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Abstract

For the AI community, the lasso proposed by Tibshirani is
an important regression approach in finding explanatory pre-
dictors in high dimensional data. The coordinate descent al-
gorithm is a standard approach to solve the lasso which itera-
tively updates weights of predictors in a round-robin style un-
til convergence. However, it has high computation cost. This
paper proposes Sling, a fast approach to the lasso. It achieves
high efficiency by skipping unnecessary updates for the pre-
dictors whose weight is zero in the iterations. Sling can obtain
high prediction accuracy with fewer predictors than the stan-
dard approach. Experiments show that Sling can enhance the
efficiency and the effectiveness of the lasso.

Introduction

The lasso is a popular l1-regularized least squares regres-
sion approach for high dimensional data (Tibshirani 1996).
It continues to attract more attention in the field of artifi-
cial intelligence (Zhou et al. 2015; Gong and Zhang 2011).
In many practical learning problems, it is important to iden-
tify predictors that have some relationship with a response
(Nakatsuji and Fujiwara 2014; Nakatsuji et al. 2011). The
central requirement for good predictors is that they should
have high correlations with the response but should not be
correlated with each other. The main challenge is to find
the smallest possible set of predictors while achieving high
prediction accuracy for the response (Hastie, Tibshirani, and
Friedman 2011). The most appealing property of the lasso is
the sparsity of the solution by adding an l1-norm regulariza-
tion term to the squared loss term; the lasso effectively uses
the l1-norm constraint to shrink/suppress predictors in find-
ing the sparse set of predictors. Due to its effectiveness, the
lasso is used in a variety of applications such as image pro-
cessing (Liu et al. 2014), topic detection (Kasiviswanathan
et al. 2011), and disease diagnosis (Xin et al. 2014).

Although the lasso was developed in the mid-1990s, it
did not receive much attention until the early 2000s since
its computation cost is high (Tibshirani 2011). The origi-
nal lasso paper used an off-the-shelf approach that did not
scale well for large data. In 2002, Tibshirani et al. devel-
oped the LARS algorithm to efficiently solve the lasso. This
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led to many approached applying the lasso to a variety of
problems such as the elastic Net (Zou and Hastie 2005)
and grouped Lasso (Yuan and Lin 2006). In 2007, a re-
search team of Tibshirani et al. proposed the coordinate de-
scent algorithm, which is faster than the LARS algorithm
as demonstrated in (Friedman et al. 2007). The coordinate
descent algorithm iteratively updates weights of predictors
one at a time to find the solution. The subsequent papers
of 2010 and 2012 improved the efficiency of the coordinate
descent algorithm (Friedman, Hastie, and Tibshirani 2010;
Tibshirani et al. 2012). The coordinate descent algorithm is
now regarded as the standard approach for implementing the
lasso (Zhou et al. 2015)1; this paper refers to the coordinate
descent algorithm based approach as the standard approach.

However, current applications must handle large data sets.
In the proposal of mid-1990s, the lasso was applied to
prostate cancer data which has at most ten predictors (Tib-
shirani 1996). Recent image processing applications, how-
ever, handle data containing thousands of predictors (Liu
et al. 2014). Moreover, in topic detection, the number of
predictors reaches the tens of thousands (Kasiviswanathan
et al. 2011). In order to increase the processing speed of
the lasso, many researchers focused on screening techniques
(Ghaoui, Viallon, and Rabbani 2010; Tibshirani et al. 2012;
Liu et al. 2014). Since screening can detect predictors that
have weights of zero as a solution before the iterations, it can
improve the efficiency of the coordinate descent algorithm.
However, as mentioned in the previous paper, the efficiency
of the coordinate descent algorithm should be improved to
handle the large size of data (Tibshirani 2011).

