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Abstract

Spatial centrality, whereby samples closer to the cen-
ter of a dataset tend to be closer to all other samples,
is regarded as one source of hubness. Hubness is well
known to degrade k-nearest-neighbor (k-NN) classifi-
cation. Spatial centrality can be removed by centering,
i.e., shifting the origin to the global center of the dataset,
in cases where inner product similarity is used. How-
ever, when Euclidean distance is used, centering has
no effect on spatial centrality because the distance be-
tween the samples is the same before and after cen-
tering. As described in this paper, we propose a solu-
tion for the hubness problem when Euclidean distance
is considered. We provide a theoretical explanation to
demonstrate how the solution eliminates spatial central-
ity and reduces hubness. We then present some discus-
sion of the reason the proposed solution works, from
a viewpoint of density gradient, which is regarded as
the origin of spatial centrality and hubness. We demon-
strate that the solution corresponds to flattening the den-
sity gradient. Using real-world datasets, we demonstrate
that the proposed method improves k-NN classification
performance and outperforms an existing hub-reduction
method.

Introduction

Background

The k-nearest neighbor (k-NN) classifier is vulnerable to
the hubness problem, which is a phenomenon that occurs
in high-dimensional spaces (Radovanović, Nanopoulos, and
Ivanović 2010; Schnitzer et al. 2012; Suzuki et al. 2013;
Tomašev and Mladenić 2013). Hubness refers to the prop-
erty by which some samples in a dataset become hubs, fre-
quently occurring in the k-NN lists of other samples. The
emergence of hubs often affects k-NN classification accu-
racy. The predicted label of a query sample is determined by
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the labels of its k-NN samples, in which hubs are likely to
be included.

According to Radovanović et al. (2010), hubness occurs
because of the existence of spatial centrality and high di-
mensionality. Spatial centrality is the tendency of samples
that are closer to the center of a dataset to be closer to all
other samples. As dimensionality increases, this tendency of
such samples is amplified, causing the samples closer to the
center to become hubs.

To reduce hubness, Suzuki et al. (2013) showed that shift-
ing the origin to the global centroid, known as centering,
is effective when an inner product-based similarity is used.
More precisely, in a high-dimensional dataset with a global
centroid vector c, hubness occurs when the inner product
〈xi, xj〉 is used to measure the similarity between samples
xi and xj . However, hubness does not occur if 〈xi−c, xj−c〉
is used instead. This result occurs because of the elimination
of spatial centrality through the process of centering. How-
ever, the centering process cannot eliminate hubness as mea-
sured by Euclidean distance because the distance between
samples remains the same before and after the centering.

Contributions

We propose a solution for the hubness problem considering
Euclidean distance, rather than inner product similarity. We
introduce a value called the sample-wise centrality: for each
sample x, we define this value as the (squared) distance from
the global centroid vector c, ||x−c||2. The proposed method
subtracts the sample-wise centrality from the (squared) orig-
inal Euclidean distance. Subsequently, we provide a theoret-
ical explanation of how the solution eliminates the spatial
centrality and reduces hubness.

As our second contribution, from a viewpoint of density
gradient, we explain why the proposed solution works, i.e.,
the reason for the reduction of hubness by the elimination of
spatial centrality. After verifying that the origin of hubness
lies in the density gradient and high-dimensionality (Low et
al. 2013), we demonstrate that subtracting sample-wise cen-
trality from the (squared) original Euclidean distance flattens
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(b) Spatial central-
ity.

N
10

0 5 10 15 20 25

F
re

q
u
e
n
c
y

10
0

10
1

10
2

10
3

Skewness=0.38

(c) No hubness.

