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Abstract

The Maximum Inner Product Search (MIPS) problem, preva-
lent in matrix factorization-based recommender systems,
scales linearly with the number of objects to score. Recent
work has shown that clever post-processing steps can turn the
MIPS problem into a nearest neighbour one, allowing sublin-
ear retrieval time either through Locality Sensitive Hashing
or various tree structures that partition the Euclidian space.
This work shows that instead of employing post-processing
steps, substantially faster retrieval times can be achieved for
the same accuracy when inference is not decoupled from the
indexing process. By framing matrix factorization to be na-
tively indexable, so that any solution is immediately sublin-
early searchable, we use the machinery of Machine Learn-
ing to best learn such a solution. We introduce Indexable
Probabilistic Matrix Factorization (IPMF) to shift the tra-
ditional post-processing complexity into the training phase
of the model. Its inference procedure is based on Geodesic
Monte Carlo, and adds minimal additional computational cost
to standard Monte Carlo methods for matrix factorization. By
coupling inference and indexing in this way, we achieve more
than a 50% improvement in retrieval time against two state of
the art methods, for a given level of accuracy in the recom-
mendations of two large-scale recommender systems.

1 Introduction

The Maximum Inner Product Search (MIPS) problem is
common when matrix factorization-based recommender
systems are deployed, or when inner product-based com-
parisons are done between the embedded vector of a query
object and many potential target objects’ vectors, like that
of words in a neural language model. Naively, it scales lin-
early with the number of objects to score, and various in-
roads have recently been made towards sublinear retrieval
time (Bachrach et al. 2014; Neyshabur and Srebro 2015;
Shrivastava and Li 2014; 2015). In the parlance of a basic
recommender system, user i and item j are embedded into
vectors ui and vj ∈ R

D. To present items to a user, all
j = 1, . . . ,M items are scored by uT

i vj , and the head of
their sorted list is returned. As an operation, the MIPS prob-
lem retrieves the maximizer

MIPS(V,ui) = argmaxj u
T
i vj , (1)
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where V ∈ R
D×M contains vj in its columns. To score

all the items requires an O(M) linear scan. Real systems,
however, are constrained to complete such requests in a few
milliseconds, and scoring and sorting all items is practically
infeasible (Bachrach et al. 2014).

Instead of solving (1) directly, a number of approaches ap-
ply a separate post-processing step to V and ui, so that the
MIPS is transformed to an Euclidean search on the resulting
vectors. The vectors might be expanded to D+1 dimensions,
where the triangle inequality holds, and Approximate Near-
est Neighbour Search (ANNS) data structures like kd-trees
(Muja and Lowe 2014) or Locality Sensitive Hashing (LSH)
can be used (Neyshabur and Srebro 2015). The component
of the required extra dimension is typically much larger than
any in vj , and this artifact reduces the speedups potentially
obtainable through ANNS (Bachrach et al. 2014). Alterna-
tively, a transformation to D+m dimensions so that (1) be-
comes an Euclidian distance search in the transformation’s
limit m → ∞ also allows LSH to be used (Shrivastava and
Li 2014; 2015), although with weaker theoretical guaran-
tees than those found in (Neyshabur and Srebro 2015). Both
these post-processing steps give sublinear retrieval time by
transforming the problem to one that is geometrically index-
able, by which we mean one that allows O(logM) or sub-
linear retrieval time.

As V and ui originate from a statistical model, an alter-
native view is not to rely on retro-actively adjusting a model
for faster retrieval, but instead to frame the model to oper-
ate on natively geometrically indexable vectors, and utilise
the tools provided by an inference framework to find such
a geometrically indexable embedding. Through the simple
constraint of requiring all item vectors vj to have a fixed
norm, say ‖vj‖ = 1, MIPS(V,ui) is equivalent to a mini-
mization over Euclidean distances, i.e. a Nearest Neighbour
Search (NNS):

NNS(V,ui) = argmin
j

‖ui−vj‖2 (∗)
= argmax

j
uT
i vj . (2)