This paper proposes Sling as a novel and efficient algo-
rithm for the lasso. In the standard approach, weights of
predictors are iteratively updated in a round-robin manner
until convergence if they are not pruned by the screening
technique. The standard approach computes a weight for
each predictor by using nonzero weights of other predic-
tors. Therefore, once a predictor has a nonzero weight in
the iterations, it induces additional computation cost even
if the weight of the predictor is zero after the convergence.
The same as the standard approach, Sling is based on the
coordinate descent algorithm. However, it updates weights

1 The glmnet R language package is an implementation of the
coordinate descent algorithm.
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in a selective style unlike the standard approach; it updates
only the predictors that must have nonzero weights in the
iterations. After convergence, our approach updates the pre-
dictors that are expected to have nonzero weights. Since we
avoid updating the predictors whose weights are zero in the
iterations, our approach can efficiently obtain the solution
for the lasso. Note that the screening technique prunes pre-
dictor whose weights are zero before entering the iterations
while our approach prunes predictors in the iterations. If p is
the number of predictors where each predictor has n obser-
vations, the given data is represented as a n×p matrix. When
the matrix has full column rank, our approach provably guar-
antees to output the same result as the standard approach.
Moreover, our approach achieves high prediction accuracy
by using fewer predictors than the standard approach. Ex-
periments demonstrate that Sling cuts the processing time
by up to 70% from the standard approach. To the best of our
knowledge, this is the first study to improve the efficiency of
the standard approach for the lasso by pruning unnecessary
predictors in the iterations.

Related Work
Since the lasso is an important regression approach used in
a variety of applications such as image processing, topic de-
tection, and disease diagnosis, many approaches have been
developed to efficiently solve it.

By employing the sparsity in the solutions of the
lasso, several screening techniques prune predictors whose
weights are zero before entering the iterations (Liu et al.
2014; Tibshirani et al. 2012; Ghaoui, Viallon, and Rabbani
2010). Since recent applications must handle large num-
bers of predictors, screening techniques have been attract-
ing much interest. However, these techniques do not enhance
prediction accuracy unlike our approach. Since our approach
is based on the standard approach, it adopts the sequential
strong rule. However, our approach can also use previous
other screening techniques.

To efficiently solve the lasso, several approaches trans-
form l1-regularized least squares as a constrained quadratic
programming problem such as the interior method (Kim
et al. 2007), GPSR (Figueiredo, Nowak, and Wrigh 2007),
and ProjectionL1 (Schmidt, Fung, and Rosales 2007). How-
ever, these approaches double variable size, raising compu-
tational cost. DPNM proposed by Gong et al. derives an-
other dual form of l1-regularized least squares to apply a
projected Newton method to efficiently solve the dual prob-
lem (Gong and Zhang 2011). However, their approach has
a limitation in that it assumes n ≥ p and matrix X must
have full column rank. Zhou et al. proposed an interesting
approach that transforms the lasso regression problem into
a binary SVM classification problem to allow efficient so-
lution computation (Zhou et al. 2015). However, their ap-
proach does not guarantee to output the optimal solution
for the lasso. FISTA is a scalable proximal method for l1-
regularized optimization which can be applied to various
loss functions (Beck and Teboulle 2009). However, its con-
vergence rate tends to suffer if predictors have high correla-
tion. ADMM is another popular approach for l1-regularized
optimization problems such as the lasso (Das, Johnson, and

Banerjee 2014). However, as described in (Li et al. 2015;
Zhou et al. 2015), the ADMM-based approach does not ef-
fectively reduce the computation time for the lasso relative
to glmnet which is based on the coordinate descent algo-
rithm; the coordinate descent algorithm is more efficient
than ADMM for the lasso as demonstrated in (Li et al. 2014).

Preliminary
This section introduces the standard approach for the lasso.
In the regression scenario, we are provided with a response
vector and p predictor vectors of n observations. We as-
sume each vector is centered and normalized. Let y =
(y[1], y[2], . . . , y[n])� be the response vector where y ∈
Rn. In addition, let X ∈ Rn×p be the matrix of p predictors
where xi is the i-th column vector in matrix X. Note that xi

corresponds to each predictor. The lasso learns the following
sparse linear model to predict y from X by minimizing the
squared loss and an l1-norm constraint (Tibshirani 1996):

minw∈Rp
1
2n‖y −Xw‖22 + λ‖w‖1 (1)

where w = (w[1], w[2], . . . , w[p])� denotes the weight vec-
tor and λ > 0 is a tuning parameter; weight w[i] corresponds
to the i-th predictor pi. If matrix X has full column rank, we
have a unique solution for the optimization problem (Hastie,
Tibshirani, and Friedman 2011). Otherwise, which is nec-
essarily the case when p > n, there may not be a unique
solution. The optimal λ is usually unknown in practical ap-
plications. Therefore, we need to solve Equation (1) for a
series of tuning parameters λ1 > λ2 > . . . > λK where
K is the number of tuning parameters, and then select the
solution that is optimal in terms of a pre-specified criterion
such as the Schwarz Bayesian information criterion, Akaike
information criterion or cross-validation (Bishop 2007).