Figure 1: Illustrative example using a dataset generated from
an i.i.d. Gaussian(�0, I) with sample size n = 1000 and di-
mension d = 1000. (a) Hubness occurs when samples have
a large N10 value, and when the N10 distribution is skewed
to the right. (b) Correlation between the N10 value and the
distance to the global centroid is strong. (c) Hubness is re-
duced successfully (with lower N10 value and skewness) by
the proposed transformation from Equation (3).

the density gradient of the isotropic Gaussian distribution.
However, when dealing with real-world datasets, the form

of distributions from which datasets are generated is not gen-
erally the isotropic Gaussian distribution. As our third con-
tribution, we propose a new hub-reduction method for such
practical situations. The method relies on the assumption
that each sample locally follows an isotropic Gaussian dis-
tribution. Using real-world datasets involving gene expres-
sion profile classification, and handwritten digit or spoken
letter recognition, we demonstrate that the proposed method
improves k-NN classification performance and that it out-
performs an existing hub-reduction method.

Property of Hubness

The hubness phenomenon is known to occur when near-
est neighbors in high-dimensional spaces are considered
(Radovanović, Nanopoulos, and Ivanović 2010). Letting
D ⊂ R

d be a dataset in d-dimensional space and letting
Nk(x) denote the number of times a sample x ∈ D occurs
in the k NNs of other samples in D, then the shape of the
Nk distribution skews to the right, and a few samples have
large Nk values when the dimension is large. Such samples
that are close to many other samples are called hubs. This
phenomenon is known as hubness.

Here, we demonstrate the emergence of hubness us-
ing artificial data. We generate a dataset from an i.i.d.
Gaussian(�0, I) with sample size n = 1000 and dimension
d = 1000, where �0 is a d-dimensional vector of zeros and
I is a d × d identity matrix. The distribution of N10 is pre-
sented in Figure 1(a), where one can observe the presence of
hubs, i.e., samples with particularly large N10 values.

Following Radovanović et al. (2010), we evaluate the de-
gree of hubness by the skewness of the Nk distribution.
Skewness is a standard measure of the degree of symme-
try in a distribution. Its value, which is zero for a symmetric
distribution such as a Gaussian distribution, takes positive or
negative values for distributions with a long right or left tail.
Particularly, a large skewness indicates strong hubness in a
dataset. Indeed, skewness is large, i.e., 2.83, in Figure 1(a).

Spatial Centrality

For the artificial dataset described above, we present a scat-
ter plot of samples with respect to the N10 value and the
distance to the center of the dataset (Fig. 1(b)). Clearly,
a strong correlation exists. It is called spatial centrality
(Radovanović, Nanopoulos, and Ivanović 2010).

Spatial centrality refers to the fact that samples closer
to the center of a dataset tend to be closer to other sam-
ples, and therefore, tend to have large Nk values. We now
show that the emergence of spatial centrality is inherent in
the (squared) Euclidean distance, where the distance is com-
puted as ||x − q||2 between a database sample x ∈ D and a
query sample q ∈ D.1 2

Proposition 1. Let us consider two database samples a, b ∈
D located proximate to or distant from the global centroid
c = 1

|D|
∑

q∈D q ≡ Eq[q], such that

||a− c||2 ≤ ||b− c||2. (1)

Then
Eq[||a− q||2] ≤ Eq[||b− q||2]. (2)

Proof. Because Equation (1) is equivalent to

−2〈a, c〉+ ||a||2 + 2〈b, c〉 − ||b||2 ≤ 0,

Eq[||a− q||2]− Eq[||b− q||2]
= −2〈a,Eq[q]〉+ ||a||2 + 2〈b,Eq[q]〉 − ||b||2
= −2〈a, c〉+ ||a||2 + 2〈b, c〉 − ||b||2 ≤ 0.

Therefore, we obtain Eq[||a− q||2] ≤ Eq[||b− q||2].
Proposition 1 suggests that, on average, sample a, which

is near the global centroid, is closer to the query samples
than sample b, which is distant from the centroid. Therefore,
spatial centrality exists in the squared Euclidean distance.3

Using Euclidean distance or squared Euclidean distance
does not affect the performance of subsequent k-NN clas-
sification because the nearest neighbors of a query sample
selected from database samples are the same irrespective of
the metric used. Therefore, we continue to use the squared
Euclidean distance in the sections below.