The step denoted with (∗) follows from all ‖vj‖ being
equal. To exploit this, we introduce Indexable Probabilis-
tic Matrix Factorization (IPMF) in Section 2. It is an exten-
sion of Bayesian Probabilistic Matrix Factorization (BPMF)
(Salakhutdinov and Mnih 2008a) that is made inherently ge-
ometrically indexable by letting {vj} be a priori governed
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by a Von Mises-Fisher distribution which puts zero probabil-
ity mass on vj with ‖vj‖ �= 1. The prior ensures that (1) can
be directly addressed through ANNS, for any data set, point
estimate or posterior parameter sample. The inference pro-
cedure for the item vectors will be based on Geodesic Monte
Carlo (Byrne and Girolami 2013), that allows efficient sam-
pling from distributions that are constrained to a manifold,
represented here by a hypersphere. Related techniques to
transform a MIPS into a NNS are discussed in Sec. 3 and
compared to our approach in Sec. 4 using two large scale
data sets of movies and music recommendations. We will
show that the restriction of the model to only embed items
onto a manifold empirically gives equivalent recommenda-
tion quality in terms of predicting users’ ratings of items.
The unconventional prior adds a small computational over-
head in the offline (inference) part when compared to BPMF,
but allows a faster and more accurate online (retrieval) com-
ponent with respect to state of the art methods.

2 Indexable Probabilistic Matrix

Factorization

It is possible to transform a MIPS problem into a NNS one
by fixing the norm of the item vectors in a Probabilistic Ma-
trix Factorization (PMF) model (Salakhutdinov and Mnih
2008b), as shown in (2). In standard Monte Carlo methods
for matrix factorization this constraint can be imposed with
a small modification to a PMF model and its inference pro-
cedure, and will leave the quality of the recommendations
intact. In this work we extend BPMF, but the main ideas can
be applied to any matrix factorization model.

Although a modern recommender system operates on im-
plicit and varied user feedback, its kernel is commonly built
around a sparse N ×M rating matrix R, whose element rij
contains user i’s rating of item j. A low-rank matrix factor-
ization R ≈ UTV embeds user i into a column vector ui in
U ∈ R

D×N , and item j into a latent vector vj . BPMF mod-
els rij = uT

i vj+εij as a real-valued random variable, where
εij is additive white Gaussian noise with a variance of 1/α.
As a generative model, user and item vectors are a priori dic-
tated by Gaussian priors p(ui|Θu) = N (ui;μu,Λ

−1
u ) and

p(vj |Θv) = N (vj ;μv,Λ
−1
v ), where Θu = {μu,Λ

−1
u }

and Θv = {μv,Λ
−1
v }. Conjugate Gaussian-Wishart hyper-

priors are used for the unknown shared means and preci-
sion matrices. The expected rating is then approximated with
Markov Chain Monte Carlo (MCMC) techniques, using a
Gibbs sampler to obtain samples from the posterior distri-
bution over user and item vectors; see (Salakhutdinov and
Mnih 2008a) for details.

2.1 Manifold restrictions

An indexable version of the BPMF, that we call Indexable
Probabilistic Matrix Factorization (IPMF), can be obtained
by replacing the Gaussian prior for the item vectors with a
Von Mises-Fisher prior. The Von Mises-Fisher distribution is
defined over points on a hypersphere, and therefore enforces
the fixed-norm constraint that transforms the MIPS problem
to a NNS. Due to its simplicity, this probability density is
widely used in directional statistics (Dhillon and Sra 2003).