Tibshirani et al. proposed a coordinate descent algorithm
that updates predictor weights one at a time (Friedman et al.
2007). The coordinate descent algorithm partially conducts
the optimization with respect to weight w[i] by supposing
that it has already estimated other weights. It computes the
gradient at w[i] = w̃[i], which only exists if w[i] �= 0. If
w̃[i] > 0, we have the following equation for the gradient by
differentiating Equation (1) with respect to w[i]:

− 1
n

∑n
j=1

{
x[j, i](y[j]−∑p

k=1 x[j, k]w̃[k])
}
+ λ (2)

where w̃ = (w̃[1], w̃[2], . . . , w̃[p])� is a weight vector and
x[j, i] is (j, i)-th element of matrix X. A similar expression
exists if w̃[i] < 0, and w̃[i] = 0 is treated separately. The
coordinate descent algorithm updates weights as follows:

w̃[i]←S(z[i], λ)=

{
z[i]−λ (z[i]>0 and |z[i]|>λ)
z[i]+λ (z[i]<0 and |z[i]|>λ)
0 (|z[i]|≤λ)

(3)

In Equation (3), S(z[i], λ) is the soft-thresholding operator
(Friedman et al. 2007) and z[i] is a parameter for the i-th
predictor given as follows:

z[i] = 1
n

∑n
j=1 x[j, i](y[j]− ỹ(i)[j]) (4)

where ỹ(i)[j] =
∑

k �=i x[j, k]w̃[k]. The coordinate descent
algorithm iteratively updates weights in a round-robin man-
ner; we iteratively update all predictors by using Equa-
tion (3) until convergence.
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Tibshirani et al. proposed an efficient way to compute pa-
rameter z[i] used in the updates (Friedman, Hastie, and Tib-
shirani 2010). They transformed Equation (4) as follows:

z[i] = w̃[i] + 1
n

(
〈xi,y〉 −

∑
j:|w̃[j]|>0〈xi,xj〉w̃[j]

)
(5)

where 〈xi,y〉 is the inner product of vector xi and y, i.e.,
〈xi,y〉 =

∑n
j=1 x[j, i]y[j]. Note that Equation (4) and (5)

give the same result. If m is the number of predictors that
have nonzero weights, Equation (5) requires O(m) time to
update a weight while Equation (4) needs O(n) time. Since
the lasso sparsely selects predictors, we have m 
 n. There-
fore, we can update weights more efficiently by using Equa-
tion (5) instead of Equation (4). To exploit Equation (5), we
need to initially compute the inner products of response vec-
tor y with each predictor vector xi before the iterations. In
addition, each time a predictor vector xj is adopted by the
model to predict the response vector, we need to compute its
inner product with all remaining predictors. That is, if a pre-
dictor is additionally determined to have a nonzero weight
in the solution, the inner products of the predictor with other
predictors must be computed to use Equation (5).

So as to increase the efficiency, several researchers, in-
cluding Tibshirani et al., proposed screening techniques to
detect predictors whose weights are zero (Ghaoui, Viallon,
and Rabbani 2010; Tibshirani et al. 2012; Liu et al. 2014).
Let w̃λk

be the solution for tuning parameter λk, Tibshirani
et al. proposed the sequential strong rule that discards the
i-th predictor for tuning parameter λk if we have

1
n |x�

i (y −Xw̃λk−1
)| < 2λk − λk−1 (6)

Since their screening technique may erroneously discard
predictors that have nonzero weights, all discarded predic-
tors are checked by the Karush-Kuhn-Tucker (KKT) condi-
tion after convergence. The KKT condition is that 1

n |x�
i (y−

Xw̃λj )|≤λ holds if w̃i = 0. However, the efficiency of the
coordinate descent algorithm must be improved to handle
the large data sizes as described in (Tibshirani 2011).