Solution for Reducing Hubness by Eliminating

Spatial Centrality

The existence of spatial centrality is regarded as one of
the principal causes for hubness (Radovanović, Nanopou-
los, and Ivanović 2010). Therefore, we expect that hubness

1We use the terminology “database sample” and “query sam-
ple” because we assume k-NN classification by which database
samples are sorted in ascending order based on the distance from a
given query sample.

2For brevity, we consider the case where the set of samples in
the database and the queried set of samples are identical.

3A similar argument using Euclidean distance was presented
in a report of an earlier study (Radovanović, Nanopoulos, and
Ivanović 2010), where samples were assumed to follow the Gaus-
sian distribution. In our argument, however, Inequality (2) holds for
any distribution.
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will be suppressed if spatial centrality is removed. In this
section, we propose a hub-reduction method that transforms
the (squared) Euclidean distance such that the transformed
distance does not generate spatial centrality.

As noted previously, we do not consider the Euclidean
distance, but instead work with the squared Euclidean dis-
tance. Therefore, for a given query sample q ∈ D and
database sample x ∈ D, we use the squared Euclidean dis-
tance ||x− q||2.

To remove spatial centrality with respect to the global cen-
troid, we define sample-wise centrality for database sample
x and query sample q, respectively as ||x−c||2 and ||q−c||2,
which are the (squared) distances from the (global) centroid
c. We then transform the squared Euclidean distance by sub-
tracting the sample-wise centrality of x and q, such that
DisSimGlobal(x, q) ≡ ||x−q||2−||x−c||2−||q−c||2. (3)

This can take a negative value. Therefore, it is regarded as a
dissimilarity (i.e., we designate by DisSim), not distance.
However, non-negativity does not affect the process of k-
NN classification, where database samples are sorted in as-
cending order based on their dissimilarity with a given query
sample q.

Now, substituting q = c in Equation (3) yields
DisSimGlobal(x, c) = 0. (4)

This fact indicates that the dissimilarity of any database sam-
ple x ∈ D with the centroid c is the same (i.e., 0). In other
words, Equation (4) implies that spatial centrality does not
exist after the transformation, because no samples have a
specific small dissimilarity with the centroid.

Next, we show that the transformation based on Equa-
tion (3) reduces hubness.
Theorem 1. The mean of the dissimilarity defined in Equa-
tion (3) between a database sample x ∈ D and query sam-
ples is constant, i.e.,

Eq[DisSimGlobal(x, q)] = const.

Proof. Using c = Eq[q],

Eq[DisSimGlobal(x, q)]

= Eq[−2
(〈x, q〉 − 〈x, c〉 − 〈q, c〉+ ||c||2)]

= −2 (〈x,Eq[q]〉 − 〈x, c〉 − 〈Eq[q], c〉+ ||c||2
)

= −2 (〈x, c〉 − 〈x, c〉 − 〈c, c〉+ ||c||2) = 0,

which takes a constant value (i.e., 0) that is independent of
database sample x.

Theorem 1 shows that any two database samples a, b ∈ D
are equally close to the query samples on average, even if
they are selected to satisfy Inequality (1). Recall that, with-
out the proposed transformation, sample a is closer to the
query samples on average than sample b, as indicated by In-
equality (2). In contrast, the proposed method does not cause
some database samples to be specifically closer to the query
samples. Therefore the proposed method is expected to sup-
press hubness.

Indeed, the proposed method reduces hubness in the
dataset used to create Figure 1. After the proposed trans-
formation according to Equation (3) has been applied, the
skewness decreases from 2.83 (Fig. 1(a)) to 0.38 (Fig. 1(c)).

Why the Solution Works?