Given a mean direction vector μv with unit length and a
concentration parameter κ ≥ 0, the Von Mises-Fisher distri-
bution vMF (vj ;μv, κ) is defined as

p(vj |Θv) = ZD(κ) eκμ
T
v vj ISD

(vj) , (3)

where Θv = {μv, κ}. SD = {v ∈ R
D | ‖v‖ = 1} rep-

resents the D dimensional unit hypersphere, IA is the in-
dicator function of the set A, and the normalizing constant
ZD(κ) is given by ZD(κ) = κD/2−1/(2π)D/2ID/2−1(κ),
where Ip is the modified Bessel function of the first kind
and order p. In the Von Mises-Fisher prior, higher values
of κ increase the concentration of the distribution around
the mean direction μv , while κ = 0 gives an uniform
distribution over the D dimensional unit hypersphere1. In
our experiments we will use κ = 0, assuming therefore
that all the directions have the same prior probability. Like
BPMF, the ratings are assumed to be conditionally indepen-
dent given the user and item vectors, so that the likelihood
decomposes over all observations through p(R|U,V, α) =∏

(i,j) N (rij ;u
T
i vj , α

−1).2

Given the structural similarity between BPMF and IPMF,
the Gibbs samplers for BPMF and IPMF only differ in their
conditional distributions of the item vectors. We refer the
reader to (Salakhutdinov and Mnih 2008a) for other Gibbs
steps, and only focus on conditional densities pertaining to
the manifold constraint. For both models the log-likelihood
is a quadratic function in vj :

log p(rj |vj ,Uj , α) ∝− α

2
(vT

j UjU
T
j vj − 2vT

j Ujrj) ,

where Uj is the restriction of U to the columns that
are indexed by users that rated item j, and rj con-
tains the corresponding ratings. The prior in (3) intro-
duces fixed-norm constraints to IPMF’s conditional density
p(vj |rj ,Uj , α,Θv). Our choice of κ = 0 implies that the
log-posterior is

log p(vj |rj ,Uj , α,Θv) ∝ −α

2
(vT

j UjU
T
j vj − 2vT

j Ujrj)

such that ‖vj‖ = 1 . (4)

The gradient of this constrained function with respect to the
random vector vj is given by:

∇vj
log p(vj |rj ,Uj , α,Θv) = −α(UjU

T
j vj −Ujrj) .

As the gradient of the (unnormalized) log-posterior can be
efficiently computed it is possible to sample posterior item
vectors using the recently introduced Geodesic Monte Carlo
(GMC) (Byrne and Girolami 2013).

1κ therefore plays a role similar to that of the precision param-
eter (inverse variance) in a Gaussian distribution.

2When ratings are modelled with additive user and item bi-
ases ci and dj through rij = uT

i vj + ci + dj + εij , the def-
initions ũi � [ui; 1] and ṽj � [vj ; dj ] yield argmaxj(rij) =

argmaxj(u
T
i vj+dj) = argmaxj(ũ

T
i ṽj). IPMF requires a fixed-

norm constraint on ṽj to enforce sublinear NNS. Biases are not
considered in our analysis for simplicity in the exposition.
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2.2 Geodesic Monte Carlo

Geodesic Monte Carlo (GMC) is an extension of Hamilto-
nian Monte Carlo (HMC) (Neal 2010) to distributions that
are themselves defined over a hypersphere (or, more gen-
erally, over a manifold embedded in the Euclidean space
for which an explicit form of the geodesics are known). It
builds upon the same ideas that underpin Riemann man-
ifold Hamiltonian Monte Carlo (RMHMC) (Girolami and
Calderhead 2011). For uncluttered notation we drop the de-
pendence of vj on j below, and denote the target distribution
by p(v).

The GMC algorithm considers the Hamiltonian defined
on the manifold (a hypersphere in our case) whose local ge-
ometric properties are described by the metric tensor G(v).
Samples from p(v) are obtained by interpreting v as the po-
sition of a particle that moves along the manifold accord-
ing to the corresponding Hamiltonian dynamics, by intro-
ducing a position-dependent auxiliary momentum variable p
drawn from N (p;0,G(v)). The Hamiltonian is then given
by H(v,p) = − log p(v) + 1

2p
TG(v)−1p. When the tar-

get distribution is defined on a manifold for which the form
of the geodesics is known, Hamilton’s equations are conve-
niently solved by “splitting the Hamiltonian” (Neal 2010).
This is done by writing