Proposed Approach

We present our proposal, Sling, that efficiently computes the
solution for the lasso based on the standard approach. First,
we overview the ideas underlying Sling. That is followed by
a full description. Note that our approach can be applied to
the variants of the lasso such as the elastic Net and grouped
Lasso although we focus on the lasso in this paper.

Ideas

As described in the previous section, the standard approach
iteratively updates weights of all predictors by computing
parameter z[i] in a round-robin style. In order to increase
efficiency, we do not update the weights of all predictors.
Instead, our approach skips unnecessary updates; it first up-
dates only predictors that must have nonzero weights until
convergence. It then updates the predictors that are likely
to have nonzero weights. Our approach dynamically deter-
mines the updated predictors by computing lower and upper
bounds of parameter z[i] in each iteration. We can improve

the efficiency of the standard approach since we effectively
prune the unnecessary predictors in the iteration (Shiokawa,
Fujiwara, and Onizuka 2015; Fujiwara and Irie 2014). If ma-
trix X has full column rank, our approach outputs the same
result as the standard approach since there is a unique lasso
solution due to its convex property (Tseng 2001). Other-
wise, our approach can more accurately predict the response
with fewer predictors than the standard approach since it can
avoid updating predictors that give zero gradient by using
the bounds in the iterations.

Upper and Lower Bounds

In each iteration, we compute the upper/lower bounds of pa-
rameter z[i] for each predictor by setting a reference vec-
tor; the reference vector consists of weights of predictors
set prior to commencing the iterations. In order to com-
pute the bounds, we apply the Cauchy-Schwarz inequal-
ity (Steele 2004) to determine the difference between the
reference vector and a weight vector in the iterations. Let
w̃r = (w̃r[1], w̃r[2], . . . , w̃r[p])

� be the reference vector,
we define the upper bound of parameter z[i] as follows:
Definition 1 Let z[i] be the upper bound of parameter z[i],
z[i] is given as follows:

z[i] = w̃[i]− w̃r[i] +
1
n‖vi‖2‖w̃ − w̃r‖2 + zr[i] (7)

In Equation (7), vi is a vector of length p whose j-th el-
ement is 〈xi,xj〉, the inner product of vector xi and xj . In
addition, zr[i] is a score of parameter z[i] given by reference
vector w̃r, i.e., zr[i] is computed as follows:

zr[i] = w̃r[i]+
1
n

(
〈xi,y〉−

∑
j:|w̃r[j]|>0〈xi,xj〉w̃r[j]

)
(8)

Note that we can compute ‖vi‖2 and zr[i] in Equation (7)
before commencing the iterations since they have constant
scores throughout the iterations. On the other hand, we need
O(p) time to compute ‖w̃ − w̃r‖2 in each iteration since
w is a vector of length p that is updated in each iteration.
Similarly, the lower bound is defined as follows:
Definition 2 If z[i] is the lower bound of parameter z[i], z[i]
is given by the following equation:

z[i] = w̃[i]− w̃r[i]− 1
n‖vi‖2‖w̃ − w̃r‖2 + zr[i] (9)

We show the following two lemmas to show that z[i] and
z[i] give the upper and lower bounds, respectively;
Lemma 1 For parameter z[i] of the i-th predictor pi, we
have z[i] ≥ z[i] in the iterations.
Proof Since vi is a vector whose j-th element is 〈xi,xj〉,
from Equation (5) and (8), we have

z[i]= w̃[i]+ 1
n
(〈xi,y〉−〈vi, w̃〉)

= w̃r[i]+w̃[i]−w̃r[i]+
1
n
(〈xi,y〉−〈vi, w̃r〉−〈vi, w̃−w̃r〉)

=zr[i] +w̃[i]−w̃r[i]− 1
n
〈vi, w̃−w̃r〉

From the Cauchy-Schwarz inequality, we have

− 1
n 〈vi, w̃ − w̃r〉 ≤ 1

n‖vi‖2‖w̃ − w̃r‖2
As a result, we have

z[i]≤ w̃[i]−w̃r[i]+
1
n‖vi‖2‖w̃−w̃r‖2+zr[i]=z[i] �
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Lemma 2 In the iterations, z[i] ≤ z[i] holds for parameter
z[i] of the i-th predictor, pi.