Although Fig. 1 (b) shows strong correlation between hub-
ness (i.e., Nk value) and centrality (i.e., distance to global
centroid), it does not mean in general that equalizing the dis-
tance to the global centroid reduces hubness. This section,
presents the reason that the proposed solution works from a
viewpoint of density gradient.

Density Gradient: A Cause of Hubness

The origin of hubness can also be viewed to lie in density
gradient and high dimensionality (Low et al. 2013). To il-
lustrate, we consider a dataset in which each sample in the
dataset is a real-valued vector x generated from continuous
probability density function f(x). If the value of f(x) varies
over x, then we say that the dataset has a density gradient,
which means that samples are concentrated around the re-
gion where f(x) is large, but samples are sparsely observed
in the region where f(x) is small. In other words, a density
gradient exists in any dataset generated from a distribution
other than a uniform distribution in which f(x) takes a con-
stant value irrespective of x.4

We now discuss relations between density gradient and
hubness, using the isotropic Gaussian distribution as an ex-
ample of a density gradient, and the uniform distribution that
has no density gradient.

We start from an observation in one dimension. In Fig-
ure 2, the 1-NN relations between samples are represented
as arrows. Each sample has an out-going arrow. The sam-
ple indicated by the arrow is the closest sample (i.e., 1-NN
sample) to the sample in which the arrow goes out.

It is noteworthy that the directions of the arrows are ran-
dom in datasets generated from the uniform distribution
(Fig. 2(b)), but they are not random in datasets generated
from the Gaussian distribution. Precisely, the arrows tend
to direct to the center of the dataset (Fig. 2(a)) because the
closer to the center a point x lies, the greater the density f(x)
of the Gaussian distribution becomes, meaning that samples
are more likely generated in the region closer to the center.
As a result, samples closer to the center are likely to be se-
lected as 1-NN by samples that are more distant from the
center. In contrast, in the case of the uniform distribution, all
samples are equally likely to be selected as 1-NN, irrespec-
tive of their position.

However, in one dimension, hubs (which are the samples
with a large N1 value here) do not occur because N1 takes
a value from {0, 1, 2}. Therefore, the maximum of N1 can-
not become greater than 2. Consequently, the existence of
density gradient is insufficient for hubness to occur.

We then proceed to the case of a higher dimension. Fig-
ure 2(c) shows 1-NN relations between samples generated
from the isotropic two-dimensional Gaussian distribution.

4If a uniform distribution has a bounded support, hubness ac-
tually appears. This is because boundaries exist—a region where
f(x) is constant, and elsewhere f(x) = 0, so there will be a sharp
density increase/drop. Hence, to be precise, a dataset generated by
a boundless uniform distribution (e.g., a uniform distribution on a
spherical surface) or a Poisson process (uniformly spread all over
the space) does not have a density gradient.
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(a) Gaussian distribution (one-dimension)

(b) Uniform distribution (one-dimension)

(c) Gaussian (two-
dimension)

(d) Uniform (two-
dimension)

Figure 2: For datasets generated illustratively from one or
two-dimensional Gaussian and uniform distributions, the
1-NN relations between samples are indicated by arrows.
The red regions represent high density whereas shaded blue
stands for low density. The number attached to a sample de-
notes the N1 value for the sample. The sample with a large
N1 value is a hub.

Like that in one dimension, a tendency is apparent by which
arrows are directed towards the center because of the ex-
istence of density gradient. However, contrary to the one-
dimensional case, the upper limit of N1 is not 2 but it takes
the value of the kissing number, which grows exponen-
tially with the number of dimensions (Conway, Sloane, and
Bannai 1987). Consequently, in higher dimensions, samples
closer to the center tend to be pointed by many arrows start-
ing from samples farther from the center. Therefore, they
become hubs.