H(v,p) = H [1](v,p) +H [2](v,p) (5)

where H [1](v,p) = − log p(v) and H [2](v,p) =
1
2p

TG(v)−1p. Considering each term in (5) as a distinct
Hamiltonian we alternately simulate their dynamics for
some time step ε to obtain new proposals (as for HMC, ε
should be small enough to have a low discretization error).
To allow larger moves and suppress random walk behaviour
Hamilton’s equations are solved for l steps at each itera-
tion3 (the number of “leapfrog” steps in HMC). When solv-
ing Hamilton’s equations for H [1](v,p), the absence of a
kinetic term leads to a linear update of the momentum p:
p ← p + ε

2∇v log p(v). On the other hand, when consid-
ering H [2](v,p) the trajectory followed will be a geodesic.
No potential term is acting on the particle; it will therefore
move in the manifold following the path determined by the
bending of the surface. For a hypersphere, the geodesics are
given by the great circles, the intersection of the hypersphere
and any hyperplane passing through the center of the sphere.

In Fig. 1 we show a comparison on a toy example with
D = 3 between GMC and the standard Metropolis-Hastings
(MH) algorithm that uses a Von Mises-Fisher proposal dis-
tribution whose samples are drawn with the method pre-
sented in (Wood 1994). In Fig. 1 GMC converges after only
one sample, and mixes much faster than MH, for which a
long burn-in phase is needed. If we consider the sampling
of the item vectors in the experiments presented in Sec. 4,
GMC achieves a few orders of magnitude speedup on MH.

3 Related approaches
In recent years the need for fast recommendations in large
scale systems has stimulated research on how to solve a

3In our simulations l = 10 and ε = 0.002 gave good perfor-
mances

Figure 1: Convergence from a random starting point (the red
cross) of MH with proposals on the sphere and GMC for
D = 3. GMC reaches the high density region much faster
than MH, and here converges to the stationary distribution
after one burn-in sample.

MIPS in sublinear time. Due to the complexity of the prob-
lem, the early attempt of Khoshneshin and Street (2010)
proposes a latent factor model in which predictions are no
longer based on a maximization over inner products, but on
a distance minimization problem, therefore enabling the use
of data structures for ANNS. As their model is not based
on matrix factorization techniques, their ideas are not appli-
cable to many of the models presented in the literature and
used in real world recommendation engines (Koren 2009;
Koren, Bell, and Volinsky 2009; Lawrence and Urtasun
2009; Mackey, Weiss, and Jordan 2010; Paquet, Thomson,
and Winther 2012; Porteous, Asuncion, and Welling 2010;
Paquet and Koenigstein 2013). More recent works have in-
stead used Euclidian transformations that increase the di-
mensionality of the output of an existing matrix factoriza-
tion model (such as BPMF in our experiments) to pass from
a maximization over inner products to a distance minimiza-
tion problem.

Bachrach et al. (2014) extend user and item vectors with
one extra dimension as

u�
i = [ui ; 0 ] v�

j =
[
vj ;

√
φ2 − ‖vj‖2

]
, (6)

and show that NNS(V�,u�
i ) = MIPS(V,ui), where φ �

maxj ‖vj‖ and V� ∈ R
D+1×M is the matrix that contains

v�
j in its columns. Experiments on large-scale recommender

systems indicate considerable performance improvements
of this method compared to the space-partitioning trees of
Koenigstein, Ram, and Shavitt (2012) and Ram and Gray
(2012). An alternative transformation is that of Shrivastava
and Li (2014),

u′
i = [ui ; 1/2 ; 1/2 ; . . . ; 1/2 ]

v′
j =

[
vj ; ‖vj‖2 ; ‖vj‖4 ; . . . ; ‖vj‖2m

]
, (7)

who show that for m → ∞ (typically m ≥ 3 is enough)
we have argmaxj u

T
i vj  argminj ‖u′

i − v′
j‖. Their near-

est neighbour search is performed with Locality Sensitive
Hashing (Andoni and Indyk 2008), which uses hashing func-
tions with the property that vectors that are close to each
other will have a high probability of collision. This method

