′ ∈ S, |Ṽ ∗(s)− Ṽ ∗(s′)|≤ L‖s− s′‖.

Algorithm 2 Linear PAC-RMDP

Parameter: h, δ Optional: Δ(i), L

Initialize: θ̂, Δ(i), and L
for time step t = 1, 2, 3, ... do

Action: take an action based on
p̂(s′|s, a) ← N (θ̂TΦ(s, a), σ2I)
r̃(s, a, s′) ← R(s, a, s′) + L‖Ih(s, a,Xt−1)‖

Observation: Save the input-output pair (st+1,Φt(st, at))

Estimate:Estimate θ̂(i), Δ(i)(if not given), and L(if not given)

We set the degree of optimism for a state-action pair to
be proportional to the uncertainty of the associated model.
Using the h-reachable model interval, this can be achieved
by simply adding a reward bonus that is proportional to the
interval. The pseudocode for this is shown in Algorithm 2.

Analysis

Following previous work (Strehl and Littman 2008b;
Li et al. 2011), we assume access to an exact planning
algorithm. This assumption would be relaxed by using
a planning method that provides an error bound. We
assume that Algorithm 2 is used with least-squares estima-
tion, which determines L. We fix the distance function as
d(P̂ (·|s, a), P (·|s, a)) = |Es′∼ ̂P (·|s,a)[s

′]−Es′∼P (·|s,a)[s′]|
(since the unknown aspect is the mean, this choice makes
sense). In the following, we use n̄ to represent the average
value of {n(1), ..., n(nS)}. The proofs are given in the
appendix of the extended version.

Lemma 3. (Sample complexity of PAC-MDP) For our
problem setting, the PAC-MDP algorithm proposed by
Strehl and Littman (2008b) and Li et al. (2011) has sample
complexity Õ

(
n2
S n̄2

ε5(1−γ)10

)
.

Theorem 2. (PAC-RMDP) Let At be the policy of Algo-
rithm 2. Let z = max(h2 ln m2nsh

δ , L2nS n̄ ln2 m
ε3 ln nS

δ ).
Then, for all ε > 0, for all δ = (0, 1), and for all h ≥ 0,

1) for all but at most m′ = O
(

zL2nS n̄ ln2 m
ε3(1−γ)2 ln2 nS

δ

)
time

steps (with m ≤ m′), V At(st) ≥ V d∗
L,t,h(st) − ε, with

probability at least 1− δ, and

2) there exists h∗(ε, δ) = O(P(1/ε, 1/δ, 1/(1 − γ), |MDP|))
such that |V ∗(st) − V d∗

L,t,h∗(ε,δ)(st)|≤ ε with probability
at least 1− δ.

Corollary 3. (Anytime error bound) With probability
at least 1 − δ, if h2 ln m2nsh

δ ≤ L2nS n̄ ln2 m
ε3 ln nS

δ ,

εt,h = O

⎛⎝ 5

√
L4n2

Sn̄
2 ln2 m

t(1− γ)
ln3 nS

δ

⎞⎠ ; otherwise,

εt,h = O
(

h2L2nS n̄ ln2 m

t(1−γ)
ln2 nS

δ

)
.

The anytime T -step average loss is equal to 1
T

∑T
t=1(1 −

γT+1−t)εt,h.
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Corollary 4. (Explicit exploration runtime) With prob-
ability at least 1 − δ, the explicit exploration runtime
of Algorithm 2 is O

(
h2L2nS n̄ lnm

ε2 Pr[Ak]
ln2 nS

δ ln m2nsh
δ

)
=

O
(

h2L2nS n̄ lnm
ε3(1−γ) ln2 nS

δ ln m2nsh
δ

)
, where AK is the escape

event defined in the proof of Theorem 2.