Flattening the Density Gradient

Necessary ingredients that cause hubness include density
gradient and high dimensionality. Therefore, we can expect
that a method that is intended to flatten the density gradient
is effective to reduce hubness.5

Herein, we show that the hub-reduction method accord-
ing to Equation (3) in fact flattens the density gradient of
the isotropic Gaussian distribution. The isotropic Gaussian
assumes squared Euclidean distance d(x, y) = ||x−y||2 be-
tween two points x and y. Using the distance, its probability
density function f(x) is defined as

f(x) ∝ exp(−β d(x, μ)) = exp(−β ||x− μ||2),
5Dimensionality reduction is also effective to reduce hubness.

However, it has been pointed out in earlier studies that if dimen-
sionality is reduced below intrinsic dimensionality, then a loss of
information can occur (Radovanović, Nanopoulos, and Ivanović
2010).

where μ and β respectively denote location and scale param-
eters.

Then, we assume that we are given a dataset D generated
from the isotropic Gaussian, and that c = 1

|D|
∑

x∈D x de-
notes the center, or the global centroid of the dataset. The
center c is known to approach to μ (i.e., c ≈ μ) as the size
of dataset becomes large.

If the squared distance is transformed using Equation (3)
such that dnew(x, y) = ||x − y||2 − ||x − c||2 − ||y − c||2,
then the density function is also modified, which gives

fnew(x) ∝ exp(−β dnew(x, μ))

= exp(−β (||x− μ||2 − ||x− c||2 − ||μ− c||2))
≈ exp(−β (||x− μ||2 − ||x− μ||2 − ||μ− μ||2))
= exp(0) = 1.

Therefore, the density becomes constant irrespective of x.
In other words, the density gradient flattens or disap-
pears. Consequently, the transformation using Equation (3)
reduces the hubness occurring in a dataset generated from
the isotropic Gaussian distribution.

Derivation of the Solution

Thus far, we assumed that the solution is given in the form
of Equation (3). Although we have discussed the benefits
of using it, i.e., reduction of hubness through elimination
of spatial centrality or flattening of the density gradient, we
have not yet described the rationale related to the derivation
of the solution. We address this issue next, with presentation
of some necessary assumptions for the derivation.

Assuming that we are given a distance function d(x, y)
and a probability density function

f(x) =
1

γd
exp(−β d(x, μ)),

where γd =
∫
exp(−β d(x, μ))dx. Then the goal is to ob-

tain a new dissimilarity function dnew(x, y) by remaking
d(x, y) so that the resulting density function fnew(x) ∝
exp(−β dnew(x, μ)) has no density gradient.

The simplest but trivial solution to obtaining fnew(x) =
const is to give dnew(x, y) = const. However, this is
not desirable because the solution ignores relations between
points that are provided originally by d(x, y). To avoid this,
we consider a loss function∫

(d(x, y)− dnew(x, y))f(x)f(y)dxdy, (5)

and we will find dnew(x, y) that minimizes the loss.
However, the loss is minimized when dnew(x, y) =

d(x, y), which is also undesirable. To avoid this, we intro-
duce a non-negative function h(x) ≥ 0 to restrict the new
dissimilarity dnew(x, y) in the form

dnew(x, y) = d(x, y)− h(x)− h(y). (6)

In other words, the new dissimilarity dnew(x, y) is restricted
to those obtained by subtracting h(x) and h(y), the factors
for discounting dissimilarity depending on individual points.
Then, to prohibit h(x) = 0 that yields dnew(x, y) = d(x, y),
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using a fixed value γ that does not depend on h(x), we make
a rather strong assumption6

∫
exp(−β h(x))dx = γ,

which means that ψ(x) = 1
γ exp(−β h(x)) provides a prob-

ability density function having the same scale parameter β
used in the given probability density function f(x).

Consequently, the loss (i.e., Equation (5)) becomes∫
(h(x) + h(y))f(x)f(y)dxdy = 2

∫
h(x)f(x)dx,

and the problem reduces to finding h(x) = − 1
β log(ψ(x))−

1
β log γ that minimizes the loss, which is equivalent to find-
ing ψ(x) that minimizes

−
∫

log(ψ(x))f(x)dx.