1556



is improved in (Shrivastava and Li 2015), which exploits a
new transformation similar to (7) such that when m → ∞
the MIPS problem can be expressed as a cosine similarity
search4 that can be efficiently solved using LSH with signed
random projections (Charikar 2002). Finally, Neyshabur
and Srebro (2015) propose the simple-LSH method, that
combines the independently rederived transformation in (6)
with a LSH that uses signed random projections hash-
ing functions. Theoretical comparisons show that simple-
LSH outperforms the methods in (Shrivastava and Li 2014;
2015) in terms of quality of hashing, in addition to giv-
ing better empirical performances and stronger guarantees.
In our experiments we will therefore only compare IPMF
with the state of the art methods of (Bachrach et al. 2014;
Neyshabur and Srebro 2015), by extending the latent vec-
tors of BPMF using (6) and testing different data structures
for ANNS.

We note in particular that the new vectors v�
j in (6) all

have the same norm φ, and like those of IPMF, also lie on
a hypersphere. The presence of φ in only the extra dimen-
sion is such that the extra component typically has a much
bigger value than the rest of the latent variables (see discus-
sion in (Bachrach et al. 2014)), meaning that the item vec-
tors will be concentrated in one region of the hypersphere.
While this is not an issue when looking for exact nearest
neighbours, this data imbalance will affect the retrieval ac-
curacy in the down-stream approximate NNS5; see Sec. 4.2.
As IPMF natively restricts item vectors to a hypersphere,
all vector components are used equally in determining the
items’ latent embeddings, with no component consistently
being substantially larger. This holds practical benefits for
the accuracy of ANNS data structures.

4 Results

We evaluate our model on the two biggest publicly avail-
able data sets for collaborative filtering. The Netflix data set
(Bennett and Lanning 2007) contains more than 100 million
ratings from 1 to 5 stars (integers) given to 17770 movies by
480189 users. The Yahoo! Music data set (Dror et al. 2011)
contains around 283 million ratings given by slightly more
that 1 million users to 624961 music items, with integer rat-
ings between 0 and 100. To gauge the quality of the recom-
mendations given by IPMF, we show that it is practically
equivalent to that of BPMF in terms of Root Mean Squared
Error (RMSE) when predicting ratings in a test set. Finally,
we compare our method against state of the art techniques
in terms of speedup, defined as the ratio between the time
taken to make recommendations solving the MIPS problem
and the time taken with ANN. To measure the trade-off be-
tween the quality of the top K recommendations and the
speedup that one can obtain with the ANNS, we will use the
same quantities defined in (Bachrach et al. 2014):

Precision@K � |Lopt ∩ Lapprox|
K

,

4Due to the fixed norm constraints this also holds for IPMF.
5To mitigate this problem Bachrach et al. (2014) use Principal

Component Analysis (PCA) to rotate the expanded {v�
j }.

Netflix

BPMF IPMF

D RMSE Time (h) RMSE Time (h)

20 0.9059 0.91 0.9067 1.04
50 0.8985 1.54 0.8997 1.79

100 0.8951 3.25 0.8976 3.60

Yahoo! Music

20 24.902 3.17 25.063 8.95
50 24.695 5.33 24.877 14.16

100 24.677 10.42 24.856 31.45

Table 1: Test RMSE and training times (in hours) for dif-
ferent values of the number D of latent features. For both
models 150 posterior samples were drawn.

RMSE@K �

√√√√ 1

K

K∑
k=1

(Lopt(k)− Lapprox(k))
2
,

where Lapprox and Lopt represent the list of the top K
approximated (retrieved) and optimal recommendations,
sorted in decreasing order of predicted rating. The optimal
recommendations are those obtained by a full O(M) search.
Precision@K measures how many of the top K approximate
recommendations are among the optimal K ones, whereas
the RMSE@K measures the difference in the quality of the
recommendations (in terms of predicted rating) of the items
in the lists Lapprox and Lopt.

4.1 Root Mean Squared Error

The main purpose of this section is to understand how the
choice of the Von Mises-Fisher prior affects recommenda-
tions, as it would be useless to speed up retrieval if the qual-
ity of the final recommendations degraded. The Von Mises-
Fisher prior of IPMF imposes much stronger constraints on
the item vectors than the Gaussian prior of BPMF, as it as-
signs zero probability to all points but those on a unit hyper-
sphere (hence we have only D − 1 degrees of freedom).