Experimental Examples

We consider two examples: the mountain car problem (Sut-
ton and Barto 1998), which is a standard toy problem in
the literature, and the HIV problem (Ernst et al. 2006),
which originates from a real-world problem. For both ex-
amples, we compare the proposed algorithm with a directly
related PAC-MDP algorithm (Strehl and Littman 2008b;
Li et al. 2011). For the PAC-MDP algorithm, we present
the results with ε set to several theoretically meaningful
values and one theoretically non-meaningful value to illus-
trate its property4. We used δ = 0.9 for the PAC-MDP
and PAC-RMDP algorithms5. The ε-greedy algorithm is ex-
ecuted with ε = 0.1. In the planning phase, L is estimated as
L← maxs,s′∈Ω|Ṽ A(s)− Ṽ A(s′)|/‖s− s′‖, where Ω is the
set of states that are visited in the planning phase (i.e., fitted
value iteration and a greedy roll-out method). For both prob-
lems, more detailed descriptions of the experimental settings
are available in the appendix of the extended version.

Mountain Car In the mountain car problem, the reward is
negative everywhere except at the goal. To reach the goal,
the agent must first travel far away, and must explore the
world to learn this mechanism. Each episode consists of
2000 steps, and we conduct simulations for 100 episodes.

The numerical results are shown in Figure 2. As in the
discrete case, we can see that the PAC-RMDP(h) algorithm
worked well. The best performance, in terms of the total re-
ward, was achieved by PAC-RMDP(10). Since this problem
required a number of consecutive explorations, the random
exploration employed by the ε-greedy algorithm did not al-
low the agent to reach the goal. As a result of exploration
and the randomness in the environment, the PAC-MDP al-
gorithm reached the goal several times, but kept exploring
the environment to ensure near-optimality. From Figure 2,
we can see that the PAC-MDP algorithm quickly converges
to good behavior if we discard the theoretical guarantee (the
difference between the values in the optimal value function
had an upper bound of 120, and the total reward had an up-
per bound of 2000. Hence, ε > 2000 does not yield a useful
theoretical guarantee).

Simulated HIV Treatment This problem is described by
a set of six ordinary differential equations (Ernst et al. 2006).
An action corresponds to whether the agent administers two
treatments (RTIs and PIs) to patients (thus, there are four ac-
tions). Two types of exploration are required: one to learn the
effect of using treatments on viruses, and another to learn the
effect of not using treatments on immune systems. Learning
the former is necessary to reduce the population of viruses,

4See footnote 3 on the consideration of different values of ε.
5We considered δ = [0.5, 0.8, 0.9, 0.95], but there was no

change in any qualitative behavior of interest in our discussion.
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Figure 2: Total reward per episode for the mountain car
problem with PAC-RMDP(h) and PAC-MDP(ε).
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Figure 3: Total reward per episode for the HIV problem with
PAC-RMDP(h) and PAC-MDP(ε).

but the latter is required to prevent the overuse of treatments,
which weakens the immune system. Each episode consists
of 1000 steps (i.e., days), and we conduct simulations for 30
episodes.

As shown in Figure 3, the PAC-MDP algorithm worked
reasonably well with ε = 3010. However, the best total re-
ward did not exceed 3010, and so the PAC-MDP guarantee
with ε = 3010 does not seem to be useful. The ε-greedy
algorithm did not work well, as this example required se-
quential exploration at certain periods to learn the effects of
treatments.

Conclusion

In this paper, we have proposed the PAC-RMDP framework
to bridge the gap between theoretical objectives and practi-
cal needs. Although the PAC-RMDP(h) algorithms worked
well in our experimental examples with small h, it is possi-
ble to devise a problem in which the PAC-RMDP algorithm
should be used with large h. In extreme cases, the algorithm
would reduce to PAC-MDP. Thus, the adjustable theoretical
guarantee of PAC-RMDP(h) via the concept of reachability
seems to be a reasonable objective.