This process is known as cross-entropy minimization, which
gives

ψ(x) = f(x).

Then, by taking the logarithm of both sides of the above
equation, the form of h(x) is determined as

h(x) = d(x, μ)− 1

β
log(

γ

γd
).

Finally, replacing h(x) in Equation (6) with d(x, μ) pro-
duces dnew(x, y) = d(x, y)−d(x, μ)−d(y, μ)+ 2

β log( γ
γd
),

and omitting the constant term which has no effect on deter-
mining fnew(x), we obtain

dnew(x, y) = d(x, y)− d(x, μ)− d(y, μ). (7)

Note that Equation (7) is a general form of Equation (3).
Applying d(x, y) = ||x− y||2 to Equation (7) with a substi-
tution of c (the center, or the global centroid of the dataset)
for the parameter μ yields Equation (3).

A More Practical Solution

Up to this point, we assumed that datasets are generated
from the isotropic Gaussian, but this is not always true. In
addition, it may sometimes be impractical to assume that all
samples in a dataset follow the same unique distribution.

To be free from the limitations that might arise from such
assumptions, we present a more practical solution, which ap-
proximates that each sample in a dataset locally follows a
different isotropic Gaussian distribution.

More precisely, assuming that distance is given as
d(x, y) = ||x − y||2, we approximate that each sample x
in a dataset is generated individually from a probability den-
sity function

f(x) ∝ exp(−β d(x, μ(x))),

where the location parameter μ(x) depends on x. Then, fol-
lowing the derivation described in the previous section, h(x)

6Relaxing this assumption is left as a subject for future work.

in Equation (6) is now determined as h(x) = d(x, μ(x)). We
therefore obtain a new dissimilarity
dnew(x, y) = d(x, y)− d(x, μ(x))− d(y, μ(y))

= ||x− y||2 − ||x− μ(x)||2 − ||y − μ(y)||2,
which is expected to reduce hubness. To estimate μ(x), we
use the local centroid, cκ(x) = 1

κ

∑
x′∈κNN(x) x

′, the mean
vector of the κ nearest neighbor samples of x. By substitut-
ing cκ(x) for μ(x), we obtain the solution below.

DisSimLocal(x, y)

≡ ||x− y||2 − ||x− cκ(x)||2 − ||y − cκ(y)||2. (8)
For the additional parameter κ, we select a value from [1, n−
1] such that the hubness is maximally reduced, where n is
the dataset size.

Experiment

Reduction of Hubness

To evaluate the two proposed dissimilarity measures,
DisSimGlobal (Equation (3)) and DisSimLocal (Equation
(8)), we first conducted a simulation study to ascertain
whether they reduce hubness, using artificial data.

We generated datasets of three types: one that follows the
isotropic Gaussian (i.e., Gaussian(�0, I), where �0 is the all-
zeros vector and I is the identity matrix), one that follows the
non-isotropic Gaussian (i.e., Gaussian(�0,M), where M is a
randomly generated positive-semidefinite matrix), and one
that is generated from a mixture of two isotropic Gaussians
(i.e., Gaussian(�0, I) and Gaussian(�1, I), where �1 is the all-
ones vector). For the dataset of each type, we fixed dimen-
sion d = 1000. The number of samples was increased from
500 to 5000. We computed the skewness of the N10 distri-
bution for each dataset and used it to evaluate the hubness
(i.e., large skewness denotes the existence of hubness). For
each setting, we generated a dataset 10 times and reported
the averaged skewness.