We omit proof of Lemma 2 because of space limitations.
However, it can be proved in a similar fashion to Lemma 1
by using the Cauchy-Schwarz inequality.

In terms of computation cost, O(p) time is needed to com-
pute the bounds if we naively use Equation (7) and (9) since
it needs O(p) time to compute ‖w̃−w̃r‖2. However, we can
efficiently update ‖w̃ − w̃r‖2. If w̃′[i] is the score of w̃[i]
before the update and w̃′ is the vector of weights before the
update, we can update ‖w̃ − w̃r‖2 as follows:

‖w̃ − w̃r‖2 =
√
‖w̃′ − w̃r‖22 − (w̃′[i])2 + (w̃[i])2 (10)

Clearly O(1) time is needed to update ‖w̃−w̃r‖2 every time
a weight is updated from Equation (10). Thus, we have the
following property in computing the upper/lower bounds:

Lemma 3 For each predictor, it requires O(1) time to com-
pute the upper/lower bounds in each iteration.

Proof If a weight is updated, we can obtain ‖w̃ − w̃r‖2
at O(1) time. In addition, it requires O(1) time to obtain
w̃[i] − w̃r[i], ‖vi‖2, and zr[i] in the iterations; we can pre-
compute ‖vi‖2 and zr[i] before commencing the iterations.
Therefore, it is clear that we can compute the upper/lower
bounds at O(1) time from Equation (7) and (9). �

Predictors of Nonzero Weights

We identify the predictors that must/can have nonzero
weights by computing the bounds. We can improve the effi-
ciency of the lasso since we can effectively avoid updating
the unnecessary predictors (Fujiwara and Shasha 2015). Our
approach is based on the properties for predictors that have
nonzero weights. The first property is given as follows for
predictors that must have nonzero weights in the iterations:

Lemma 4 Predictor pi must have a nonzero weight if z[i] >
λ or z[i] < −λ holds for parameter z[i].

Proof In the case of z > λ, we have z[i] ≥ z[i] > λ > 0
and |z[i]| ≥ |z[i]| > λ since λ > 0 and z[i] ≥ z[i] from
Lemma 2. As a result, we have w[i] = z[i] − λ from Equa-
tion (3) if z > λ holds for predictor pi. If z[i] < −λ holds,
we similarly have z[i] < 0 and |z[i]| > λ. Therefore, the
score of weight w̃[i] must be nonzero from Equation (3). �

In order to introduce the property of predictors that may
have nonzero weights, we show the following property of
predictors whose weights must be zero in the iterations:

Lemma 5 If we have z[i] ≤ λ and z[i] ≥ −λ for parameter
z[i], the weight of predictor pi must be zero in the iterations.

Proof If z[i] ≤ λ and z[i] ≥ −λ hold, we have −λ ≤ z[i] ≤
z[i] ≤ z[i] ≤ λ for parameter z[i]. Therefore, |z[i]| ≤ λ
holds for parameter z[i]. As a result, we have w̃[i] = 0 from
Equation (3) if z[i] ≤ λ and z[i] ≥ −λ hold. �

From Lemma 5, we have the following lemma for predic-
tors that may have nonzero weights:

Lemma 6 Predictor pi can have a nonzero weight if z[i] >
λ or z[i] < −λ for parameter z[i].

Algorithm 1 Sling
1: for k = 1 to K do

2: λ := λk;
3: if k = 1 then

4: U := ∅;
5: else

6: U := Pk−1;
7: compute initial weights by Equation (11);
8: repeat

9: repeat

10: w̃r := w̃;
11: for each pi ∈ U do

12: compute z̃r[i] from w̃r ;
13: repeat

14: for each pi ∈ U do

15: if z[i] > λ or z[i] < −λ then

16: update w̃[i] by Equation (5);
17: update ‖w̃ − w̃r‖2 by Equation (10);
18: until w̃ reaches the convergence
19: w̃r := w̃;
20: for each pi ∈ U do