Quality. The Netflix data set is accompanied by a test set
of around 1.4 million predictions, whereas the Yahoo! Mu-
sic test set has slightly more than 6 million elements. Table
1 draws a comparison between the RMSE and the training
times (in hours) achievable with BPMF and IPMF on both
data sets for different D. Despite restricting vj to a hyper-
sphere, the model’s predictive accuracy is not significantly
affected. To gain more insight in the difference between the
results of BPMF and IPMF, we show in Fig. 2 the RMSEs
computed for groups of items with a similar number of view-
ers. This is useful in discerning whether a specific group of
items is particularly penalized by IPMF. Only the analysis
for D = 20 is shown, as for D = 50 and D = 100 we ob-
tained similar trends. From the figure we notice that IPMF
tends to penalize more items with a small number of view-
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Figure 2: Test RMSE for the different groups of items (D =
20). The RMSE of a naive algorithm that assigns to each
item its average rating (item average), is also plotted.

ers.6 The difference between IPMF and BPMF’s test RMSE
is negligible, but noticeable for items that received very little
user feedback. In practice this is ignorable, as in a live sys-
tem items with only a few views or ratings are often not con-
sidered as candidates for recommendation, in order to avoid
potentially poor user experiences due their little training data
and large uncertainty associated with their predictions. An
analysis similar to the one of Fig. 2, but considering differ-
ent groups of users (separated according to the number of
items viewed), showed almost overlapping lines for BPMF
and IPMF. This result is crucial, as it implies that no specific
type of user is penalized by the modelling choice.

Training times. For all the simulations in Table 1 we used
a machine with an 8-core processor and 64GB of RAM. The
differences in training times for a given value of D are as-
cribed to IPMF needing GMC to sample the items vectors,
whereas in BPMF the items are Gibbs-sampled from a Gaus-
sian distribution. The Netflix data set catalogue is not too
large, and there is a very small difference in computational
cost between BPMF and IPMF. Because of the huge num-
ber of items in the Yahoo! Music catalog (more than 600

6At first sight, these results may seem inconsistent with the RM-
SEs shown in Table 1, where for D = 20 the test RMSE obtained
with BPMF is extremely close to the one obtained with IPMF.
Items with a few viewers also have only a few ratings in the test
set, hence the total test RMSE is only slightly influenced by them.

thousand), IPMF is almost 3 times slower than BPMF. As
the architectures of real systems contain an offline (infer-
ence) and online (retrieval) component, the increase in of-
fline computation time may be allowable if this guarantees
optimal online performance.

4.2 Retrieval speedup

State of the art methods apply a post-processing step that
increases the dimensionality of the computed latent vec-
tors (BPMF in our experiments) to transform a MIPS to
a NNS; see Sec. 3. Our proposed approach, on the other
hand, constructs models that are natively indexable (such as
IPMF). In our experiments we only compare IPMF to BPMF
with an additional dimension, introduced independently by
Bachrach et al. (2014) and Neyshabur and Srebro (2015). We
will refer to it as BPMF+ (BPMF plus post-processing); see
(6). As Neyshabur and Srebro (2015) show that their simple-
LSH algorithm outperforms the two methods of (Shrivastava
and Li 2014; 2015), this will be the only one considered in
our simulations. As suggested by Bachrach et al. (2014), a
Principal Component Analysis transform is applied to the
BPMF+ user and item vectors.7

Once the maximization over inner products (the recom-
mendation step) is expressed as a distance minimization
problem, it is then possible to speed up the retrieval time by
doing Approximate Nearest Neighbor Search (ANNS), us-
ing any of the data structures developed in the literature. We
experimentally compare against randomized kd-trees, prior-
ity search (hierarchical) k-means trees and locality sensi-
tive hashing, as they were shown to be very effective when
dealing with high dimensional data (Muja and Lowe 2009;
2014). For the first two data structures we used the imple-
mentation in the well known Fast Library for Approximate
Nearest Neighbor (FLANN) (Muja and Lowe 2014), and
both data structures explore the tree in a best-bin-first man-
ner. LSH uses the signed random projection hashing scheme
(Charikar 2002), so that the combination of BPMF+ and
LSH is equivalent to the simple-LSH method of (Neyshabur
and Srebro 2015). The LSH algorithm implementation is
from (Aly, Munich, and Perona 2011).