The results are presented in Figure 3. Whereas the pro-
posed dissimilarity DisSimGlobal (Equation (3)) greatly re-
duced hubness for the isotropic Gaussian, it failed to reduce
hubness for both of the non-isotropic Gaussian and the mix-
ture of two isotropic Gaussians. However, the proposed dis-
similarity DisSimlocal (Equation (8)) coped effectively with
datasets of all three examined types.

k-NN Classification

We examined whether the reduction of hubness attained us-
ing the proposed methods DisSimGlobal (Equation (3)) and
DisSimLocal (Equation (8)) improved the accuracy of k-
NN classification using datasets for gene expression profile
classification and handwritten digit or spoken letter recog-
nition. We used the two datasets from the Kent Ridge Bio-
medical Dataset Repository, Leukemia and Lung Cancer,7 as
well as the two datasets in the UCI machine learning repos-
itory, MFeat and ISOLET.8 The task was to classify a sam-
ple into one of the predefined categories. We compared the

7http://datam.i2r.a-star.edu.sg/datasets/krbd
8https://archive.ics.uci.edu/ml/datasets.html
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Figure 3: Skewness of the N10 distribution computed using the baseline Euclidean distance and that transformed using the
proposed methods, i.e., DisSimGlobal (Equation (3)) and DisSimLocal (Equation (8)). The smaller the skewness was, the better
the result which was obtained.

performance of classification using the baseline Euclidean
distance and its transformations, obtained using Equation
(3) and Equation (8) and mutual proximity9 (Schnitzer et
al. 2012) that renders symmetric the nearest-neighbor rela-
tions, which are used with k-NN classifier. We assessed per-
formance according to the accuracy of the prediction using
leave-one-out cross-validation.

Table 1 presents the results. Compared with Euclidean
distance, the proposed method DisSimLocal (Equation (8))
reduced skewness and increased the accuracy of k-NN clas-
sification, and outperformed mutual proximity overall.

Related Work

Previously, the reduction of hubness under Euclidean dis-
tance has been studied using the approach that aims to sym-
metrize the nearest-neighbor relations (Zelnik-Manor and
Perona 2005; Schnitzer et al. 2012). In contrast, this paper
is the first attempt to explore spatial centrality and density
gradient to solve this problem.

For the hubness problem under the inner product similar-
ity, several studies have removed spatial centrality. Among
them, this paper was particularly inspired by the studies con-
ducted by Suzuki et al. (2013) who used the similarity to the
global centroid, and Hara et al. (2015) who investigated the
use of the local centroid.

However, important differences exist between this paper
and those two studies: (i) We were interested in the hub-
ness under Euclidean distance, but Suzuki et al. (2013) and
Hara et al. (2015) addressed hubness under inner product
similarity. (ii) We were aware that the two notions density
gradient and spatial centrality are closely interrelated, and
therefore, proposed to flatten the density gradient to reduce
hubness, but the two previously mentioned studies merely
eliminated the spatial centrality to reduce hubness. (iii) We
pointed out that the method using the global or local centroid
corresponds to flattening the density gradient of the global or
local isotropic Gaussian distribution, but the two previously
mentioned studies did not present such a discussion.

9We used a MATLAB script norm mp gaussi.m distributed at
http://ofai.at/∼dominik.schnitzer/mp.

It can be said that our method is among the techniques
labeled “Approach 1” in slides presented by Radovanović
(2015).10 Here, hubness is reduced with the expected effect
of redistributing responsibility for errors produced by mod-
els more uniformly among the points.

According to Bellet, Habrard, and Sebban (2013), most
previous studies have been undertaken to improve Euclidean
distance, including Weinberger and Saul (2009), who use
supervised metric learning, and also do not consider hub-
ness. Our approach is unsupervised, however, so our pro-
posed method would be presented in Table 2 (page 9) of the
arXiv Tech Report by Bellet, Habrard, and Sebban (2013) as
“Supervision = unsupervised” and “Regularizer = hubness.”

Conclusion

We proposed a solution for the hubness problem when Eu-
clidean distance is considered. After providing a theoretical
explanation for how the solution eliminates spatial central-
ity, a source of hubness, we showed that the solution corre-
sponds to flattening of the density gradient, a notion closely
related to spatial centrality and hubness. We demonstrated
empirically that flattening of the density gradient for elimi-
nating spatial centrality produces an effect on reducing hub-
ness and kNN classification.
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