21: compute z̃r[i] from w̃r ;
22: repeat

23: for each pi ∈ U do

24: if z[i] > λ or z[i] < −λ then

25: update w̃[i] by Equation (5);
26: else

27: w̃[i] = 0;
28: update ‖w̃ − w̃r‖2 by Equation (10);
29: until w̃ reaches the convergence
30: for each pi ∈ Sk do

31: if pi violates the KKT condition then

32: add pi to U ;
33: until ∀pi ∈ Sk , pi does not violate KKT condition
34: for each pi ∈ P do

35: if pi violates the KKT condition then

36: add pi to U ;
37: until ∀pi ∈ P , pi does not violate KKT condition

Proof It is clear from Lemma 5. �
Note that if a predictor meets the condition of Lemma 4,

the predictor must meet the condition of Lemma 6; a set of
predictors of Lemma 4 is included in a set of predictors of
Lemma 6. This is because we have (1) z[i] > λ if z[i] > λ
and (2) z[i] < −λ if z[i] < −λ. Therefore, if a predic-
tor must have a nonzero weight by Lemma 4, the predic-
tor can have a nonzero weight by Lemma 6. In addition, if
a predictor does not meet the condition of Lemma 6, the
weight of the predictor must be zero from Lemma 5. We
employ Lemma 4 and 6 to effectively update predictors that
must/can have nonzero weights in the iterations.

Algorithm

Algorithm 1 gives a full description of Sling. It is based on
the standard approach of the lasso, where the weights of
predictors are updated by the transformed equation (Equa-
tion (5)) and unnecessary predictors are pruned by the se-
quential strong rule as described in the previous section. Our
approach computes the solutions of the lasso for a series of
tuning parameters λ1 > λ2 > . . . > λK . In Algorithm 1, U
is a set of predictors updated in the iterations, P is a set of
all p predictors, Pk is a set of predictors that have nonzero
weights as the solution for tuning parameter λk, and Sk are
predictors that survive the sequential strong rule for λk. For
λk, we compute initial scores of the weights based on the
observation that the solution for λk is similar to the solution
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for λk−1. Specifically, if wλk
[i] is the weight of predictor

pi in the solution for parameter λk, we compute the initial
scores of the weight for parameter λk as follows:

w̃[i] =

{
0 (k = 1)
wλk−1

[i] (k = 2)
wλk−1

[i] + Δwλk−1
[i] (k ≥ 3)

(11)

where Δwλk−1
[i] = wλk−1

[i]− wλk−2
[i].

In Algorithm 1, our approach first sets λ := λk and then
initializes U := ∅ if k = 1 and U := Pk−1 otherwise sim-
ilar to the standard approach (Tibshirani et al. 2012) (lines
2-6). It then computes the initial scores of weights by us-
ing Equation (11) (line 7). Before iteratively updating the
weights of the predictors, it sets the reference vector and
computes parameter z[i] for the vector in order to com-
pute the upper/lower bounds (lines 10-12 and 19-21). In
each iterative update, our approach first selects predictors
that must have nonzero weights by using the condition of
Lemma 4 (lines 13-18). It then performs the iterative update
by employing Lemma 6 to identify predictors that may have
nonzero weights (lines 22-29). After convergence, our ap-
proach checks the KKT condition for predictors pi such that
pi ∈ Sk (lines 30-32) and pi ∈ P (lines 34-36) in order to
verify that no predictor violates the KKT condition (line 33
and 37). This process is the same as the standard approach
(Tibshirani et al. 2012).

After we obtain the solutions for each tuning parameter,
we can select the solution that is optimal in terms of a pre-
specified criterion such as Schwarz Bayesian information
criterion. In terms of the computation cost, our approach has
the following property:
Theorem 1 If mk is the number of predictors that have
nonzero weights in the iterations for tuning parameter λk