Our comparisons use ANNS data structures on one pos-
terior MCMC sample of V for BPMF+ and IPMF. Given
one indexed V-sample, effects like freshness of recommen-
dations can be addressed by retrieving different sets of items
using different ui samples from the conditional ui|V. Alter-
natively, multiple posterior V-samples can be indexed sepa-
rately or together. These combinations are beyond the scope
of this work, and not addressed here.

Comparative Speedups. Fig. 3 shows the speedup ob-
tainable with IPMF and BPMF+ using the data structures
for ANNS previously introduced. We consider D = 20 la-
tent features and focus on top 10 recommendations, hence
as measures of quality we use the previously defined Preci-
sion@10 and RMSE@10. Like Table 1, we also tested for
D = 50 and D = 100; the trends were similar, and are

7A kd-tree built on data transformed with a PCA is also known
as PCA-tree
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Figure 3: Performance analysis for the ANNS step of the recommender system (D = 20), using the mean values over all the
users of Precision@10 (higher is better), RMSE@10 (lower is better) and speedup (higher is better). For the tree structures
we vary the maximum number C of visited internal nodes allowed during the exploration of the tree (for the priority search
k-means tree used for IPMF the figures are annotated with C). The priority search k-means tree has 32 and 64 cluster centers
for the Netflix and Yahoo! Music data sets respectively. LSH uses T = 10 hash tables and different hash key lengths L; the
figures are annotated with some settings of L. (We additionally tried T in {1, 3, 5, 10, 20, 30, 50, 75, 100} on optimized code,
and of these, T = 10 was the best setting in this instance.)

not included here for brevity. A value for Precision@10 in
the range from 0.4 to 0.8 gives a good compromise between
speedup obtainable and quality of the recommendations. In
both tree structures this trade-off can be expressed by try-
ing different values for the maximum number C of internal
nodes visited during the NNS, as Muja and Lowe (2014)
suggest. For LSH, we tested different hash key lengths L.

We see in Fig. 3 that for both data sets the combination
of IPMF and the priority search k-means tree is by far the
best performing method in the interesting region, both in
terms of Precision@10 and RMSE@10. For the Netflix data
set, we see for example that to obtain a Precision@10 value
of 0.6 our approach is around 50% faster than the second
best performing method, where a priority search k-means
tree is used for BPMF+. Randomized kd-trees and LSH also
work better with IPMF than with BPMF+, but they are still
both largely outperformed by priority search k-means trees.
Similar trends can be noticed for the Yahoo! Music data
set, where the priority search k-means tree with our IPMF
method is for example at least 50% faster than all the other
methods for a Precision@10 of 0.6. For the BPMF+ the ran-
domized kd-trees now allow better performances than the
priority search k-means tree.

5 Conclusion

In this work we complement the work of (Bachrach et al.
2014; Neyshabur and Srebro 2015; Shrivastava and Li 2014;
2015), by developing a novel approach to solve a MIPS
in sublinear time for large-scale recommender systems. We
have shown that it is possible to simply extend existing mod-
els to have natively geometrically indexable vectors, intro-
ducing the Indexable Probabilistic Matrix Factorization as
an extension of the BPMF. The GMC algorithm allows effi-
cient inference, and the results on two different large-scale
data sets show that the required embedding on a manifold
does not affect the quality of the recommendations and leads
to significant improvements in retrieval time with respect to
state of the art techniques. In this work, the training phase
of our model and the construction of the data structure for
ANNS are still done separately, but IPMF could potentially
combine inference and indexing in a natural way.
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