Whereas the development of algorithms with traditional
objectives (PAC-MDP or regret bounds) requires the con-
sideration of confidence intervals, PAC-RMDP(h) concerns
a set of h-reachable models. For a flexible model, the deriva-
tion of the confidence interval would be a difficult task, but
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a set of h-reachable models can simply be computed (or
approximated) via lookahead using the model update rule.
Thus, future work includes the derivation of a PAC-RMDP
algorithm with a more flexible and/or structured model.
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Araya-López, M.; Thomas, V.; and Buffet, O. 2012. Near-
optimal BRL using optimistic local transitions. In Pro-
ceedings of the 29th International Conference on Machine
Learning (ICML).
Bernstein, A., and Shimkin, N. 2010. Adaptive-resolution
reinforcement learning with polynomial exploration in de-
terministic domains. Machine learning 81(3):359–397.
Brunskill, E. 2012. Bayes-optimal reinforcement learning
for discrete uncertainty domains. In Proceedings of the 11th
International Conference on Autonomous Agents and Multi-
agent Systems (AAMAS).
Ernst, D.; Stan, G.-B.; Goncalves, J.; and Wehenkel, L.
2006. Clinical data based optimal STI strategies for HIV:
a reinforcement learning approach. In Proceedings of the
45th IEEE Conference on Decision and Control.
Fiechter, C.-N. 1994. Efficient reinforcement learning. In
Proceedings of the seventh annual ACM conference on Com-
putational learning theory (COLT).
Jaksch, T.; Ortner, R.; and Auer, P. 2010. Near-optimal
regret bounds for reinforcement learning. The Journal of
Machine Learning Research (JMLR) 11:1563–1600.
Kawaguchi, K., and Araya, M. 2013. A greedy approx-
imation of Bayesian reinforcement learning with probably
optimistic transition model. In Proceedings of AAMAS 2013
workshop on adaptive learning agents, 53–60.
Kearns, M., and Singh, S. 1999. Finite-sample convergence
rates for Q-learning and indirect algorithms. In Proceed-
ings of Advances in neural information processing systems
(NIPS).
Kearns, M., and Singh, S. 2002. Near-optimal reinforce-
ment learning in polynomial time. Machine Learning 49(2-
3):209–232.
Kolter, J. Z., and Ng, A. Y. 2009. Near-Bayesian exploration
in polynomial time. In Proceedings of the 26th Annual In-
ternational Conference on Machine Learning (ICML).

Li, L.; Littman, M. L.; Walsh, T. J.; and Strehl, A. L. 2011.
Knows what it knows: a framework for self-aware learning.
Machine learning 82(3):399–443.
Li, L. 2009. A unifying framework for computational rein-
forcement learning theory. Ph.D. Dissertation, Rutgers, The
State University of New Jersey.
Li, L. 2012. Sample complexity bounds of exploration. In
Reinforcement Learning. Springer. 175–204.
Pazis, J., and Parr, R. 2013. PAC Optimal Exploration in
Continuous Space Markov Decision Processes. In Proceed-
ings of the 27th AAAI conference on Artificial Intelligence
(AAAI).
Puterman, M. L. 2004. Markov decision processes: discrete
stochastic dynamic programming. John Wiley & Sons.
Russell, S. J., and Subramanian, D. 1995. Provably
bounded-optimal agents. Journal of Artificial Intelligence
Research (JAIR) 575–609.
Simon, H. A. 1982. Models of bounded rationality, volumes
1 and 2. MIT press.
Sorg, J.; Singh, S.; and Lewis, R. L. 2010. Variance-based
rewards for approximate Bayesian reinforcement learning.
In Proceedings of the 26th Conference on Uncertainty in Ar-
tificial Intelligence (UAI).
Strehl, A. L., and Littman, M. L. 2008a. An analy-
sis of model-based interval estimation for Markov deci-
sion processes. Journal of Computer and System Sciences
74(8):1309–1331.
Strehl, A. L., and Littman, M. L. 2008b. Online linear re-
gression and its application to model-based reinforcement
learning. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), 1417–1424.
Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremental
model-based learners with formal learning-time guarantees.
In Proceedings of the 22th Conference on Uncertainty in Ar-
tificial Intelligence (UAI).
Strehl, A. L. 2007. Probably approximately correct (PAC)
exploration in reinforcement learning. Ph.D. Dissertation,
Rutgers University.
Strens, M. 2000. A Bayesian framework for reinforcement
learning. In Proceedings of the 16th International Confer-
ence on Machine Learning (ICML).
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction. MIT press Cambridge.

1764