and t is the number of update computations, our approach
requires O(mkt+npmax{0,mk−mk−1}) time to compute
the solution for λk.
Proof As shown in Algorithm 1, our approach first initial-
izes the set of predictor U and computes the initial scores
of weights from Equation (11). These processes need O(p)
time. It then sets the reference vector in O(mk) time. In the
iterations, it updates weights in O(mkt) time. This is be-
cause we can compute the updated weights as well as the
KKT condition and parameter z[i] for the reference vec-
tor by using Equation (5) which requires O(mt) time for
each computation. Note that our approach can compute the
upper/lower bounds in each iteration in O(t) time since
it needs O(1) to compute the bounds in each iteration as
shown in Lemma 3. In addition, as described in the previ-
ous section, if a predictor is additionally determined to have
a nonzero weight in the solution, we need to compute its
inner product with all the other predictors when using Equa-
tion (5). Since (1) we need O(np) time to compute inner
products of each predictor for other predictors where n is the
number of observations and (2) the number of predictors is
max{0,mk−mk−1} to additionally compute the inner prod-
ucts, it requires O(npmax{0,mk−mk−1}) time to compute
the inner product when utilizing Equation (5). As a result,
our approach needs O(mkt+npmax{0,mk−mk−1}) time
for given parameter λk. �

In Theorem 1, we assume that mk = 0 if k = 0. Since
our approach can effectively prune predictors by using up-
per/lower bounds (Fujiwara et al. 2013), it can improve the
efficiency of the standard approach for implementing the
lasso. In terms of the regression results, our approach has
the following property for a given tuning parameter:

Theorem 2 Our approach converges the same solution as
the standard approach if matrix X has full column rank.

Proof As shown in Algorithm 1, our approach first up-
dates predictors if we have z[i] > λ or z[i] < −λ for each
predictor. It then updates predictors such that z[i] > λ or
z[i] < −λ. Note that it is clear that we have z[i] > λ or
z[i] < −λ if z[i] > λ or z[i] < −λ hold. As a result, these
two processes indicate that our approach does not update
predictors if z[i] ≤ λ and z[i] ≥ −λ hold for each parame-
ter. For a predictor whose z[i] ≤ λ and z[i] ≥ −λ, its weight
must be zero as shown in Lemma 5. As a result, our ap-
proach cannot prune a predictor if it has a nonzero weight in
any iteration. Since there is a unique lasso solution if matrix
X has full column rank, the coordinate descent algorithm
will converge to the unique solution (Tibshirani et al. 2012;
Friedman, Hastie, and Tibshirani 2010). Since our approach
and the standard approach are based on coordinate descent,
it is clear that our approach converges the same results as the
standard approach if matrix X has full column rank. �

If matrix X does not have full column rank, which is nec-
essarily the case when p > n, there may not be a unique
lasso solution. In that case, our approach can yield high ac-
curacy while using fewer predictors than the standard ap-
proach. In the next section, we detail experiments that show
the efficiency and effectiveness of Sling.

Experimental Evaluation

We performed experiments on the datasets of DNA, Protein,
Reuters, TDT2, and Newsgroups to show the efficiency and
effectiveness of our approach. The datasets have 600, 2871,
8293, 10212, and 18846 items, respectively. In addition, they
have 180, 357, 18933, 36771, and 26214 features, respec-
tively. Details of the datasets are shown in Chih-Jen Lin’s
webpage2 and Deng Cai’s webpage3. In the experiments, we
randomly picked one feature as the response vector y, and
then set the remaining features as the matrix of predictors X
the same as the previous paper (Liu et al. 2014). Note that
the number of data items corresponds to the number of ob-
servations, n. Since we have p > n in Reuters, TDT2, and
Newsgroups, matrix X does not have full column rank while
matrix X is full column rank for DNA and Protein.

We set λ1 =
1
n maxi |〈xi,y〉| and λK = 0.001λ1 by fol-

lowing the previous paper (Friedman, Hastie, and Tibshirani
2010). We constructed a sequence of K scores of tuning pa-
rameters decreasing from λ1 to λK on a log scale where
K = 50. In this section, “Sling” and “Standard” represent
the results of our approach and the standard approach, re-
spectively. The standard approach prunes predictors by the

2http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/multiclass.html
3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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Figure 1: Processing time of
each approach.
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Figure 2: Number of update
computations in the iterations.
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Figure 3: Number of predic-
tors whose inner products are
computed.
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Figure 4: Number of nonzero
weight predictors.

Table 1: Prediction results of each approach

Dataset
Squared loss Object function

Sling Standard Sling Standard

DNA 5.097×10−2 5.097×10−2 5.866×10−2 5.866×10−2

Protein 2.616×10−3 2.616×10−3 4.492×10−3 4.492×10−3

Reuters 5.003×10−6 5.006×10−6 7.241×10−6 7.251×10−6

TDT2 1.679×10−6 1.691×10−6 2.760×10−6 2.795×10−6

Newsgroups 3.463×10−6 3.478×10−6 4.811×10−6 4.838×10−6

sequence strong rule and updates the weights by transform-
ing the equation. Since we evaluated each approach by set-
ting a series of tuning parameters λ, we report average val-
ues of the experimental results. We conducted all experi-
ments on a Linux 2.70 GHz Intel Xeon server. We imple-
mented all approaches using GCC.

Efficiency

Figure 1 shows the processing time of each approach. In ad-
dition, Figure 2 shows the number of updates and Figure 3
shows the number of predictors whose inner products were
computed in the iterations.

Figure 1 indicates that our approach greatly improves the
efficiency of the standard approach; it cuts the processing
time by up to 70% from the standard approach. As de-
scribed in the previous sections, the standard approach up-
dates all the predictors that survive the sequential screen-
ing rule. On the other hand, our approach effectively avoids
updating all the survived predictors by computing the up-
per/lower bounds although our approach employs the se-
quential screening rule the same as the standard approach.
Therefore, the number of update computation of our ap-
proach is fewer than that of the standard approach as shown
in Figure 2. In addition, as shown in Figure 3, Sling can ef-
fectively reduce the number of inner product computations,
especially if p>n (Reuters, TDT2, and Newsgroups). This
is because Sling reduces the number of predictors used if
matrix X does not have full column rank as we will discuss
later. Since our approach effectively reduces the number of
updates and inner product computations, it offers superior
efficiency over the standard approach.

Effectiveness

In this section, we evaluate the prediction error for the given
responses of each approach. This experiment performed
leave-one-out cross validation in evaluating the prediction
error in terms of the squared loss for the response. Table 1
shows the prediction error and scores of the objective func-
tion (Equation (1)). In addition, we show the average number
of nonzero weight predictors in Figure 4.

As expected, experimental results indicate that the predic-
tion error and the number of nonzero weight predictors of
our approach are the same as those of the standard approach
if matrix X has full column rank (DNA and Protein). This is
because our approach is guaranteed to yield the same solu-
tion as the standard approach as described in Theorem 2. In
addition, for p > n (Reuters, TDT2, and Newsgroups), our
approach uses fewer predictors than the standard approach
while slightly improving the prediction error compared to
the standard approach. As shown in Algorithm 1, we update
predictors that must/can have nonzero weights by computing
the upper/lower bounds of parameter z[i]. Therefore, if |z[i]|
has a large score, our approach is likely to update predictor
pi that corresponds to z[i]. Since parameter z[i] is introduced
from the gradient at w[i] = w̃[i] as shown in Equation (2),
our approach can effectively identify predictors of high gra-
dients in each iteration. As a result, our approach can ef-
fectively compute the solution for the optimization problem
of Equation (1) by using the upper/lower bounds. Therefore,
scores of the objective function of our approach are less than
those of the standard approach as shown in Table 1. On the
other hand, since the standard approach updates predictors in
round-robin style, it can update ineffective predictors as the
solution whose weight are zero after convergence. Table 1,
along with Figure 1, indicates that our approach improves
the efficiency while its prediction results match the accuracy
of the standard approach. Thus, Sling is an attractive option
for the research community in performing the lasso.

Conclusions

The lasso is an important l1-regularized least squares re-
gression approach for high dimensional data in the AI com-
munity. We proposed Sling, an efficient algorithm that im-
proves the efficiency of applying the lasso. Our approach
avoids updating predictors whose weights must/can be zero
in each iteration. Experiments showed that our approach of-
fers improved efficiency and effectiveness over the standard
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approach. The lasso is a fundamental approach used in va-
riety of applications such as image processing, topic detec-
tion, and disease diagnosis. Our approach will allow many
lasso-based applications to be processed more efficiently,
and should improve the effectiveness of future applications.
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